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Discriminative Ocular Artifact Correction
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Abstract—Electrooculogram (EOG) artifact contamina-
tion is a common critical issue in general electroencephalo-
gram (EEG) studies as well as in brain–computer interface
(BCI) research. It is especially challenging when dedicated
EOG channels are unavailable or when there are very few
EEG channels available for independent component analy-
sis based ocular artifact removal. It is even more challeng-
ing to avoid loss of the signal of interest during the artifact
correction process, where the signal of interest can be mul-
tiple magnitudes weaker than the artifact. To address these
issues, we propose a novel discriminative ocular artifact
correction approach for feature learning in EEG analysis.
Without extra ocular movement measurements, the artifact
is extracted from raw EEG data, which is totally automatic
and requires no visual inspection of artifacts. Then, arti-
fact correction is optimized jointly with feature extraction
by maximizing oscillatory correlations between trials from
the same class and minimizing them between trials from
different classes. We evaluate this approach on a real-world
EEG dataset comprising 68 subjects performing cognitive
tasks. The results showed that the approach is capable of
not only suppressing the artifact components but also im-
proving the discriminative power of a classifier with statis-
tical significance. We also demonstrate that the proposed
method addresses the confounding issues induced by oc-
ular movements in cognitive EEG study.

Index Terms—Brain–computer interface (BCI), electroen-
cephalogram (EEG), feature learning, ocular artifacts.

I. INTRODUCTION

THE technical field of electroencephalogram (EEG)-based
brain–computer interfaces (BCIs) has seen rapid growth in

recent years, with a wide range of promising applications, such
as motor rehabilitation and cognitive training [1], [2]. Machine
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learning or signal processing techniques for detecting mental
conditions from EEG signals receive much attention [3]–[6].

EEG is highly susceptible to artifact contamination, espe-
cially for artifacts induced by ocular movements such as blinks.
Therefore, algorithms aiming at recovering artifact-free signal
have been investigated intensively [7]–[11]. For example, eye
movement correction procedure (EMCP) uses electrooculogram
(EOG) recorded along with EEG, and subsequently, subtracts
the EOG components from EEG after the scaling based on re-
gression [12], [13]. However, as EOG may also contain compo-
nents from brain activities, such subtraction based on regression
would cause the loss of relevant EEG signals.

For high-dimensional EEG data, independent component
analysis (ICA) proves to be a more favorable method in elim-
inating the ocular artifact components in EEG [13]–[16]. With
sources estimated by ICA, the source components correspond-
ing to ocular movements are identified and removed either man-
ually or automatically using prior knowledge about the spatial
pattern of the ocular artifacts [17]–[19]. In ICA-based analysis,
EOG is not necessary, while it is desirable to record sufficient
EEG channels to capture as many sources as possible [20]. Usu-
ally, ICA is applied to datasets recorded from at least ten EEG
channels [21]. And it is found that as few as 35 channels are
needed for source estimation in the study of concurrent loco-
motor and cognitive tasks [20]. Although the requirement of the
minimum number of channels may vary in different experiment
tasks, the source separation would be less suitable when only a
few EEG channels are available.

Those existing methods require either extra measurements
of ocular movements or multiple EEG channels. However, in
practical BCI systems, the number of available channels could
be limited for comfort and convenience of subjects, and there
is only one channel of EEG in certain BCI systems [2], [22].
Thus, methods recovering artifact-free signal for single-channel
signal have been proposed. In [23], multichannel signal is ob-
tained using time-delayed coordinates of the single-channel sig-
nal, followed by standard ICA-based artifact correction. In the
ensemble empirical-mode decomposition (EMD) ICA in [24],
intrinsic-mode functions (IMFs) of single-channel signal are ob-
tained by EMD, and used as multichannel data. Similarly, there
are methods decomposing a single-channel signal into multiple
components using wavelet decomposition, followed by standard
source separation methods, such as ICA [25].

For ocular artifact removal in BCI, the most challenging issue
is to remove the artifacts with the minimal loss of the cerebral
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information [26]. However, most of the artifact removal algo-
rithms are designed to be preprocessing procedures, which are
independent of the following classification or detection in BCI.
It has not been addressed sufficiently to avoid accuracy drop
caused by the loss of discriminative information in EEG sig-
nals.

To solve the problem, in this paper, we propose a novel dis-
criminative ocular artifact correction (OAC) approach for fea-
ture learning in EEG analysis by adopting oscillatory correla-
tions across EEG trials as the objective function [27], [28]. Joint
OAC and feature learning are achieved by integrating the inter-
class dissimilarity and within-class similarity in a regularized
model, which is learnt in a supervised manner. Components re-
lated to ocular movements are extracted from the raw data as
pseudoartifact channels so that it is applicable to single-channel
EEG data without any dedicated EOG or eye-tracker. The pro-
posed method is evaluated on a binary EEG dataset containing
68 subjects performing cognitive tasks, and the confounding is-
sues brought by the ocular artifacts in cognitive EEG study is
also discussed. Based on the above discussion, we highlight the
contributions of this paper as follows.

