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Abstract— To detect the mental task of interest, spatial filtering
has been widely used to enhance the spatial resolution of elec-
troencephalography (EEG). However, the effectiveness of spatial
filtering is undermined due to the significant nonstationarity
of EEG. Based on regularization, most of the conventional sta-
tionary spatial filter design methods address the nonstationarity
at the cost of the interclass discrimination. Moreover, spatial filter
optimization is inconsistent with feature extraction when EEG
covariance matrices could not be jointly diagonalized due to the
regularization. In this paper, we propose a novel framework for a
spatial filter design. With Fisher’s ratio in feature space directly
used as the objective function, the spatial filter optimization is
unified with feature extraction. Given its ratio form, the selection
of the regularization parameter could be avoided. We evaluate
the proposed method on a binary motor imagery data set of
16 subjects, who performed the calibration and test sessions on
different days. The experimental results show that the proposed
method yields improvement in classification performance for
both single broadband and filter bank settings compared with
conventional nonunified methods. We also provide a systematic
attempt to compare different objective functions in modeling data
nonstationarity with simulation studies.

Index Terms— BCI, electroencephalography (EEG), motor
imagery, optimization, spatial filtering.

I. INTRODUCTION

IN DISCRIMINATIVE learning of electroencephalogra-
phy (EEG), spatial filtering has been widely applied as

preprocessing or feature extraction, especially in EEG-based
brain computer interface (BCI) systems [1], [2]. The function
of spatial filtering lies in enhancing the spatial resolution of
EEG [3], [4]. Besides, it reduces the number of features as the
number of designed spatial filters is usually much less than the
number of channels in the scalp space [5]. However, it assumes
the stationarity of the spatial distribution of the relevant
EEG components over time in spatial filtering. Sensitive to
variability in evoked brain responses or human behaviors, EEG
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recordings usually contain contributions of multiple varying
mental processes, only a small portion of which relates to the
task of interest. In fact, even resting state brain networks would
cause spontaneous fluctuations in the brain signals [6]–[8].
The low signal-to-noise ratio and nonstationary nature of EEG
significantly undermines the reliability of spatial filtering in
enhancing the task-related processes.

Many efforts have been made to optimize spatial filter
so that it is discriminative while being robust against EEG
nonstationarity and artifacts contamination. For instance,
common spatial pattern (CSP) analysis is one of the
most effective spatial filter design methods for motor
imagery discrimination [9], [10]. Given the event-related
(de)synchronization (ERD/ERS) in EEG during the imagina-
tion of certain movements, CSP extracts the ERD/ERS effects
by maximizing the power of the spatially filtered signals for
one class while minimizing it for the other class [11], [12]. As
the EEG data are in the form of multichannel time series, the
covariance matrix of EEG consists of covariances between
EEG signals from pairs of channels. With the classwise
average of the covariance matrices, the objective function of
CSP is casted in relation to Rayleigh quotient between the
average covariance matrices, which is equivalent to the ratio of
powers of the EEG signals from the two classes. The objective
function has been used for a joint temporal-spatial analysis as
an improvement of CSP [5]. Higashi and Tanaka [13] proposed
the discriminative filter bank CSP (DFBCSP), where the finite
impulse response filters and the associated spatial weights
are obtained in a sequential manner by optimizing Rayleigh
quotient. In iterative spatio-spectral patterns learning (ISSPL),
Rayleigh quotient is combined with the objective function
of support vector machine (SVM) to optimize spatio-
spectral filters and the classifier in a sequential manner [14].
Similarly, in [15], spatial filters and time-lagged coefficient
matrices in a convolutive model are jointly optimized using
Rayleigh quotient to address the propagation effects in motor
imagery EEG.

The Rayleigh quotient objective function is effective in
terms of discrimination, while it is prone to nonstationarity.
Thus, a number of regularization methods have been proposed
to improve its robustness against the data nonstationarity [16].
The regularization method refers to adding a regularization
term to the denominator of the Rayleigh quotient so that
this term can be penalized in the objective function [17].
To achieve the invariant property of the spatial filters, station-
ary CSP is proposed to address nonstationary noise in a more
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general case without using additional recordings to estimate
the nonstationary artifacts [18]. In particular, nonstationarity is
estimated as the sum of absolute differences between the mean
variance and variance of a certain trial in the projected space.
In [19], the nonstationary projection directions are estimated
based on the principal component analysis using cross-subject
data, and then penalized in the objective function to build
subject-specific spatial filters.

