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Abstract—In extracellular neural recording experiments, de-
tecting neural spikes is an important step for reliable information
decoding. A successful implementation in integrated circuits can
achieve substantial data volume reduction, potentially enabling a
wireless operation and closed-loop system. In this paper, we report
a 16-channel neural spike detection chip based on a customized
spike detection method named as exponential component-poly-
nomial component (EC-PC) algorithm. This algorithm features a
reliable prediction of spikes by applying a probability threshold.
The chip takes raw data as input and outputs three data streams
simultaneously: field potentials, band-pass filtered neural data,
and spiking probability maps. The algorithm parameters are
on-chip configured automatically based on input data, which
avoids manual parameter tuning. The chip has been tested with
both in vivo experiments for functional verification and bench-top
experiments for quantitative performance assessment. The system
has a total power consumption of 1.36 mW and occupies an area
of 6.71 mm for 16 channels. When tested on synthesized datasets
with spikes and noise segments extracted from in vivo preparations
and scaled according to required precisions, the chip outperforms
other detectors. A credit card sized prototype board is developed
to provide power and data management through a USB port.
Index Terms—EC-PC regression, multichannel digital system,

neural signal processing, unsupervised spike detection.

I. INTRODUCTION

S PIKE detection refers to differentiating extracellular neural
spikes from background noise. Its motivation is twofold: to

extract neural spikes for data analysis and closed-loop execu-
tion, and to compress neural data and facilitate wireless opera-
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tions. Many detection algorithms have been proposed in the lit-
erature [1]–[17]. Several spike detectors have also been reported
[18]–[33]. Among the available spike detectionmethods, the ab-
solute value thresholding (AT) [1]–[5] and the nonlinear energy
operator (NEO) [17] are the simplest ones. An FPGA-based
implementation has been proposed using AT [21]. The algo-
rithm is attractive for its computational simplicity, yet its per-
formance is unsatisfactory at moderate and low signal-to-noise
ratios (SNRs), making detection threshold a very sensitive pa-
rameter. NEO has been realized in several spike-sorting chips
[24], [30], [34] due to its efficiency. The algorithm is meant to
boost the differentiation between spikes and noise. However,
neural noise tends to be non-stationary, thus NEO may unfa-
vorably amplify some noise waveforms and give a raised false
alarm.
Other popular spike detection methods include template

matching [6]–[9] and wavelet-based detectors [10]–[15]. In
template matching, assuming neural spikes follow several tem-
plates with white Gaussian noise, matched filters constructed
from signal templates can give the best waveform differen-
tiation. These algorithms are effective given decent SNRs
and stationary neural signals; however, neural spikes may
have both short-term and long-term variations. For example,
individual spikes in a burst can have more than 50% amplitude
variation according to simultaneous intracellular and extracel-
lular recordings [35]. This challenges the hypothesis of “static
waveform template” and makes the performance not as good as
expected. Wavelet-based detectors require well-shaped mother
wavelets correlated with signals through either discrete-wavelet
transform [10], [15] or continuous-wavelet transform [11],
[14]. A challenge that is commonly faced is the requirement
to fine-tune thresholds, which is difficult given non-stationary
signals and noise. In addition, some wavelet-based detectors
require excessive hardware resources to implement [36], and
an extension to many channels is difficult [37].
Any successful spike detection method should satisfy the

following requirements. First, it should be suitable for online
implementation without requiring significant computational
resources and storage. Second, detectors should be nonpara-
metric and unsupervised to avoid frequent manual parameter
tuning. Third, a detector is preferred to consistently perform
well with different preparations and experiment protocols.
Specifically, it should be robust to practical imperfections such
as spike overlapping, waveform variation, low SNRs, unre-
solved artifacts, and interferences. Considering the mentioned
requirements, we report a detection algorithm followed by
its ASIC implementation. In comparison with other detectors
and unsolved challenges on hardware efficiency, parameter
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TABLE I
ALGORITHM FLOW OF EC-PC DETECTOR

Fig. 1. (a) Decomposition of neural data in Hilbert space into EC and PC. (b) Band-pass filtered neural data with corresponding spiking probability maps.

tuning, and reliability, this work has the following features.
First, through online and iterative learning, the required on-chip
storage has been reduced, which enables area-efficient hard-
ware design. Second, all parameters except thresholds are
estimated from raw data and adaptively updated, requiring no
human intervention. Thresholds can be specified independent
of data characteristics. Third, the detector has a unique output,
spiking probability map, that can reliably predict spike occur-
rence by assigning probabilities to neural signals. By outputting
spiking probability maps, 16-channel raw data are compressed
from 10.24 Mbps to 160 kbps, feasible for reliable wireless
transmission [38]–[41].
The rest of the paper is organized as follows. Section II out-

lines the proposed algorithm and presents the chip architecture.
Section III discusses the design trade-offs and circuit implemen-
tation of individual blocks. Section IV presents the prototype
design. Section V evaluates the chip performance with experi-
ment results and comparisons with other detectors. Section VI
gives concluding remarks.