1) automatic artifact extraction for single-channel EEG
without visual inspection is introduced;

2) a discriminative model for joint OAC and feature learning
is proposed; and

3) the confounding issues brought by ocular artifacts in cog-
nitive EEG study are investigated.

This paper is organized as follows. In Section II, the frame-
work of discriminative artifact correction has been introduced.
In Section III, the validity of the proposed method is verified
by an experimental study on attention detection based on EEG,
followed by detailed analysis of the relationship between the oc-
ular artifacts and attentive state. Concluding remarks are given
in Section IV.

II. DISCRIMINATIVE OAC

A. Ocular Artifact Detection

When there is no direct measure of ocular movement for OAC,
the artifacts need to be extracted from the raw EEG dataX0(t) ∈
Rnc×nt , where nc is the number of channels and nt is the
number of time samples. Given the analysis of the morphology
characteristic of the eye movements related potentials in [12]
and [29], a moving average filter is applied to the raw EEG data
to obtain the smoothen signal xs(t) for further artifact extraction
as

xs(t) =
1
m

j= m
2∑

j=−m
2

x0(t+ j) (1)

where m is the number of the neighboring points used in the
moving average filter, and x0(t) ∈ Rnt is the EEG signal from
one arbitrary channel, or in other words, one arbitrary row of
X0(t).

Fig. 1. Examples of the construction of artifact signal. x0 is the raw
data, xs is the smoothen data, and xa is the constructed artifact, which
are all zeros except for the segments containing the peaks within the
certain peak amplitude range.

The relative amplitude of the peaks is calculated as

h(t) = max{|xs(t) − xs(t+ τi)|}
τi = −τ,−τ + 1, . . . , τ − 1, τ (2)

Remark 1: One ocular artifact could include both positive
and negative peaks. In other words, a peak could consist of an
ocular artifact together with the peak either before it or after.
To construct the artifact as complete as possible, in (2), the
maximum of the relative amplitude is used as the measurement
of the peak.

Define the peak amplitude range parameter hr as

hr = [hb, hu ] . (3)

Then, find the set Pt containing time indexes of those peaks
with amplitude in the range hr as

Pt = {ti :
m

2
< ti < nt − m

2
and hb < h(ti) < hu}. (4)

For each element ti ∈ Pt , i = 1, 2, . . . , |Pt |, let tzbi and tzai
be the nearest zero points before and after ti , i.e.,

tzbi = arg max
t
t s.t. t < ti and xs(t) = 0 (5)

tzai = arg min
t

t s.t. t > ti and xs(t) = 0. (6)

Remark 2: It is impossible to find zero points for real discrete
signals. Thus, in practical implementation, we set a small thresh-
old, and signal points with absolute values below the threshold
are regarded as zero points.

With the time period [tzbi , t
za
i ] obtained for each peak point

ti ∈ Pt , the artifact signal xa(t) is constructed as

xa(t) =
{
xs(t), t ∈ [tzbi , t

za
i ] with i = 1, 2, . . . , |Pt |

0, else.
(7)

An example of constructing xa(t) from xs(t) is illustrated
in Fig. 1. As shown by the figure, xa(t) is zero except those
points belonging to peaks whose amplitudes are within a certain
range. In this way, EEG data that are not contaminated with the
ocular artifacts could be kept as intact as possible after artifact
correction.
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Moreover, with different amplitude ranges hjr = [hjb , h
j
u ], j =

1, 2, . . . , nh , xja(t) can be extracted correspondingly, where nh
is the number of peak amplitude ranges. Define Xa(t) as the
matrix containing all artifact signals xja(t) as follows:

Xa(t) =

⎡

⎢⎣
x1
a(t)
...

xnha (t)

⎤

⎥⎦ (8)

Xa(t) in (8) can be regarded as the pseudoartifact signal,
which is even more advantageous than the real EOG signal in
artifact correction. As it is zero at most of the time points, it
would cause less information loss with the artifact removal. Be-
sides, by separating the artifacts by amplitudes of the peaks,
artifacts corresponding to different ocular movements could be
processed with different filtering parameters assigned. It is more
flexible to maintain the discriminative information in EEG sig-
nals than the conventional EMCP, where one propagation factor
is estimated for one EEG-EOG pair. In the following section, we
will introduce the discriminative learning for artifact correction.