Arvaneh et al. [20] introduced a different penaliz-
ing term that measures the Kullback–Leibler divergence
(KL-divergence) of the EEG distributions across trials, and
subsequently, the objective function can minimize within-class
dissimilarities. In [21], different divergence measurements are
used as nonstationarity regularization, and it is proved that
the spatial filters in CSP project the EEG data into subspaces
where the KL-divergence between the data distributions from
two classes is maximized. Therefore, the objective function
of CSP can also be formed in a divergence-based framework.
The significance of this paper lies in the fact that it is a unified
framework for CSP with different kinds of regularization.

Besides Rayleigh quotient and KL-divergence, the mutual
information has also been used for spatial filter optimization.
In [22] and [23], multiple bandpass filters denoted as a filter
bank are applied for raw EEG data, and the CSP spatial
filters are calculated for each filter band. Thus, each pair
of bandpass and spatial filter yields CSP features that are
specific to the frequency range of the bandpass filter. Then,
both spatial and temporal filters are optimized by selecting
those features whose mutual information with the class labels
is higher. Similarly, in the optimum spatio-spectral filtering
network (OSSFN), the bandpass filters and the spatial filters
are jointly optimized to maximize the mutual information
between feature vector variables and the class labels via
gradient searching [24].

In general, Rayleigh quotient, KL-divergence, and mutual
information are conventional objective functions for spatial
filter optimization, and they are often combined in different
ways. As aforementioned, KL-divergence-based loss function
can be used as a regularization term in the Rayleigh quotient
objective function to penalize the within-class dissimilarity,
while mutual information is used to select filter bands as a
way of temporal filter optimization. However, their relation-
ships with classification in the feature space have not been
investigated sufficiently, especially when nonstationarity needs
to be taken into consideration. Zhang et al. [25] established
the theory linking Rayleigh quotient with Bayes classification
error in the CSP feature space. In that work, the feature non-
stationarity is simplified by assuming that the shape parameter
of the feature distribution is independent of the spatial filters.
As most of the stationary spatial filter design methods are
based on regularization, the intertrial nonstationarity or the
within-class dissimilarity is minimized at the cost of interclass
dissimilarity, which can be regarded as one of the limita-
tions of the regularization methods. Moreover, divergence
measurements are usually applied in the covariance matrix
space rather than in the feature space. The problem lies in
the fact that the spatial filters with regularization usually fail
to jointly diagonalize the covariance matrices, while only

TABLE I

NOMENCLATURE

the diagonal elements are used as features. In other words,
the feature used for classification is not consistent with the
optimization objective function in the spatial filter design
based on the covariance matrix. Due to the inconsistency,
stationarity or discrimination for the covariance matrix cannot
be fully transferred into that for the features.

To address the issue, we propose to optimize spatial filers
using Fisher’s ratio in the feature space. This is a unified
framework for spatial filter design, as it directly addresses
discrimination and stationarity in the feature space, com-
pared with objective functions in the conventional spatial
filter optimization. Given its ratio form, within-class feature
dissimilarity could be minimized without sacrificing interclass
discrimination, and regularization parameter selection could
be avoided. Moreover, we provide a systematic attempt to
compare the effectiveness of different objective functions by
applying them to both feature extraction and selection with
single broadband or filter bank as preprocessing. In particular,
the roles that different objective functions play in nonstationar-
ity measurement have been investigated and discussed. Based
on the above discussion, we highlight the contributions of this
paper as follows.

1) Fisher’s ratio-based spatial filter design method is
proposed.

2) Relationships between different objective functions,
such as Rayleigh quotient, KL-divergence and mutual
information, are discussed.

3) Efficiency of different objective functions in the nonsta-
tionarity modeling is investigated.

II. PRELIMINARIES OF SPATIAL FILTER DESIGN

A. Common Spatial Pattern Analysis

To make this work self-contained, in this section, we will
introduce the preliminaries about the spatial filter design.
Please refer to Table I for nomenclature. Let X j ∈ Rnc×nt be
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the the bandpass filtered EEG data of trial j , where nc and nt

are the numbers of channels and time points, respectively. As
the mean of X j is zero after the preprocessing, the covariance
matrix R j could be obtained as

R j = X j (X j )
T

tr[X j (X j )T ] . (1)

The CSP spatial filter w is designed to maximize the
variance of the spatially filtered signal under one condi-
tion, and given the constraint that the sum of the variances
under two conditions is one, the variance under the other
condition could be minimized subsequently. The objective
function of CSP can be expressed in the following optimization
problem:

max
w

wT R̄cw s.t. wT (R̄+ + R̄−)w = 1 (2)

where R̄c is the average covariance matrix for class c, that is

R̄c = 1

|Qc|
∑

j∈Qc

R j , c ∈ {+,−} (3)

where Qc is the set containing indices of trials that belong to
class c.