II. EC-PC DETECTOR AND SYSTEM ARCHITECTURE

In this section, we start with an overview of the EC-PC spike
detection algorithm, followed by the introduction of the system
architecture implemented in hardware. Techniques to reduce

circuit power and area consumptions on the architecture-level
are exploited and discussed.

A. Algorithm Overview
We have reported an EC-PC spike detection algorithm in [42]

and outlined in Table I. Our research shows that in Hilbert space
in vivo noise follows an exponential component (EC) and ex-
tracellular spikes follow a polynomial component (PC). By on-
line estimating both EC and PC, the algorithm can quantitatively
predict the occurrence of neural spikes at any time based on a
spiking probability map, which plots the probabilities of each
data point being part of a spike over time. Specifically, EC-PC
tries to train two straight lines in the linear-log and log-log scales
of neural data distributions, which are represented by two pairs
of coefficients for EC and PC, respectively. Spikes can be de-
tected by thresholding on the probability map. In addition, the
probability threshold has a unique feature that predicts the Pre-
cision of detection, defined as the percentage of correctly de-
tected spikes in all detected spikes [43]. For example, around
50% detected spikes are true spikes with a 50% threshold. This
prediction is valid within a wide range of different SNRs, firing
rates, and background noise. It can significantly simplify the
threshold setting in real-timemulti-channel neural recording ex-
periments. Fig. 1 illustrates the decomposition of neural data
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Fig. 2. Block diagram of the proposed EC-PC spike detection ASIC.

into EC and PC, as well as the spiking probability map with
corresponding band-pass filtered neural data.

B. System Architecture
Fig. 2 shows the proposed 16-channel neural spike detec-

tion ASIC. The inputs to the chip are 16-channel time-division
multiplexed neural data, serialized and encoded for processing.
Each channel neural data are sampled at 40 kHz and packaged
in 32 bits, where 16 bits are used for data representation and
the rest are for protocols. The use of a 40 kHz sampling fre-
quency is mainly to be consistent with the on-chip integrated
analog frontends and ADC circuits which operate on 40 kHz
as a reference sampling rate, as well as offer better waveform
alignment precision. This word-length is chosen to enable the
simultaneous representation of spikes and local field potentials
(LFP), which are usually contaminated by artifacts and interfer-
ences that can be large in magnitude. The chip can record both
LFPs and spikes simultaneously: LFPs are separated from the
input by low-pass filtering the neural data at a corner frequency
of 250 Hz. To obtain spikes, a programmable band-pass filter
with default corner frequencies at 300 Hz and 8 kHz is used.
The corner frequency of the band-pass filter can be configured
anywhere between 5 kHz and 9 kHz with over 64 dB stop-band

attenuations and less than 0.08 dB pass-band ripples. This is
to provide maximum flexible programmability given the vari-
ability of testing subjects and application requirements [24].
The band-limited data are then fed into the Hilbert transform

module, which is implemented as a combination of fast Fourier
transform (FFT) and inverse-FFT (IFFT) with an intermediate
rotation in the frequency domain. We chose to implement the
Hilbert transform module as pipelined FFT-IFFT instead of
time-domain convolution to facilitate multichannel hardware
sharing. The outputs of Hilbert transform module enter the
EC-PC regression engines, where Hilbert transformed data are
first normalized to their estimated variances and accumulated
to build histograms. A fully autonomous training mechanism
is realized in the regression engines to extract the EC-PC
parameters from histograms for each channel within 2.5 sec. At
last, a probability estimator is deployed to calculate the spiking
probability maps based on the trained EC-PC parameters.
A winner-take-all strategy is implemented in the probability
estimator, where the data sample with the highest probability
score in a 64-point sliding window is identified. By outputting
the probability scores associated with the identified data points,
a data rate reduction from 10.24 Mbps to 160 kbps is
achieved, facilitating wireless data transmission.
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Fig. 3. Comparison of power and area reductions for different interleaving
ratios. All values are normalized to the 16-channel interleaving.

The behavior of the autonomous training mechanism is de-
scribed as follows. Histograms are used to estimate probability
distributions of neural data. Ideally, each channel should have
its own histogram to keep track of neural dynamics. However,
16-channel histograms would require a large amount of memory
and consume excessive power and area. To avoid the storage
overhead, we split the operation of EC-PC regression into two
sessions, as shown in Fig. 2. The regression starts with an accu-
mulation of neural data into histograms, which lasts for
and is executed sequentially from channel to channel to approx-
imate data distributions. The length of is evaluated in Sec-
tion III.C. At the end of , EC-PC parameters of the cur-
rent channel are derived from the accumulated histogram within
0.75ms. After that, the channel enters a retaining phase
where parameters remain unchanged and are used for spiking
probability estimation. Meanwhile, regression engines are allo-
cated to other channels for histogram training. To balance hard-
ware cost and EC-PC parameter updating latency, we have de-
ployed four EC-PC regression engines to process 16-channel
neural data, which results in a reduction in storage cost com-
pared with a fully parallel EC-PC regression configuration at a
negligible performance loss.