B. Regularization Framework Based on Oscillatory
Correlation

Let i be the trial index, and we define the signal after correc-
tion as xc,i(t), i.e.,

xc,i(t) = x0,i(t) − θTa Xa,i(t) (9)

where θa ∈ Rnh is the artifact correction coefficient or filtering
coefficient, scaling the artifacts in EEG to be removed and sim-
ilar to the propagation factor in the conventional EMCP. In [27]
and [28], the oscillatory correlation has been proved to be effec-
tive for source separation. In this paper, we propose to optimize
the correction coefficient θa using the oscillatory correlations
between EEG trials, as ocular artifacts should be more sporadic
and irregular compared to the oscillatory modulation caused by
mental activities.

Rewrite (9) as

xc,i(t) = θT Xi(t) (10)

where

Xi(t) =
[
x0,i(t)
Xa,i(t)

]
(11)

θ =
[

1
−θa

]
. (12)

Define the instantaneous power of xc,i(t) as φi(t), i.e.,

φi(t) =
√

(θT Xi(t))2 + (θT Hi(t))2 (13)

where Hi(t) is the Hilbert transform of Xi(t). To obtain an
average oscillatory correlation between multiple trials, for each
trial i, the average instantaneous power for all trials except i is
defined as ψi(t), i.e.,

ψi(t) ≡ 1
n− 1

∑

j �=i

√
(θT Xj (t))2 + (θT Hj (t))2 . (14)

Thus, the objective function maximizing the cross-trial oscilla-
tory correlation is

θ̂ = max
θ

1
n

∑

i

ρφi (t),ψi (t) (15)

where

ρφi (t),ψi (t) =
∫
φ̄i(t)ψ̄i(t)dt√∫

φ̄2
i (t)dt ·

∫
ψ̄2
i (t)dt

(16)

with

φ̄i(t) = φi(t) − 1
nt

∫
φi(t)dt (17)

ψ̄i(t) = ψi(t) − 1
nt

∫
ψi(t)dt. (18)

Optimizing θ using (15) could maximize the average cross-
trial oscillatory correlation so that sporadic ocular artifacts could
be subdued, but it is not enough to maintain the discriminative
information. To ensure that the artifact correction could benefit
the classification in BCI, θ should be learnt in a discriminative
manner, which is different from the regressive coefficient es-
timation or source separation. Thus, the interclass oscillatory
correlation ri is taken into consideration, which could be calcu-
lated as

ri =
1

|Q+ ||Q−|
∑

i∈Q+

∑

j∈Q−
ρφi (t),φj (t) (19)

where Qc is the set of trial index belonging to class c, and
|Qc | is the number of the elements in Qc with the class label
c ∈ {+,−}. Similarly, the within-class oscillatory correlation
for class c, rcw , could be calculated as

rcw =
1

|Qc |
∑

i∈Qc

ρφi (t),ψi (t) . (20)

For joint artifact correction and discriminative feature learn-
ing, we propose a regularized oscillatory correlation objective
function as

θ̂ = arg max
θ

(1 − λ)
∑

c

λcrcw − λri, with
∑

c

λc = 1

(21)

where λc is the weight given to the within-class oscillatory corre-
lation for class c, and λ controls the weights of within-class and
interclass oscillatory correlation. The regularization has been
widely used in the computational model development in BCI
to address the within-class similarity and interclass dissimilar-
ity at the same time [30]. With (21), θ is optimized so that the
within-class oscillatory correlation could be maximized while
the interclass oscillatory correlation is minimized.

C. Joint Optimization of Features and Artifact Correction
Coefficients

Given the discriminative oscillatory correlation, we propose
to extract two kinds of features, the correlation feature and the
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power feature. The oscillatory correlation feature f cr,i can be
obtained as

f cr,i =
1

t2 − t1

∫ t2

t1

ρφi (t),φ̄ c (t)dt (22)

where φ̄c(t) is the average instantaneous power of class c, i.e.,

φ̄c(t) =
1

|Qc |
∑

j∈Qc

√
(θT Xj (t))2 + (θT Hj (t))2 . (23)

Thus, for each trial for each time window, a pair of correlation
features is extracted. The power feature fp,i for trial i could be
extracted as

fp,i =
1

t2 − t1

∫ t2

t1

||xc,i(t)||2dt (24)

where [t1 , t2 ] is the time window for the power calculation. With
(21), for a certain time window, if the power of the signals from
one class is high, than that from the other class would be low, and
vice versa. Therefore, the band power feature fp is consistent
with the objective function.

Regarding selecting regularization parameter in (21), in this
paper, we propose to use mutual information between the feature
f and class label c, i.e., I(f , c), instead of cross validation to
reduce the computational complexity. The mutual information
has been widely used for feature optimization in BCI, and details
of the calculation can be found in [31]–[33].

Let Λk = [λ, λ+ , λ−], k ∈ {1, 2, . . . , nk}, which contains all
nk combinations of regularization parameters, e.g., Λ1 =
[0, 0.5, 0.5], Λ2 = [0.1, 0.5, 0.5], etc. With different Λk , we
could optimize θ using (21), followed by the calculation of
feature f and the mutual information I(f , c). Given I(f , c) cal-
culated based on different Λk , we choose θ that yields the highest
mutual information I(f , c). By introducing I(f , c), on the one
hand, we could select the best combination of the regularization
term Λk . On the other hand, it is guaranteed that the feature
discrimination improves during the optimization.