B. Common Spatial Pattern Analysis in KL-Divergence Form

Given that EEG data are usually processed to be cen-
tered, the KL-divergence between two EEG data sets,
i1 and i2, is

Dkl (Ri1 ||Ri2 ) = 1

2

(
tr((Ri2 )−1 Ri1 ) − ln

(
det Ri1

det Ri2

)
− nc

)

(4)

and the symmetric KL-divergence is defined as

D̃kl (Ri1 ||Ri2 ) = Dkl (Ri1 ||Ri2) + Dkl (Ri2 ||Ri1). (5)

In [21], it is proved that the solution of (2) is equal to that
of the following optimization problem, i.e., the spatial filters
maximizing the symmetric KL-divergence between the two
classes:

W = arg max
W

D̃kl (W T R+W ||W T R−W ). (6)

The objective function with stationary regularization
term, �s , can be formulated as

Jkl = (1 − λ)D̃kl (W T R+W ||W T R−W ) − λ�s (7)

�s may vary according to the type of nonstationarity to be
minimized. Typically, it is the classwise intertrial nonstation-
arity, measured as the classwise average divergence between
the trials and mean data distributions as follows:

�s =
∑

c={+,−}

1

|Qc|
∑

j∈Qc

Dkl (W T R j W ||W T RcW ). (8)

III. SPATIAL FILTER OPTIMIZATION

BASED ON FISHER’S RATIO

Most of the existing stationary approaches have a similar
form as (7), where different regularization terms are used
to penalize the data nonstationarity [18]–[20]. One of the
limitations of such a formulation is that the data nonstation-
arity is minimized at the cost of the interclass dissimilarity.
It usually takes cross validation to find the regularization
term λ. To address both the intertrial nonstationarity and class
discrimination in the spatial filter design, in this section, we
will introduce the objective functions based on Fisher’s ratio.

A. Objective Function Based on Fisher’s Ratio

The projection matrix W in CSP can also be represented as

W = PT U (9)

where each row of W is one solution of (3), and P is the
whitening matrix such that

P(R̄+ + R̄−)PT = I. (10)

Define the covariance matrix after whitening

�̄c = P R̄c PT . (11)

Each column of U in (9), ui , i = 1, . . . , nc, is an eigenvector
of �̄c. Usually, only those eigenvectors ui corresponding to
the largest and smallest eigenvalues of �̄c are used for feature
extraction as follows:

W = PT Um (12)

Um = ImU (13)

where Um can be regarded as the discriminative subspace, m is
the dimension of feature, and Im is a m-by-nc identity matrix.
The covariance matrix after projection can be written as

� j = U T
m � j Um (14)

where

� j = P R j PT . (15)

Remark 1: As CSP maximizes the power of one class and
minimizes it for the other class, the whitening in (10) is a
necessary constraint. Since the proposed optimization frame-
work adopts Fisher’s ratio in the feature space as objective
function, the whitening is no longer necessary. However, with
the whitening matrix P , features could be normalized to the
range around [0, 1], which is beneficial for the classification.
Thus, the proposed spatial filter optimization is based on the
covariance matrix after the whitening, i.e., �.

Then, the feature vector f j ∈ R
m for trial j extracted by

the projection matrix W is

f j = diag(� j ), j = 1, . . . , m (16)

which contains the variances of the EEG signals after projec-
tion. Let the i th element of f j be f j,i . Suppose trial i belongs
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to class c, and let f̄
c
i be the i th element of the average feature

of class c, i.e., f̄
c
. Then, the distance between f j,i and f̄

c
i is

d j,i = f j,i − f̄
c
i . (17)

Furthermore, the within-class distance Sw is

Sw = 1

2

∑

c∈C

1

|Qc|
∑

j∈Qc

1

m

m∑

i=1

(d j,i )
2. (18)

Similarly, the interclass distance between the mean features of
the two classes is

Sb = 1

m

m∑

i=1

(d̄i )
2 (19)

where d̄i is the i th element of d̄, that is

d̄ = f̄
+ − f̄

−
. (20)