C. Interleaved Structure
Interleaving is an effective technique to save circuit power

and area by sharing combinational logic across channels with
increased clock frequencies, which leads to a trade-off analysis
between the reduced leakage power and increased switching
power to determine the optimal interleaving ratio [30]. To max-
imize the power and area saving, all modules in our design ex-
cept EC-PC regression engines are eligible for interleaving. For
a 16-channel design, candidates of interleaving ratios include
1, 2, 4, 8, and 16. We have implemented each option in Ver-
ilog RTL description and synthesized it using a 0.13 m process
standard cell library. Neural data recorded from in vivo prepa-
rations are used to simulate the synthesized netlists to obtain re-
alistic switching activities for accurate power estimation. Based
on the post-synthesis simulation results, the area and power con-
sumptions of all five candidates are normalized to the smallest

Fig. 4. Structure of the band-pass filter. The IIR filter is configured in a cascade
form, with each stage being one biquad filter. Filter coefficients are programmed
through the SPI, communicating with the peripheral FPGA where coefficients
are stored.

and plotted in Fig. 3: the 16-channel interleaving ratio gives
the best power and area reduction by up to 74% and 80%, re-
spectively, compared with the non-interleaved version, thus is
chosen in our design.

III. CIRCUIT BLOCKS

In this section, we discuss the design and implementation of
individual circuit blocks in terms of the trade-offs and optimiza-
tions of functionality, performance, and hardware complexity.
The programmable band-pass filter will be discussed first, fol-
lowed by the Hilbert transform module, the EC-PC regression
engine, and the spiking probability estimator. We also compare
the hardware complexity of our EC-PC detector with other pop-
ular detectors. Finally, the processing latency based on our im-
plementation is discussed.

A. Band-Pass Filter Design

In general, infinite impulse response (IIR) filters are more ef-
ficient than finite impulse response (FIR) filters to achieve al-
most identical specifications. Therefore we used an elliptic IIR
filter to realize the band-pass filter. The main advantage of el-
liptic filter is that it has the sharpest transition bands for a given
order than any other type of IIR filters. In addition, the amount of
ripples and attenuations of elliptic filters are independently ad-
justable, which is desirable for a reconfigurable filter design. In
our implementation, the elliptic filter is arranged in the cascade
structure, which can have better performance on hardware com-
plexity and coefficient sensitivity against arithmetic roundoff
and coefficient quantization compared with other filter struc-
tures, including direct form II, parallel, and lattice, etc [44]. As
shown in Fig. 4, the 16-order band-pass filter consists of 8 dig-
ital Biquad filters, and each Biquad filter has a set of 3 coeffi-
cients. All the 25 coefficients, including the overall gain factor,
are programmed through a serial peripheral interface (SPI) from
an off-chip FPGA, and can be online updated. The word-lengths
of coefficients and intermediate data are set as 20-bit and 40-bit,
respectively, which are determined by fixed-point modeling of
the filter structure in Simulink using synthetic data with varied
amplitudes, firing rates, and SNRs to ensure low ripples and re-
serve original spike waveforms without data overflow. Another
motivation of the coefficient word-length is to provide more
accurate tuning of pass-band, which is helpful to improve the
signal SNR by better isolating spikes [45].
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The corner frequencies of the band-pass filter are at 300 Hz
and 8 kHz, by default, and can be programmed in wide ranges
(250–600 Hz and 5–9 kHz) with over 64 dB stop-band attenu-
ations and less than 0.08 dB pass-band ripples. Simulations re-
sults confirmed that the achieved filtering introduces tolerable
distortions to neural data such that the incurred deviations of
estimated EC-PC parameters are less than 0.1%.

B. Hilbert Transform

The use of Hilbert transform is 1) to estimate the probability
density function (pdf) of neural data; 2) to simplify EC-PC de-
composition, since neural data tend to have more compact rep-
resentations in Hilbert space. In general, Hilbert transform can
be implemented as time-domain convolution or FFT plus IFFT
in the frequency-domain. We chose to implement it in the fre-
quency domain thus can leverage existing efficient FFT design
techniques. In the frequency domain, Hilbert transform corre-
sponds to a rotation [46] and is described as