To ensure that the artifacts will not be enhanced, we add one
more constraint for the optimization of θ, which is

|θ1 + θj | < 1, j = 2, . . . , nh (25)

θ1 ≡ 1 (26)

where θj is the jth element of θ. θ1 is the weight corresponding
to the raw EEG signal x0,i(t), which is constrained to be 1.
With (25), θj cannot be positive, and subsequently, the detected
artifact will not be enhanced.

By maximizing the interclass oscillatory differences, the arti-
fact correction parameter could also be driven toward increasing
the amplitude of the ocular artifacts if the artifacts contribute
to the discrimination between two classes. Although it could be
addressed by adding extra constraint terms for θ, the optimiza-
tion would be more complicated. Thus, in this paper, we propose
to avoid enhancing artifacts by only accepting the solutions that
suppress the ocular artifacts. Details of the optimization process
are described in Algorithm 1.

Algorithm 1: Optimization of the OAC coefficients.
Input: Training set Qtr ;
Output: Artifact correction parameter θ̂.
begin

Initiate θ̂ = [1, 0, · · · , 0]T ;
Calculate I0(f , c);
Initiate k = 1;
while k < nk do

Optimize θ using (21) with Λk ;
Calculate I(f , c);
Normalize θ by θ1 so that θ1 = 1.
if |θ1 + θj | < 1, j = 2, · · · , nh then

if I(f , c) > I0(f , c) then
update θ̂ = θ;
update I0 ;

k=k+1.
end

Fig. 2. Selection of the peak amplitude range according to the peak
number distribution.

Remark 3: During the optimization, we do not constrain θ1
to be 1. Instead, we normalize it by θ1 upon the completion of
the optimization as θ = θ/θ1 .

Remark 4: Algorithm 1 selects the best result given all dif-
ferent Λk , and subsequently, it is not necessarily to be recursive
and irrelevant to the sequence of Λk . The same solution will be
obtained upon the completion of the algorithm with the initial-
ization of θ̂ = [1, 0, ..., 0].

D. Selection of Peak Amplitude Range

Ocular movements suffer from significant cross-subject vari-
ations so it is very difficult to find a reasonablehjr for all subjects.
We propose to determine hjr according to the peak distribution
with regard to peak amplitude. Fig. 2 shows an example of the
percentage of the number of peaks from different amplitude bins
in the total number of trials. In this example, totally 12 peak am-
plitude bins ranging from 10 to 120 are investigated with the
width of each bin as 10. In other words, the x-axis represents h
with the amplitude bin defined as hr = [h, h+ 10]. Let pc(h)
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be the peak number percentage for each bin, and it can be found
that pc(h) decreases as h increases.

With the histogram of the given peak amplitude bins, we
propose to calculate hjr (j = 0, . . . , nh ) as

h0
b ≡ 0 (27)

hjb = arg min
hb

∑h=hb
h=hj −1

b

pc(h)
∑h=∞

h=hj −1
b

pc(h)
> ηj−1 , j > 1 (28)

hju = hj+1
b (29)

where ηj (j = 0, . . . , nh) is a predefined ratio threshold for the
accumulated peak number percentage. For a better understand-
ing, (27) and (28) are illustrated in Fig. 2, where the accumulated
peak number percentage is shown in a shadowed area. With (28),
the boundary of each peak range is determined by whether ac-
cumulated peak number percentage exceeds a certain threshold
ηj . η0 defines the starting amplitude range of the artifacts, while
ηj (j = 1, . . . , nh) divides signals with the artifacts in differ-
ent peak ranges into different pseudochannels. The advantage
of using the ratio threshold ηj is that ineffective optimization
caused by insufficient data within a certain peak range could be
avoided. Although ηj is the parameter that needs to be prede-
fined, the robustness of the model against different settings of
ηj is guaranteed and will be shown in the next section.

III. EXPERIMENTAL STUDY

A. Experiment Setup

The method proposed in Section II could be used for artifact
correction in any BCI tasks, while in this paper, we focus on
the ocular artifacts in attention detection. In total, 68 subjects
participated in a cognitive experiment. For each subject, three
sessions of Color Stroop test were conducted [34]. In each ses-
sion, there were 40 Stroop trials, during which the subject was
assumed to be concentrating on the test. Each Stroop trial was
followed by an idle period when the subject could relax. The
Stroop trial lasted around 10 s, while the idle period between 2
Stroop trials was around 15 s.