With (18) and (19), Fisher’s ratio objective function can be
obtained as

J f s = Sw

Sb
. (21)

Let 1i
n ∈ R

n be a n-dimension vector with the i th element
as 1 and other elements as 0, that is

1i
n = [0, 0, . . . , 1, . . . , 0]T . (22)

Then, the features can be rewritten as

f j,i = (
1i

nc

)T
� j 1i

nc
(23)

f̄
c
i = (

1i
nc

)T
�̄c1i

nc
(24)

Substituting (14), (23), and (24) into (17), the distance between
f j,i and the mean of features from the same class f̄

c
(i) is

d j,i = (
1i

nc

)T
(� j − �̄c)1i

nc

= (
1i

m

)T
U T

m �� j Um1i
m . (25)

where

�� j = � j − �̄c, j ∈ Qc. (26)

Let 1ii
n ∈ R

n×n be a n-by-n matrix with the element of the i th
column and the i th row as 1 and other elements as 0, that is

1ii
n = 1i

n

(
1i

n

)T

=

⎛
⎜⎜⎜⎜⎝

0 0 . . . 0

0
. . . . . . 0

...
... 1

...
0 0 . . . 0

⎞
⎟⎟⎟⎟⎠

. (27)

Then, the squared distance is

d2
j,i = (1i

m)T (
U T

m �� j Um1ii
mU T

m �� j Um
)
1i

m . (28)

Substituting (28) into (18), we have

Sw = 1

2

∑

c∈C

1

|Qc|
∑

j∈Qc

1

m

m∑

i=1

(1i
m)T

×(
U T

m �� j Um1ii
mU T

m �� j Um
)
1i

m . (29)

Similarly, the interclass distance between the mean features of
the two classes can be obtained as

Sb = 1

m

m∑

i=1

(d̄i )
2 (30)

= 1

m

m∑

i=1

(1i
m)T (

U T
m ��Um1ii

mU T
m ��Um

)
1i

m (31)

where

�� = �̄+ − �̄−. (32)

Substituting (29) and (30) into (21), we can obtain Fisher’s
ratio objective function of Um as

Ûm = arg min
Um

J f s(Um) s.t. U T
m Um = I. (33)

Remark 2: Although Fisher’s ratio in (21) in linear dis-
criminative analysis could be regarded as a kind of Rayleigh
quotient, the subspace optimization in (33) is actually not in
Rayleigh quotient form when (29) and (30) are substituted
into (21). In this paper, Rayleigh quotient objective function
refers to the Rayleigh quotient used in CSP, which is equiva-
lent to the ratio between the means of the two classes in the
feature space. The difference between (21) and CSP lies in
that CSP only considers the interclass distance and Fisher’s
ratio in (21) maximizes interclass distance while minimizing
within-class distances.

After optimizing Um using (33), the projection matrix can
be obtained by substituting Ûm into (9).

The optimization of the discriminative subspace is
accomplished by using gradient descent on the manifold of
orthogonal matrices, which is shown in Algorithm 1. The
details of the subspace optimization approach can be found
in [21] and [26].

B. Filter Bank Fisher’s Ratio Spatial Filtering

In this paper, we evaluate the proposed spatial filter opti-
mization method by applying it to EEG signals bandpassed
by single broadband filter, and a filter bank that consists of
multiple filters [22], [23]. Moreover, given the spatial filter
optimization based on Fisher’s ratio, we propose to conduct
feature selection also using Fisher’s ratio. In the rest parts of
the paper, the combination of filter bank and Fisher’s ratio
is denoted as filter bank Fisher’s ratio spatial pattern analysis
(FB-FSSP). The flowchart of the EEG signal processing pro-
cedures is shown in Fig. 1, where the objective functions used
in FBCSP and FB-FSSP for spatial filtering, feature selection,
and classification steps are annotated for comparison. With
Fisher’s ratio (21) as the objective function, the proposed
spatial optimization is consistent with the features in (16) used
for feature selection and classification. Compared with FBCSP,
the proposed FB-FSSP is a more unified framework also in the
sense that Fisher’s ratio objective function is used in all the
three steps in EEG processing.
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Fig. 1. Flowchart of the EEG signal processing procedures in FB-FSSP and FBCSP.