(1)

where is the rotated sequence, is the index and is the
length of the Hilbert transform. The rotation can be simply real-
ized by changing the sign and swapping the real and imaginary
parts of FFT outputs.
The length of Hilbert transform is an important design pa-

rameter. A longer series give more accurate estimation of data
distribution at the cost of proportionally increased circuit area,
power consumption, and processing latency. To find an optimal
length, we have compared several candidates from 4-point to
128-point in terms of the accuracy of histograms. Candidate
lengths are restricted to be power of 2 to allow efficient FFT de-
sign. 100 sequences neural data extracted from in vivo record-
ings are used in simulation. In each trial, a Hilbert transform
with the same length as the testing sequence is used to obtain
the ground truth. Simulation results using candidate lengths of
Hilbert transform are obtained by averaging over the 100 se-
quences and compared with the ground truth. The result is evalu-
ated in score and plotted in Fig. 5. It shows that the histogram
accuracy saturates from the 16-point with an over 97% simi-
larity. The area consumption grows linearly with the length of
Hilbert transform. Compared with the 16-point, the 32-point de-
sign achieved a less than 1% accuracy improvement at the cost
of doubled area consumption and processing latency. Therefore,
the 16-point Hilbert transform is chosen in our implementation
to trade minor improvement in accuracy in favor of increased
area saving.
Commonly used architectures to implement FFT and IFFT

include structures of memory-based [47], pipelined [48], array
[49], and cached-memory [50]. Among these structures, the
pipelined provides a balanced trade-off between area and
processing latency [51]. Specifically, the choice of pipeline
structure is necessitated by the need to interleave multiple
channels, which enables significant hardware sharing so as to
save computational resources. The pipelined approach has two

Fig. 5. Comparison of different lengths of Hilbert transform using . A
Hilbert transform with the same length of testing data is used to obtain the
ground truth histograms. The -axis: different Hilbert transform lengths from
4-point to 128-point. The -axis: coefficients of determination of the
histograms derived from candidate lengths relative to the ground truth.

Fig. 6. Illustration of a 16-point Hilbert transformmodule implemented as FFT
and IFFT in the radix-2 single-path delay feedback structure.

major types which are multi-path delay commutator (MDC)
and single-path delay feedback (SDF) [52]. We prefer SDF
because of its lower hardware complexity. The detailed imple-
mentation of the 16-point FFT with the radix-2 SDF (R2SDF)
structure is given in Fig. 6. The 16-point FFT is a cascade of
four R2SDF butterfly units, each of which is responsible for the
computation in one stage of the decimation-in-frequency FFT.
Since the summation in each butterfly unit may increase the
word-length of intermediate data, the word-length of the buffers
are extended with a step of 1-bit per stage to avoid overflow.
The 16-point IFFT can be easily designed as a transpose of its
FFT counterpart. In summary, the Hilbert transform consumes
370-bit storage and has a total processing delay of 0.8 ms.

C. EC-PC Regression Engine Design

Towards an efficient ASIC implementation, it is important to
reduce on-chip storage and enable hardware sharing. In the rest
of this section, related design trade-offs are discussed.
1) Evaluation of Training Period: In general, PC converges

slower than EC thus the bottleneck, and the convergence is
slower on a low firing rate sequence than a high firing rate one.
Therefore, the training period needs to be larger than
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Fig. 7. Evaluation of the training periods in terms of the accuracy of inferred firing rates. Ground truth firing rates are 1 Hz, 2.5 Hz, 5 Hz, 7.5 Hz and 10 Hz. For
each firing rate, we run 100 trials with 9 different training periods. In each trial, the testing sequence is divided into segments with each consisting of
data, where the first data is used for parameter training. The inferred firing rate for each training period is averaged from 100 trials. The length of all trials
for one training period is , where in each , the first is used for parameter training.

a minimum to ensure PC convergence. On the other hand, as
shown in Fig. 2, EC-PC parameters of one channel remain un-
changed during , which is 3 times of . This makes
a long unfavorable because the unchanged EC-PC pa-
rameters during may be out-dated for the evolving neu-
ronal properties and experimental conditions. Additionally, a
long would result in a long initial waiting period to train
all channels once. To evaluate the trade-off between required
convergence time and frequent parameter updating, we mea-
sure the means and standard deviations of inferred firing rates
obtained with different from 1 to 4.5 sec with an incre-
ment of 0.5. The inferred firing rate can serve as an intuition
on the convergence of histograms. The accuracy of detection
based on the selected and histograms is verified in Sec-
tion V-C. Since typical firing rate of one inactive neuron falls
in the range of 1 to 10 Hz [20], we run 100 trials for each of
five firing rates (1, 2.5, 5, 7.5, and 10 Hz) over all different

. The length of each trial for a particular training period
is . We are interested in low firing rate
situations to determine a lower boundary of to accumu-
late sufficient PC information.
Fig. 7 summarized the simulation results. For 1 Hz firing rate,

all except the 4.5 sec have large deviations, and the de-
gree of deviation is inversely proportional to the length of .
This is because synthesized spike events follow a Poisson distri-
bution, which makes the spike occurrence irregular and thus dif-
ficult to be covered and counted by shorter . The problem
with the 4.5 sec option is that it will incur an excessively long
initial waiting time of 18 sec. In the rest of the simulations,
for small ( sec), the deviations and the fluctuations
of estimated firing rates are caused by incomplete PC conver-
gence; For large ( sec), the imperfections are due to
the out-dated EC-PC parameters in the long retaining session.
Among all the candidates, the 2.5 sec training period achieves a
balanced performance in terms of the estimation accuracy, fast
parameter updating, and initial waiting period.