EEG data were recorded using a dry EEG headband with one
bipolar channel, which was positioned at the frontal site, and the
sampling rate is 256 Hz. To increase the number of trials, a 4 s
window with a window shift of 2 s was applied to segment EEG
data recorded during Stroop trials, which yielded data of the
attention class. The same segmentation is also applied to EEG
recorded during idle periods, which yields data of the idle class.
We used the segments only at the beginning of the idle periods so
that the final dataset was balanced between the two classes, i.e.,
the attention class and idle class. Moreover, the first and second
halves of the original Stroop and idle trials were truncated into
training trials and test trials, respectively. In this way, the test
set was totally independent of the training set. For each subject,
the number of total truncated trials was around 240.

B. Ocular Artifact in Attentive State Detection

Ocular movements are closely related to attentive states. In
other words, whether a subject is attentive or concentrating could

be reflected by his or her ocular movements to a certain extend.
For a quantitative study, the number of peaks in different peak
amplitude ranges hr are compared between attentive and idle
states. In total, 17 peak amplitude bins ranging from 10 to 170
are investigated with the width of each bin as 10. We found
that for both training and test sets, the number of peaks of idle
state is consistently larger than that of the attentive state in the
amplitude range of around 30–80.

To further investigate the role ocular movements play in atten-
tive states, we conduct correlation analysis between the classifi-
cation accuracies and the number of peaks in different amplitude
ranges, the results of which are shown in Fig. 3. The correlation
coefficients for different amplitude ranges for sessions 1, 2, and 3
are shown in Fig. 3(a)–(c), respectively, with the corresponding
p-values of Pearson correlation tests shown in (d)–(f), respec-
tively. Moreover, we plot− log(p) with p = 0.05 in dotted lines,
and thus, the values above these lines indicate the significance of
the correlation. It can be found that the classification accuracies
are positively correlated with the number of peaks in the ampli-
tude range of around 30–80, with higher correlation coefficients
and p-values lower than 0.05. To obtain the proper neurofeed-
back for attention training, a BCI should capture the differences
in mental state rather than that in ocular activities. Thus, OAC
is a significant issue for the BCI differentiating attentive states
from idle states [2], [22].

One of the common approaches to address the artifact issue is
to reject all the contaminated trials so that only the “clean” data
are used. By calculating the numbers of trials containing the
peaks in different amplitude ranges, we find that almost half of
the trials need to be discarded due to rejecting trials with artifact
contamination. To make up the loss of the trials, the treatment
session will be inevitably prolonged for extra repeated record-
ings, and will become more tedious and tiring for subjects. Thus,
to address the issue of the ocular artifacts in real applications
of BCI, we propose the ocular artifacts method, with which the
collected data could be sufficiently exploited.

C. Feature Extraction and Classification

In this study, raw EEG data are smoothen with m = 10 in
(1), and τ = 1 in (2), which is around 4 ms with the sam-
pling rate at 256 Hz, for the measurement of the peak. The
number of the amplitude ranges is 2, i.e., nh = 2, yielding
Xa(t) ∈ R2×nt in (8). For each trial, the threshold to find
the zero points tza and tzb is two times of the minimal ab-
solute value of xs(t) for the trial. The regularization param-
eters λ and λc are preset to be in the range [0, 0.1, . . . , 0.5],
yielding totally 36 combinations contained in Λ with nk = 36.
h1
r and h2

r are obtained as introduced in Section II-D with
η0 = η1 = η, and η is set differently to investigate the sensitivity
of the proposed method with regard to η. Equation (21) is opti-
mized by limited-memory Broyden-Fletcher-Goldfarb-Shanno
(implemented using MATLAB’s minFunc) [28]. After the OAC,
a filter bank containing nine frequency bands (2–6 Hz, 6–
10 Hz, ..., 34–38 Hz) is applied on xc(t). For each frequency
band, we calculate the features for every 2 s window with
1 s window overlapping as introduced in Section II-C. Mutual
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Fig. 3. Correlation between classification accuracy and number of peaks in different amplitude ranges. The classification accuracies are positively
correlated with the number of peaks in the amplitude range of around 30–80, with higher correlation coefficients and p-values lower than 0.05.
(a) Correlation coefficient (session 1). (b) Correlation coefficient (session 2). (c) Correlation coefficient (session 3). (d) p-value (session 1). (e)
p-value (session 2). (f) p-value (session 3).

TABLE I
TEST CLASSIFICATION RESULTS (%)

BL η 0.60 0.65 0.70 0.75 0.80

SS1 Mean 77.75 80.24 80.79 80.41 80.21 80.04
Median 79.22 82.28 83.32 80.82 81.02 84.15
p-value - <0.01 <0.01 <0.01 <0.01 <0.05

SS2 Mean 78.94 82.46 81.71 82.19 82.10 81.67
Median 79.96 84.45 84.01 85.40 85.54 85.11
p-value - <0.001 <0.01 <0.001 <0.001 <0.001

SS3 Mean 74.47 76.85 76.05 77.33 77.95 77.35
Median 73.00 75.64 76.37 77.19 78.21 76.75
p-value - <0.05 >0.05 <0.001 <0.001 <0.001

Total Mean 77.05 79.85 79.51 79.98 80.08 79.69
Median 77.45 81.25 81.67 81.82 81.67 82.14
p-value - <0.001 <0.001 <0.001 <0.001 <0.001

information is applied to select the best four features, and, sub-
sequently, the selected features are classified into the attention
class or the idle class by a linear discriminant analysis (LDA)
classifier [32].