Algorithm 4 Subspace Optimization Through Gradient
Searching
Input: training data with labels;
Output: Ûm .
begin

Compute whitening matrix P;
Compute whitened covariance matrices � j and �̄c;
Initialize Uk

m as the discriminative subspace in the
CSP solution in Eq. (9) to Eq. (12) with k = 0.
repeat:
Compute the covariance matrices after rotation �k or
features fk ;
With �k or fk , compute the gradient matrix ∇Um with
respect to J (Um) and obtain H as:

H =
(

0 ∇Um

−∇T
Um

0

)
;

Given tu = [0.95, 0.96, . . . , 0.910], estimate the
optimal step size by line search such that

t̂u = arg min
tu

J f s(U
k
m exp(tu H ))

Update the rotation matrix and the covariance matrix
as below

Uk+1
m = (Uk

m) exp(t̂u H )

Increase the iteration index as k → k + 1.
until convergence.

end

IV. EXPERIMENTAL STUDY

A. Experimental Setup and Data Processing

EEGs from the full 27 channels were obtained using
Nuamps EEG acquisition hardware with unipolar Ag/AgCl

electrodes channels. The sampling rate was 250 Hz with
a resolution of 22 b for the voltage range of ±130 mV.
A bandpass filter of 0.05–40 Hz was set in the acquisition
hardware.

The data set contains 16 subjects who attended two parts of
the experiment on separate days. In the first part, there were
one motor imagery session and one passive movement session,
each of which contained two runs. During the motor imagery
session, the data were recorded from subjects performing
kinaesthetic motor imagery of the chosen hand or back-
ground idle condition. During the passive movement session,
EEG data were collected from the subjects with passive
movement of the chosen hand performed by a haptic knob
robot or performing similar background idle condition. Each
run lasted for approximately 16 min and comprised 40 trials
of motor imagery or passive movement, and 40 trials of idle
state. In the second part, there was one motor imagery session
consisting of 2–3 runs. During the EEG recording process,
the subjects were asked to avoid physical movement and eye
blinking. Thus, there are 80 trials per class in the training
session and 80–120 trials per class in the test session, yielding
totally 160 training trials and 160–240 test trials for each
subject. The details of the experimental setup can be found
in [27].

With 27 channels of EEG, nc = 27. For each trial, the
EEG from the time segment of 0.5–2.5 s after the cue is
extracted, resulting in nt = 500. Single or multiple bandpass
filters are applied to the time segment. In particular, for single
band setting, the EEG segment is bandpassed by a broadband-
pass filter of 4–40 Hz, and then spatial filtering as feature
extraction is applied with two pairs of the spatial filters used.
For multiple band setting, we construct nine temporal bandpass
filters, 4−8, 8−12, . . . , 36–40 Hz, which have been proved to
cover the frequency range with the most distinctive ERD/ERS
effects [22], [23]. Similarly, spatial filtering with two pairs
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TABLE II

CLASSIFICATION RESULTS OF USING DIFFERENT
FEATURE SELECTION METHODS (%)

of the spatial filters is used for each of the nine frequency
bands, yielding totally 36 features. For feature selection, eight
features are selected based on mutual information, Fisher’s
ratio, or KL-divergence. Finally, feature vectors are classified
using a linear discriminant analysis classifier.

B. Comparing Different Objective Functions
in Feature Selection

In this section, we compare the different objective functions
in feature selection. To avoid the regularization coefficient λ
in (7), we construct a loss function as the ratio of interclass
KL-divergence and the within-class KL-divergence, that is

J̃kl =
∑

c=+,− 1
|Qc|

∑
j∈Qc Dkl (W T R j W ||W T RcW )

D̃kl (W T R+W ||W T R−W )
.

(34)

The classification results of features selected by different meth-
ods are summarized in Table II, where “MI0” indicates that
mutual information based on Parzen window is used for feature
selection, “FS” indicates that (21) is used, and “KL” indicates
that (34) is used. As shown in Table II, “FS” yields the better
results than that of “MI0,” which is regarded as the baseline
method. Note that the results in Table II are based on training
and testing the model both by motor imagery EEG.

Fig. 2 shows Fisher’s ratio and the KL-divergence ratio (34)
of different bands, averaged across all subjects. In Fig. 2, the
x-axis represents the starting frequency of each bandpass filter,
and the blue and red lines represent Fisher’s ratio and the
KL-divergence ratio, respectively. Despite the fluctuation in
Fisher’s ratio, both Fisher’s ratio and the KL-divergence ratio
are lower in the frequency range 8–20 Hz, which is known to
be the frequency range with stronger ERD/ERS effects. The
results of feature selection show the effectiveness of Fisher’s
ratio and it is feasible to optimize the spatial filter using it as
the objective function.