2) Evaluation of Histograms: The storage required for his-
tograms would consume major circuit area and power without
optimization due to two parameters: the bin width and the
number of bins. In general, bins with large width can smooth
the envelope curve of histograms and facilitate linear regres-
sion. We have used uniform bin width to simplify histogram
design and empirically set the bin width to be 0.25. Based on
the that, the word-length of bins are determined by simulations
with varied firing rates (1–150 Hz) and SNRs ( –15 dB),
confirming that 14-bit and 10-bit are sufficient to represent
histogram bins in the EC and PC dominant regions.
Comparative experiments based on 100 in vivo data se-

quences have been performed as in Fig. 8 to determine the bin
numbers. First, ideal EC-PC regression is performed without
imposing any constraints on storage to hold histograms, and the
fitted parameters are averaged over the 100 trials and used as
ground truth. Next, EC-PC regression using different numbers
of bins are performed and the fitted parameters are averaged
and compared with the ground truth. All candidate bin numbers
are assumed to be power of 2 to facilitate time-multiplexing
thus enable hardware sharing. Since PC is more unstable than
EC and more sensitive to training parameters, we measured the
influence of 1% parameter error of in Fig. 9 as the similarity
score in between the ideal spiking probability map and the
one obtained with biased . Fig. 9 show that 1% PC error on

would result in a of 90.23%–99.93% with varied SNRs
and firing rates. Based on the simulation results on accuracy
and storage cost, we have chosen 4 bins for EC and 32 bins
for PC regression. The choice of 4 bins for EC instead of 8
bins is to trade-off the minor parameter training accuracy for
halved storage cost and computational resources. A trend can
be observed that the PC error of 16 bins is slightly higher and
more diverse than others, while the rests are almost the same.
Therefore, we chose 32 bins for PC estimation.
3) EC-PC Regression Engine: Fig. 10 shows the architec-

ture of the EC-PC regression engines. The word-length of bins
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Fig. 8. Evaluations of EC and PC bin numbers for regression. More than 200
consecutive bins from to are used. Several bin numbers are com-
pared with the ideal case in terms of the fitted parameters. Each candidate has
been run over 100 20-sec data sequences and the averaged parameters are shown
with error bar. (a) Evaluation of EC bins using EC parameters. (b) Evaluation of
PC bins using PC parameters. The -axis: histogram bin numbers; the -axis:
the averaged EC-PC parameter relative error in percentage.

Fig. 9. Quantitative measurement of 1% PC error in between biased
spiking probabilities and ideal ones. Each dot on the surface is averaged from
the training results of 100 datasets, each of which is synthesized under one
particular combination of SNR and firing rate. Tested SNRs are from
to 5 dB with an increment of 0.5. Tested firing rates are 1, 5, 15, 30, 70, and
110 Hz.

in histograms for EC and PC estimation are 14-bit and 10-bit,
respectively. Histograms are implemented in register arrays in-
stead of SRAMs to simplify the frequent updating operations.

As discussed in Section II.B, the structure of one histogram con-
sisting of EC bins and PC bins is shared by 4 channels
sequentially, and 4 histograms are deployed to compensate for
the training latency caused by hardware sharing. The consumed
register array is 1.504 kb, achieving a reduction in storage
cost compared with a fully parallel configuration. At the end of
training sessions, the values of EC and PC bins are time-mul-
tiplexed and processed by the curve fitting units, which per-
forms two regressions in the linear-log and log-log scales, re-
spectively. The regression takes less than 0.75 ms to finish. The
estimated EC-PC parameters of all 16 channels are used to up-
date the parameters of the spiking probability estimator.

D. Hardware Complexity

The complexity of our design is evaluated in comparison with
AT based on root-mean-square (AT-RMS), AT based on median
(AT-median), NEO, and MTEO. These detectors are simple
in structure and suitable for real-time application. To give a
fair comparison, all detectors are translated into single-channel
RTL descriptions and synthesized using the same 0.13 m
CMOS process used for this design. Necessary components
include band-pass filters for de-noising signals and sliding
windows for threshold estimation or parameter updating. The
storage requirements for AT-RMS, NEO, andMTEO are trivial:
the parameters for thresholding can be updated by in-place
computation. The estimation of medians in AT-median requires
a large amount of memories for sorting operations, resulting in
relatively high power and area consumptions [37]. Details of
the detector implementations are given as follows.
• AT-RMS: The threshold is set as

(2)

where is the data standard deviation and is estimated
from a sliding window of several seconds.

• AT-median: The threshold is determined as

(3)

The median is estimated from a sequence of on-the-fly
stored and sorted neural data. The sliding window for
median estimation is 128-point, corresponding to 3.2 ms
neural data. Shorter sliding windows may hardly cover a
typical spike, tending to compromise estimation accuracy.

• NEO: The NEO of neural data is defined as

(4)

and the threshold is set as a scaled mean of NEO [17]

(5)

where is set with the same length as the sliding window
in AT-RMS.
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Fig. 10. Architecture of multichannel EC-PC linear regression engine.