D. Classification Results

Table I summarizes the classification results of the proposed
OAC method compared with the baseline (BL) method for which
no artifact correction is applied. Results of Session 1, Session 2,

Fig. 4. Change in test classification accuracy with regard to η.

and Session 3 are indicated by “SS1,” “SS2,” and “SS3,” respec-
tively. As shown in Table I, for all three sessions the proposed
method improves both the median and average classification
accuracies, the significance of which is validated by paired t-
test with almost all p-values below 0.05. More importantly, by
comparing the mean and median accuracies under different η,
it can be found that the results are quite consistent. In Fig. 4,
the mean and median of the test classification accuracies of all
three sessions are illustrated, as shown by which the results of
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Fig. 5. Comparison of artifact correction. (a) OAC. (b) SCICA.

the proposed artifact correction method is robust against change
in the parameter η within this range.

E. Comparing With Other Single-Channel Artifact
Correction Methods

For further validation, OAC is compared with single-
channel ICA (SCICA), details of which could be found in the
supplementary material and [23] and [24]. An example of the
comparison between SCICA and OAC is illustrated in Fig. 5,
where the raw signals x0 , the extracted artifacts xa , and the
corrected signals xc in OAC and SCICA are presented in (a)
and (b), respectively. It can be found that both SCICA and OAC
could remove the ocular artifacts in the form of spikes. Artifacts
xa extracted by SCICA contain more high-frequency compo-
nents, while xc obtained by OAC are more similar to the raw
signals x0 for the time segments where there are no artifacts.

For the comparison of classification accuracy, given that the
dataset in this paper contains 68 subjects who attended three
sessions of experiments with around 240 trials per session, it is
very time consuming and difficult to perform visual inspection
for all the subjects. Thus, we performed SCICA to EEG record-
ings of three sessions from ten randomly selected subjects to
obtain the classification accuracy. For this subset of dataset,
the average classification accuracies for BL, SCICA, and OAC
are 72.95%, 74.35%, and 74.85%, respectively, and the median
classification accuracies for BL, SCICA, and OAC are 71.25%,
72.36%, and 76.25%, respectively. Both SCICA and OAC could
improve the test classification accuracies, while OAC achieves
more improvement.

Most of the existing single-channel artifact correction meth-
ods require manual identification of artifact components and
are usually implemented trial by trial, which means that visual

inspection needs to be preformed for each trial. Requiring
neither manual selection nor visual inspection, the proposed
method is automatic for both artifact detection and correction,
which makes it more feasible and efficient in processing
practical BCI data. Moreover, for EEMD-ICA, it is impossible
to obtain a generalized model using the training data due to the
varying numbers of IMFs across trials. In contrast, in the pro-
posed method, the model trained by the training data is effective
for the test data, as validated by the test accuracy. Most impor-
tantly, the proposed method is a discriminative model and jointly
optimizes features, while the conventional artifact correction
methods usually serve as data-driven preprocessing procedures.

F. Discussion

The proposed method achieves improvement for most of
the subjects, while there are still some subjects, for whom the
classification accuracy drops with the artifact correction method.
For a better understanding of the OAC, we have investigated
the data of subject 19, session 1, the classification accuracies
with LDA classifier of which are 86.84% and 59.21% under
the BL method, and the proposed artifact correction method,
respectively. We calculate the number of training trials contain-
ing peaks in different amplitude ranges, speculating that the
accuracy drop could be due to insufficient training trials con-
taminated with artifacts. We found that 56 and 10 out of 74
trials are contaminated with peaks with amplitudes in ranges
h1
r and h2

r , below the 30% and 10% percentile ranks among all
subjects, respectively. Thus, it is possible that less trials with
artifacts result in ineffective optimization. For further investiga-
tion, we conduct statistical comparison of the number of trials
contaminated with artifacts between subjects with and without
accuracy improvements. However, the results show that there is
no significant difference.

Regarding the parameter setting, although ηj could be set
differently, we set all ηj to be the same in this paper. With ηj
representing the percentile of the number of peaks, η0 should
be no less than 0.50 as the ocular artifacts should not consti-
tute a large portion of the data. And, generally, ηj should not
be larger than 0.80, or there will be insufficient data with arti-
facts for certain pseudoartifacts channels. Thus, 0.6 < η < 0.8
is a reasonable range, within which we have shown that the
classification results are quite consistent.