Fig. 2. Comparison between Fisher’s ratio and the KL-divergence ratio.

TABLE III

CLASSIFICATION RESULTS USING SINGLE BROAD BAND (%)

C. Spatial Filter Optimization

In this section, we evaluate the performance of the spatial
filter optimization method proposed in Section III. For a more
comprehensive comparison, we also implement the subspace
optimization using mutual information as the objective func-
tion. To reduce the computational complexity, the mutual
information is calculated using single Gaussian function in
the optimization process instead of the Parzen window used in
FBCSP, and the details of the spatial filter optimization can be
found in Appendix A. To differentiate the mutual information
calculation methods, we use MIs as the notation of the
simplified mutual information objective function. During the
subspace optimization procedure described in Algorithm 1,
the subspace dimension m is set as half of the number
of channels, i.e., m = 0.5nc. Upon the completion of the
optimization, two pairs of spatial filters are selected via sorting
them according to Fisher’s ratio of each feature dimension.

Table III shows the classification results of applying dif-
ferent spatial filter optimization methods proposed to EEG
filtered by a single broadband. Note that the results in Table III
are based on training and testing the model both by motor
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TABLE IV

CLASSIFICATION RESULTS USING FILTER BANK (%)

imagery EEG. It is found that both spatial filter optimization
methods outperform single band CSP, and FS yields the best
average classification accuracy.

Table IV shows the classification results of applying differ-
ent optimization methods to EEG filtered by filter bank with
different feature selection methods. For mutual information-
based spatial filer optimization, MI0 is used for feature selec-
tion. Moreover, FB-FSSP is implemented in two manners,
which are denoted by FB-FSSP1 and FB-FSSP2 in Table IV.
In FB-FSSP1, Fisher’s ratio spatial filter optimization is
applied to EEG signals bandpassed by filter bank of all nine
frequency bands at the training stage, followed by feature
extraction and feature selection. In FB-FSSP2, FBCSP is
applied at the first place, and Fisher’s ratio spatial filter
optimization is only applied to the selected bands for feature
extraction. Thus, compared with FB-FSSP1, the computational
complexity of FB-FSSP2 is lower. Moreover, “M” is used to
denote using motor imagery data as the training data, and
“P” to denote using the passive movement data as the training
data in Table IV.

As shown in Table IV, the spatial filter optimization meth-
ods based on Fisher’s ratio outperform both the baseline

and the mutual information spatial filter optimization with
higher average and median values. Moreover, the signifi-
cance of the improvements is validated by paired t-test with
p-values for both “FB-FSSP1” and “FB-FSSP2” below 0.05.
For both settings, the training and test data were recorded on
different days, resulting in the significant session-to-session
transfer data variation. In particular, the proposed method
could still capture the common sensorimotor patterns despite
the data-type transfer. Hence, it can found that the pro-
posed method yields a better model generalization and is
robust against both the session-to-session and the data-type
transfer.

The comparison results are illustrated more clearly in Fig. 3,
where the x-axis represents the results of FBCSP, the y-axis
represents that of the other three methods in Table IV, and
each dot marks one subject. Therefore, the more dots above the
x = y line, the more improvements achieved by the proposed
method compared to FBCSP. It is found that both FB-FSSP1
and FB-FSSP2 achieve significant improvements for training
data. For the test data, it still can be seen that FB-FSSP1
and FB-FSSP2 yield improvements although they are not as
significant as that of the training data.
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Fig. 3. Classification results comparison. (a) Training data. (b) Test data.

D. Discussion

1) Nonstationarity in Feature Space and Covariance Matrix
Space: In this section, we investigate the objective functions in
measuring the data nonstationarity. In Fisher’s ratio objective
function, the within-class feature distances are calculated in a
supervised manner as a measurement of data nonstationarity.
Although mutual information is not explicitly used to address
the nonstationarity issue when first adopted in FBCSP, feature
distances are used to calculate the mutual information. For fur-
ther analysis, we conduct a simulation study to investigate the
relationship between feature distance and mutual information
using the mutual information calculation in Appendix A.