TABLE II
SUMMARY OF NORMALIZED POWER AND AREA CONSUMPTIONS

OF SEVERAL DETECTORS

• MTEO: MTEO is composed of several -TEO, which is
defined as

(6)

where is the resolution parameter to enhance the per-
formance of TEO. Normally MTEO requires about 6 or
7 -TEOs to cover the sampling frequencies from 10 kHz
to 40 kHz. Since the sampling frequency in our design is 40
kHz, the values of can be chosen as 1, 3, and 5 to reduce
complexity [53]. The smoothing window of each -TEO is
implemented as a hamming window of length . The
thresholding operation is the same as NEO.

Power and area consumptions of these detectors are tabu-
lated in Table II, where values are normalized to the power and
sequential circuit area of EC-PC detector. The hardware cost
of EC-PC is less than AT-median. The structure of NEO and
AT-RMS are more suitable for multichannel implementation,
yet their performance are suboptimal. Our EC-PC detector has
a moderate power consumption and provides useful features for
reliable recording, achieving balanced trade-off among hard-
ware complexity, functionality, and detection performance.

E. System Latency
In applications of neural prostheses or brain-computer inter-

faces (BCI), low latency is desirable to enable fast responses

and instantaneous feed-back control. Our system has an initial
waiting period of 10 sec caused by the sequential and cyclic
training of each EC-PC regression engine over 4 channels,
which is affordable. Afterwards, chip outputs are reported
almost instantly with trivial delays of less than 2.5 ms con-
tributed by the band-pass filter, Hilbert transform, etc. It can
be concluded that our system is eligible for neural prosthetic
devices or BCI experiments in terms of the requirement on
latency.

IV. PROTOTYPING

A. Chip Summary
The multichannel spike detection ASIC has been imple-

mented and tested. Fig. 11 shows the die micrograph and
summarizes the chip performance. The chip occupies a core
area of 6.71 mm in a 0.13 m CMOS process and consumes
a total power of 1.36 mW for 16 channels from a 1.2 V supply
voltage, corresponding to 85 W and 0.42 mm per channel.
The use of a 1.2 V supply is to facilitate the integration of
the digital ASIC with the analog frontends and ADCs, which
are on the same die as the digital ASIC and work exclusively
with a 1.2 V supply voltage. Level shifters would be on-chip
integrated in future developments to allow separate power
supply of the digital ASIC and further power reduction through
voltage scaling.

B. Experiment Setup
The chip is bonded onto a small printed circuit board (PCB)

with a size of 1.9 cm 1.5 cm connected to a NeuroNexus mi-
croelectrode array. A credit card size board (5.4 cm 7.5 cm)
including FPGA, SRAMs, level shifters, power management
and communication is used as an evaluation platform to provide
a complete testing bench-top that requires only one USB cable
for power supply and data storage, as shown in Fig. 12. The chip
bonding board communicates with the evaluation board through
wired connections.
The experiment setup features single-board solution of both

power and data links. The power link originates from a 5 V
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Fig. 11. Chip die micrograph and measured circuit specifications. Power
consumptions of individual blocks are also given.

Fig. 12. The evaluation board used for both bench-top and in vivo experiments.
Chip bonding board is also shown, which communicates with the evaluation
board through wired connections.

supply in the USB port, integrating one low dropout regulator
and several DC-DC converters. The data link, as shown in
Fig. 13, is used to store the chip’s three output bit-streams.
A programmable USB cable is configured in SPI mode to
transfer data between the host PC and the evaluation board.
All interfacing are coordinated by a on-board FPGA. The
operations of the chip and the FPGA are synchronized to a
on-board 20.48 MHz reference clock, which is asynchronous
to the system clock of the host PC. To enable continuous data
communication between the host PC and the evaluation board,
a pair of SRAMs are configured in ping-pong mode. During
data acquisition, the FPGA directs the chip outputs to be stored
in one of the two SRAMs. Once the SRAM is full, the other
SRAM is scheduled to accept the chip outputs unintermittently.
Meanwhile, the host PC will read out the content of the unused
and full SRAM. As shown in Fig. 13, a flag signal is
asserted each time when one SRAM is full to notify the host
PC for data collection. The data feeding from the host PC to the

Fig. 13. Block diagram of the designed data link for storing chip outputs.

chip works in a similar manner in the reverse direction, which
is supported by another pair of SRAMs.
To further reduce the size of testing setup and make it suit-

able for freely moving animal recording experiments, on-chip
integration of the reference generation circuits and the commu-
nication protocols with external hosts for data transmission is
necessary.

C. Output Packaging Scheme
To ensure correct data transmission, we have packaged each

output data sample into a frame consisting of a header and the
data sequence. As shown in Fig. 14, to distinguish different
channels, header “10101011” is concatenated in front of each
first-channel data sample, while header “10111101” is used for
other channels. To avoid mis-recognition of headers inside the
data samples, a pair of redundancy bits “00” is inserted into
each data sample at every six digits.Mis-recognition is therefore
avoided due to the absence of “00” within headers. By doing
so, one 16-bit data sample is extended to 32-bit with a sampling
frequency of 20.48 MHz. Fig. 15 illustrates the format of chip
outputs observed on the oscilloscope.