In this paper, powers from multiple subbands are used as
features, while the optimization is performed on a broad band.
The framework could be more consistent if the optimization
is conducted in a band-wise manner. However, the higher the
frequency band, the more difficult for reliable artifact detection.
Moreover, the band-wise optimization will inevitably increase
the computational complexity, which makes the artifact cor-
rection algorithm prone to overfitting. Thus, in this paper, the
optimization is based on a broad band, followed by selecting the
best subbands using mutual information. Further improvement
could be made to find a proper band-wise optimization approach
in our future works.

Despite the offline analysis presented in this paper, the
proposed artifact correction method could be used for online
processing as long as training trials are available. The feasibility
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of the online implementation depends on artifact detection
rather than optimization. In this paper, given the moving
average applied with five neighboring points, there would be a
delay of around 20 ms for the test data artifact correction, which
is acceptable for online processing. Moreover, the application
of the proposed method is not confined to ocular artifacts. By
constructing different artifact templates, the optimization in
Section II-B could also be used to remove other artifact
types, such as teeth-grinding or swallowing. Extension for
multiclass classification problems is also possible by adopting a
one-versus-all strategy.

IV. CONCLUSION

This study investigates the OAC with minimal cerebral in-
formation loss for discriminative EEG feature learning. In the
proposed method, multiple artifact signals are constructed from
the raw EEG data, and the filtering parameters are optimized
using oscillatory correlation objective function. In particular,
the optimization is performed in a supervised manner to ensure
that artifact correction benefits the classification. Applicable to
single-channel EEG, artifact signal extraction in the proposed
method requires no EOG or eye-tracker measurement, and more
importantly, it is automatic without any manual selection or vi-
sual inspection of artifact. The proposed method is evaluated
using a single-channel EEG dataset containing 68 subjects, and
there are two classes, subjects performing cognitive tasks and
staying in idle states. The results show that artifact correction
is of special importance in addressing the related confounding
issues. The effectiveness of the proposed method is validated by
the significance of the improvement in classification accuracy in
statistical tests. The example of the comparison of EEG signals
before and after the correction shows the merit of the proposed
method in keeping the signal as intact as possible with alteration
applied only to segments with artifacts.

REFERENCES

[1] K. K. Ang and C. Guan, “Braincomputer interface for neuro-rehabilitation
of upper limb after stroke,” Proc. IEEE, vol. 103, no. 6, pp. 944–953, Jun.
2015.

[2] C. G. Lim et al., “A brain-computer interface based attention training
program for treating attention deficit hyperactivity disorder,” PLoS ONE,
vol. 7, no. 10, 2012, Art. no. e46692.

[3] A. S. Aghaei et al., “Separable common spatio-spectral patterns for mo-
tor imagery BCI systems,” IEEE Trans. Biomed. Eng., vol. 63, no. 1,
pp. 15–29, Jan. 2016.

[4] B. J. Edelman et al., “EEG source imaging enhances the decoding of
complex right hand motor imagery tasks,” IEEE Trans. Biomed. Eng.,
vol. 63, no. 1, pp. 4–14, Jan. 2016.

[5] X. Li et al., “Discriminative learning of propagation and spatial pat-
tern for motor imagery EEG analysis,” Neural Comput., vol. 25, no. 10,
pp. 2709–2733, Oct. 2013.

[6] X. Li et al., “Adaptation of motor imagery EEG classification model based
on tensor decomposition,” J. Neural Eng., vol. 11, 2014, Art. no. 056020.

[7] P. P. Acharjee et al., “Independent vector analysis for gradient artifact
removal in concurrent EEG-fMRI data,” IEEE Trans. Biomed. Eng.,
vol. 62, no. 7, pp. 1750–1758, Jul. 2015.

[8] J. W. Kelly et al., “Fully automated reduction of ocular arti-
facts in high-dimensional neural data,” IEEE Trans. Biomed. Eng.,
vol. 58, no. 3, pp. 598–606, Mar. 2011.

[9] I. W. Selesnick et al., “Transient artifact reduction algorithm (TARA)
based on sparse optimization,” IEEE Trans. Signal Process., vol. 62,
no. 24, pp. 6596–6611, Dec. 2014.

[10] H. Zeng et al., “EOG artifact correction from EEG recording using sta-
tionary subspace analysis and empirical mode decomposition,” Sensors,
vol. 13, no. 11, pp. 14 839–14 859, 2013.

[11] D. Looney et al., “Subspace denoising of EEG artefacts via multivariate
EMD,” in Proc. 2014 IEEE Int. Conf. Acoust., Speech, Signal Process.,
May 2014, pp. 4688–4692.

[12] G. Gratton, M. G. Coles, and E. Donchin, “A new method for off-
line removal of ocular artifact,” Electroencephalogr. Clin. Neurophysiol.,
vol. 55, pp. 468–484, 1983.