Considering a set of 1-d feature f , let the mean features of
class + and − be

f̄ − = 0.3

f̄ + = 0.7 (35)

which is a typical pair of averaged CSP features given
the constraint f̄ − + f̄ + = 1 in the optimization objective
function (2). Assuming that p(c) = 0.5, we could calculate
the mutual information between the class variable c and
a 1-d feature f , I ( f, c), by using (36) to (41). The rela-
tionship between the feature f and mutual information
I ( f, c) is shown in Fig. 4, where the x-axis represents

Fig. 4. Mutual information as a function of f .

f , the y-axis represents I ( f, c), and the mean features
of both classes are represented by two red dashed-dotted
lines. I ( f, c) based on different values of hc are repre-
sented by different types of lines. I (f, c) calculated with
the same hc in (41) for both classes is shown in Fig. 4(a).
It can be seen that symmetric about f = 0.5, I ( f, c)
archives the minimal value when f = 0.5 and the larger the
distance between f and 0.5, the higher the mutual information.
In Fig. 4(b), we show the examples of I ( f, c) when hc are
different for the two classes. It can be found that although
the minimum is no longer f = 0.5, generally the mutual
information is higher if the distance between f and 0.5 is
larger. Different from the minimization of the within-class
distances in Fisher’s ratio objective function, in the mutual
information objective function, the distance between a feature
and the feature boundary is maximized. With different values
of hc for different classes, it is likely that by maximizing
mutual information, the feature is to be close to the center
of one certain class. Moreover, as the calculation of mutual
information is unsupervised, it cannot be guaranteed that the
feature is closer to the center of the correct class.

While Fisher’s ratio and mutual information are objective
functions formulated in feature space, Rayleigh coefficient
and KL-divergence can be regarded as that in covariance
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Fig. 5. Relationship between KL-divergence and ||d||. (a) Subject 7. (b) Subject 13. (c) Subject 14.

matrix space. When the nonstationarity is not considered in
the objective function, maximizing Rayleigh coefficient or
KL-divergence is equivalent to maximizing the mean interclass
distance due to the joint diagonalization of the average covari-
ance matrices from the two classes. When the nonstationarity
is addressed by the regularization term in (8) based on (4),
the solution can no longer jointly diagonalize the covariance
matrices and the off-diagonal elements also contribute to the
objective function in (7). However, only diagonal elements are
used as features for classification, which means that there is a
gap between the features optimized in the spatial filter design
and that those used for classification.

To further investigate such inconsistency, the relation-
ship between KL-divergence and feature distance is shown
in Fig. 5, where each dot marks one trial from the training data
of the subject indicated in the figure. The x-axis represents
||d|| in (17) and y-axis represents the KL-divergence between
a trial and the average EEG distribution from the same class
after projection based on CSP, i.e., Dkl (W R j W T ||W RcW T )
with j ∈ Qc. Moreover, linear regression between the
KL-divergence and ||d|| is conducted, the result of which
is also shown in Fig. 5. It can be seen that the correlation
between KL-divergence and feature distance is not very clear,
and the resultant correlation coefficients are not significant
in any of the three examples. Given that only diagonal
elements are used as features, the KL-divergence objective
function is less directly related to classification accuracy in
feature space. This could explain why using KL-divergence
to select features is not as effective as Fisher’s ratio and
mutual information. Yet, it is possible that addressing the
nonstationarity in the covariance matrix space is less prone
to overfitting problem compared with Fisher’s ratio objective
function, as Fisher’s ratio spatial filter optimization achieves
more significant improvements in training accuracy than that
in test accuracy.

2) Feature Distribution: In our previous work in [25],
it is shown that the CSP features from two classes can be
modeled as two Gamma distributions. It is proved that the
Bayes error could be minimized by maximizing the Rayleigh
quotient of the covariance matrices of the two classes under
the assumptions that: 1) the two Gamma distributions have the
same shape parameter and 2) the shape parameter is a constant

independent of the spatial filter. By simplifying the relation-
ship between the shape parameter and the spatial filter, the
within-class dissimilarity has not been addressed sufficiently.
Thus, in this paper, we approach to the problem with Fisher’s
ratio so that both interclass and within-class dissimilarity
could be taken into consideration. Yet, the assumption that the
features follow normal distribution could be one limitation of
the proposed method, and we expect that there would be a
more comprehensive Bayes learning of the spatial filter.

3) Optimization: We investigate the subjects for whom the
proposed method fails to achieve improvements. It is found
that for some subjects, the subspace optimization converges
at the very beginning of the searching, which yields the
results similar to FBCSP. Given that Um is initialized as the
discriminative subspace of the CSP solution, it is possible
that the CSP solution is the optimized one, or there is a
local minimum so that the searching cannot continue. In our
future work, we would conduct more analysis to improve the
subspace searching.