V. CHIP MEASUREMENTS

A. Data Preparation
Protocols of data synthesis for simulation is briefly intro-

duced as follows. A library of 70 spike templates with clear
waveforms is used for synthesis and the spike amplitudes are
normalized by their peak values. The firing pattern of individual
neuron is assumed to follow an inhomogeneous Poisson process
with a refractory period of 3 ms. To simulate background activ-
ities, recorded in vivo data that contain a small amount of visu-
ally detectable spikes are scaled and used as background noise,
which can emulate the noise introduced by the recording elec-
tronics. Specifically, the sequence used for simulating noise is
randomly picked up from a more than 20-minute in vivo data
and scaling it according to required SNR in each trial. The SNR
is defined as the average peak value of spikes divided by

(7)

where represents the standard deviation of background noise
and is the spike peak. To be consistent with our hardware im-
plementation, the sampling frequency is 40 kHz and each spike
is quantized with a precision of 16-bit.
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Fig. 14. Chip outputs encoding scheme.

B. Adaptability to Neural Dynamics

Neurons and neural networks exhibit nonlinearity and
non-stationarity, resulting in the spatial-temporal variations
of recorded waveforms. Therefore, it is desired that our chip
can adapt to this variation in a real-time fashion. To test the
adaptability, firing rates are derived from the output spiking
probability maps and compared with ground truth. Two spike
templates with distinct waveforms are used, and the firing of
spikes follows a uniform distribution to minimize the bias
caused by the estimation method of firing rate. The ground
truth firing rate is increased abruptly from 5 Hz to 45 Hz, and
the SNR is varied from 0 dB to 10 dB for different sequences.
Firing rate is estimated by counting the spikes in a 1 sec sliding
window along the spiking probability map, where only spikes
scoring 100% are identified.
Simulation results indicate that our detector works robustly to

adapt to firing rate variation in a wide range of SNRs. As shown
in Fig. 16, our chip is able to report the 40 Hz firing rate increase
within 0.5 sec. The adaptation speed is approximately invariant
to different SNRs (0 dB, 2.5 dB, 5 dB, and 10 dB). The estimated
firing rates exhibit more fluctuations before and after the transi-
tion region for low-SNR sequences than high-SNR sequences. It
should be noted that the reported delays in adaptation are nega-
tively influenced by the method of firing rate estimation. Shorter
sliding windows can lead to faster response, but with more fluc-
tuations in the estimated firing rates.

C. Performance Comparison With Other Detectors

We have run extensive experiments to evaluate the perfor-
mance of our hardware detector in comparison with the im-
plementations of AT-RMS, AT-median, NEO, and MTEO. The
performance of these detectors are measured using the true pos-
itive rate (TPR) and the false positive rate (FPR), defined as

(8)

(9)

where the number of true negatives is estimated by subtracting
true spikes from the testing sequence and dividing the length of
remaining data by the typical length of a spike.
Three spike templates with distinct waveforms are used for

data synthesis. In each trial, the testing data is 10 sec long, and
the threshold for each detector is determined based on a 2.5 sec
initial training session. Specifically, a range of thresholds are
swept to find the one that gives the largest difference between
TPR and FPR, and is subsequently used as the threshold. Detec-
tion results of all detectors are summarized in Fig. 17 in terms
of TPR and FPR over different firing rates and SNRs. The six
panels correspond to firing rates of 1 Hz, 5 Hz, 15 Hz, 30 Hz,
70 Hz, and 110 Hz. In each panel, TPR and FPR of all five de-
tectors are measured over a wide range of SNRs from dB
to 5 dB with an increment of 0.5. Each dot in the figure is aver-
aged over 100 trials with different synthetic data, and the error
bar associated with each dot represents the standard deviation
of the TPRs or FPRs in the 100 trials.
The results shows that EC-PC outperforms others by

achieving a 10%–30% higher TPR than all other detectors
over a wide range of SNRs and firing rates, especially for
datasets with low firing rates and SNRs, which potentially
enables detecting more spikes in noisy recording environment
to establish causal connectivity. We also observed that the
FPR of EC-PC is higher than some of other detectors by no
more than 10%, and decreases quickly when SNR is higher.
Since false alarms tend to have lower spiking probabilities, this
higher FPR with low-SNR datasets can be compensated for by
incorporating spiking probability scores of false alarms into
subsequent processing.

D. Performance Comparisons in ROC Curves
We have run a comparative experiment of the five detectors

using a public database available from [5], where the most noisy
sequence is used. The result is shown in Fig. 18, where the per-
formance is measured by the receiver operating characteristics
(ROCs). A ROC curve near the top and left boundary of the plot
is considered as better performance. For each detector, threshold
is varied on the pre-emphasized signal from the minimum to the
maximum [36]. Since both AT-RMS and AT-median pre-em-
phasize neural data as absolute values, their ROC curves are the
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Fig. 15. Formats of chip outputs including the serialized and encoded band-pass filtered neural signals and the spiking probability maps.