[13] A. Hoffmann and M. Falkenstein, “The correction of eye blink arte-
facts in the EEG: A comparison of two prominent methods,” PLoS ONE,
vol. 3, no. 8, 2008, Art. no. e3004.

[14] P. Comon, “Independent component analysis, a new concept?” Sig-
nal Process., vol. 36, no. 3, pp. 287–314, 1994. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0165168494900299

[15] T.-P. Jung et al., “Removal of eye activity artifacts from visual event-
related potentials in normal and clinical subjects,” Clin. Neurophysiol.,
vol. 111, pp. 1745–1758, 2000.

[16] N. Bigdely-Shamlo, “Eyecatch: Data-mining over half a million EEG
independent components to construct a fully-automated eye-component
detector,” in Proc. 2013 35th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.,
Jul. 2013, pp. 5845–5848.

[17] C. Guerrero-Mosquera and A. Navia-Vázquez, “Automatic removal of
ocular artefacts using adaptive filtering and independent component anal-
ysis for electroencephalogram data,” IET Signal Process., vol. 6, no. 2,
pp. 99–106, 2012.

[18] Q. Zhao et al., “Automatic identification and removal of ocular artifacts
in EEG-improved adaptive predictor filtering for portable applications,”
IEEE Trans. Nanobiosci., vol. 13, no. 2, pp. 109–117, Jun. 2014.

[19] A. Mognon et al., “ADJUST: An automatic EEG artifact detector based
on the joint use of spatial and temporal features,” Psychophysiology,
vol. 48, no. 2, pp. 229–240, 2011.

[20] T. M. Lau et al., “How many electrodes are really needed forEEG-
based mobile brain imaging?” J. Behavioral Brain Sci., vol. 2, no. 3,
pp. 387–393, 2012.

[21] T.-P. Jung et al., “Removing electroencephalographic artifacts by blind
source separation,” Psychophysiology, vol. 37, no. 2, pp. 163–178, 2000.

[22] C. G. Lim et al., “Effectiveness of a brain-computer interface based pro-
gramme for the treatment of ADHD: A pilot study,” Psychological Bull.,
vol. 43, no. 1, pp. 73–82, 2010.

[23] M. E. Davies and C. J. James, “Source separation using single channel
ICA,” Signal Process., vol. 87, no. 8, pp. 1819–1832, 2007.

[24] B. Mijovic et al., “Source separation from single-channel recordings by
combining empirical-mode decomposition and independent component
analysis,” IEEE Trans. Biomed. Eng., vol. 57, no. 9, pp. 2188–2196, Sep.
2010.

[25] J. Lin and A. Zhang, “Fault feature separation using wavelet-ICA filter,”
NDT E Int., vol. 38, no. 6, pp. 421–427, 2005.

[26] C. Zhao and T. Qiu, “An automatic ocular artifacts removal method based
on wavelet-enhanced canonical correlation analysis,” in Proc. 2011 Annu.
Int. Conf. IEEE Eng. Med. Biol. Soc., 2011, pp. 4191–4194.

[27] S. Dähne et al., “SPoC: A novel framework for relating the amplitude of
neuronal oscillations to behaviorally relevant parameters,” NeuroImage,
vol. 86, pp. 111–122, 2014.

[28] S. Dähne et al., “Finding brain oscillations with power dependencies in
neuroimaging data,” NeuroImage, vol. 96, pp. 334–348, 2014.

[29] A. S. Keren, S. Yuval-Greenberg, and L. Y. Deouell, “Saccadic spike
potentials in gamma-band EEG: Characterization, detection and suppres-
sion,” NeuroImage, vol. 49, no. 3, pp. 2248–2263, 2010.

[30] F. Lotte and C. Guan, “Regularizing common spatial patterns to improve
BCI designs: Unified theory and new algorithms,” IEEE Trans. Biomed.
Eng., vol. 58, no. 2, pp. 355–362, Feb. 2011.

[31] K. K. Ang et al., “Filter bank common spatial pattern algorithm on BCI
competition IV datasets 2a and 2b,” Front. Neurosci., vol. 6, no. 39, 2012.

[32] K. K. Ang et al., “Mutual information-based selection of optimal spatial-
temporal patterns for single-trial EEG-based BCIs,” Pattern Recognit.,
vol. 45, no. 6, pp. 2137–2144, 2012.

[33] J. Meng et al., “Simultaneously optimizing spatial spectral features based
on mutual information for eeg classification,” IEEE Trans. Biomed. Eng.,
vol. 62, no. 1, pp. 227–240, Jan. 2015.

[34] C. M. MacLeod, “Half a century of research on the stroop effect: An
integrative review,” Psychological Bull., vol. 109, pp. 163–203, 1991.

Author’s photographs and biographies not available at the time of
publication.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