4) Relationship With Other Methods: In OSSFN proposed
in [24], mutual information is used as the objective function
of both temporal and spatial filters design by optimizing
coefficient vectors of a group of subspace spatial filters, i.e.,
CSP or FBCSP spatial filters. In this paper, we propose to
search the subspace on manifold with Fisher’s ratio or mutual
information as objective function. Moreover, OSSFN adopts a
“deflation” approach by optimizing the coefficient vectors one
by one, which is proved to be less effective than the subspace
gradient searching on manifolds [21].

The temporal filters are also optimized using SVM objec-
tive function and Rayleigh coefficient objective function in
ISSPL and DFBCSP, respectively, while in FBCSP, a soft-
optimization approach is adopted by selecting the bands with
higher mutual information [13], [14], [22], [23]. Compared
with searching globally optimized temporal filters, the com-
putational complexity of the soft-optimization approach is
much lower with comparable results. Thus, in this paper,
we follow FBCSP by optimizing the temporal filters using
the selection strategy. Moreover, in existing joint-temporal-
spatial filter optimization methods, usually different objective
functions are used for temporal and spatial filter optimization,
feature selection, and classification. In the proposed method
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shown in Fig. 1, Fisher’s ratio is used for spatial filter
optimization, feature selection, and classification, which leads
to a more unified model.

V. CONCLUSION

For practical BCI systems, how to optimize spatial filters to
extract discriminative EEG features and be robust against EEG
nonstationarity is one of the most challenging issues in spatial
filter design. Given various objective functions and joint-
temporal-spatial analysis methods, the relationship between
different optimization methods and feature classification has
not been sufficiently investigated.

In this paper, we propose a novel spatial filter design
method, which directly addresses both interclass and within-
class feature dissimilarity with Fisher’s ratio as the objective
function. The proposed method is a unified framework as
the spatial filter optimization is directly formulated in the
feature space, and the inconsistency between spatial filtering
and feature extraction could be avoided. In addition, the
proposed method does not require regularization parameter
selection, which needs to be conducted by cross validation in
regularization-based stationary spatial filter design. We imple-
ment the proposed method on both single broadband filter and
filter bank with feature selection, and it is shown that Fisher’s
ratio objective function improves classification accuracy for
both spatial filter design and feature selection. We also present
a systematic attempt to compare it with different objective
functions used for feature extraction and feature selection.
With experimental and simulation studies, we discuss the
advantages and disadvantages of different objective functions.

APPENDIX

MUTUAL INFORMATION OBJECTIVE FUNCTION

In [22] and [23], mutual information objective function
is used for soft optimization by selecting the best spatial
filters yielding the highest mutual information. In this paper,
we propose to optimize the subspace Um to maximize the
mutual information between class label variables c and feature
variable f as shown in (36), that is

I (f, c) = H (c) − H (c|f) (36)

where

H (c) =
∑

c∈C
p(c) log2 p(c) (37)

and

H (C|f) = − 1

m

1

|Qc|
m∑

i=1

∑

j∈Qc

∑

c∈C
p(c|f j,i ) log(p(c|f j,i )) (38)

p(c|f j,i), which is the conditional probability of class c given
feature f j,i , can be computed as

p(c|f j,i ) = p(f j,i |c)P(c)∑
c=+,− p(f j,i |c) . (39)

The conditional probability of f j,i given class c, p(f j,i |c), can
be estimated using Gaussian function as

p(f j,i |c) = ϕ
(
f j,i − f̄

c
i , hc

i

)

= ϕ
(
dc

j,i , hc
i

)
(40)

where

ϕ(d, h) = 1√
2π

e
− ||d||

h2 . (41)

The smoothing parameter hc
i can be calculated as

hc
i =

(
4

3|Qc|
)0.2

σ c
i (42)

where σ c
i is the standard deviation of the i th dimension of

features belonging to class c.
Thus, with (36)–(42), the subspace Um can be optimized

using the following optimization objective function:
Ûm = arg max

Um
Jmi (Um) s.t. U T

m Um = I (43)

where

Jmi (Um) = I (f, c). (44)

Remark 3: To reduce the computation complexity of cal-
culating the gradient, we adopt a simplified way to estimate
mutual information with p(f j,i |c) shown in (40) compared
with the mutual information calculation in [22] and [23].
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