Fig. 16. EC-PC detection chip outputs of sequences with varying firing rate from 5 Hz to 45 Hz. All sequences are 7.5 sec long. The SNRs are 0, 2.5, 5, and
10 dB, respectively. In each sub-figure, the three stacked panels are neural data, spiking probability maps, and estimated firing rates. Our chip takes approximately
0.47 sec to adapt to the firing rate increase for all sequences.

same. EC-PC has achieved comparable performance as NEO
and better than the rest.
In addition, we compared the EC-PC spike detection ASIC

with its software version (in Matlab) using ROC curves. As
shown in Fig. 19, the ROC curve of the hardware EC-PC is
slightly lower than that of the software EC-PC, indicating an

acceptable performance loss caused by real-time implementa-
tion. The area under ROC curves (AUC) are provided to quan-
tify the difference, which can be mainly attributed to the lim-
ited hardware resources that the EC-PC ASIC can leverage:
trade-off signal processing specifications and simplified param-
eter training based on approximated linear models.
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Fig. 17. Performance comparison of hardware EC-PC, AT-RMS, AT-median, NEO, and MTEO in terms of TPR and FPR in different firing rates and SNRs. SNR
is adjusted from dB to 5 dB with an increment of 0.5 dB, and firing rate is ranged over 1 Hz, 5 Hz, 15 Hz, 30 Hz, 70 Hz, and 110 Hz. In each sub-column, TPR
and FPR measurements of all detectors for a fixed firing rate are shown, where the -axis is SNR, and the -axis is TPR or FPR. Each dot in the figure is averaged
from 100 trials labeled with standard variations. The ranges of thresholds for each detector are: AT-RMS, 3– data rms; AT-median, 3– estimated median;
NEO, 6– averaged ; MTEO, 6– averaged ; EC-PC, 20%–100%.

E. Comparison With Previous Detection Hardware

Measured circuits performances in comparison with previ-
ously reported neural signal acquisition and processing systems
are presented in Table III. Our 16-channel EC-PC detection
ASIC has a moderate power consumption and provides addi-
tional features for reliable recording, achieving balanced trade-
offs among implementation cost, performances, and functional-
ities. In terms of the performance of detection, our chip achieves

an over 82% probability of detection and a below 8% proba-
bility of false alarm for SNR above 2.5 dB, and outperforms
[54] which achieves 80% for probability of detection and 15%
for false alarms, respectively, with the same data SNR.

VI. CONCLUSION
In this paper, a 16-channel spike detection ASIC is presented.

Our primary goal is to demonstrate the feasibility of real-time
execution of the EC-PC spike detection algorithm, which is
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TABLE III
FEATURES SUMMARY OF NEURAL RECORDING HARDWARE INCLUDING SPIKE DETECTION

Fig. 18. ROC curves of five detectors using a standard data set available at
http://www.vis.caltech.edu/~rodri/Wave_clus/Simulator.zip from [5], which is
named as “C_Easy1_noise04.mat”.

Fig. 19. ROC curves of software and hardware EC-PC. The SNR of simulated
data is 2.5 dB, and the firing rate is 50 Hz. The AUCs are 0.8126 and 0.7893 for
software and hardware versions, respectively.

made further challenging by simultaneous multichannel pro-
cessing. In this transformation from batch-mode computation
to on-line processing, we have focused on the algorithmic and

architectural optimizations of the proposed method without
compromising its unique features to reliably predict spiking
activities. The chip performs band-pass filtering, Hilbert trans-
form, and EC-PC regression for threshold estimation, and
outputs 16-channel field potentials, spike signals, and spiking
probability maps simultaneously. The achieved data-rate reduc-
tion is over 98% from 10.24 Mbps to 160 kbps when outputting
spiking probability maps. To realize a cost-effective imple-
mentation, we have interleaved the design over 16 channels
to enable optimum hardware sharing. The system occupies
an area of 6.71 mm for 16 channels and has a total power
consumption of 1.36 mW, which corresponds to an averaged
power of 85 W per channel. Testing prototypes have also been
developed to facilitate the use of the proposed ASIC in neural
recording experiments without the requirement of human cal-
ibrations. Regarding the area overhead of this work, detailed
analysis shows that a significant amount of area is consumed
by the direct-mapping of many floating-point computations
employed in the parameter training, suggesting much room for
area improvement with fixed point optimizations. Towards a
more power-efficient implementation, potential improvements
based on this work include 1) reducing the data sampling
frequency and resolution after band-pass filtering, 2) replacing
the direct-mapping by floating-point realizations of many
arithmetic computations with efficient fixed-point structures,
3) using deep sub-threshold circuit design techniques, and
4) developing customized low-power on-chip memory.
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