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Abstract—Goal: An important research area in biomedical
signal processing is that of quantifying the relationship between
simultaneously observed time series and to reveal interactions
between the signals. Since biomedical signals are potentially
non-stationary and the measurements may contain outliers and
artifacts, we introduce a robust time-varying generalized partial
directed coherence (rTV-gPDC) function. Methods: The proposed
method, which is based on a robust estimator of the time-
varying autoregressive (TVAR) parameters, is capable of re-
vealing directed interactions between signals. By definition, the
rTV-gPDC only displays the linear relationships between the
signals. We therefore suggest to approximate the residuals of
the TVAR process, which potentially carry information about
the nonlinear causality by a piece-wise linear time-varying
moving-average (TVMA) model. Results: The performance of
the proposed method is assessed via extensive simulations. To
illustrate the method’s applicability to real-world problems, it
is applied to a neurophysiological study that involves intracra-
nial pressure (ICP), arterial blood pressure (ABP), and brain
tissue oxygenation level (PtiO2) measurements. Conclusion and
Significance: The rTV-gPDC reveals causal patterns that are
in accordance with expected cardiosudoral meachanisms and
potentially provides new insights regarding traumatic brain
injuries (TBI). The rTV-gPDC is not restricted to the above
problem but can be useful in revealing interactions in a broad
range of applications.

Index Terms—Biomedical signal processing, connectivity anal-
ysis, directed coherence, Kalman filter, multivariate autoregres-
sive modeling, time-varying autoregressive (TVAR), time-varying
moving-average (TVMA), partial directed coherence (PDC), gen-
eralized partial directed coherence (gPDC), intracranial pressure
(ICP), arterial blood pressure (ABP), traumatic brain injuries
(TBI).

I. INTRODUCTION

IN multivariate biomedical signal processing, an important

and frequently asked question is whether the underlying

time series interact and whether they are causally connected.

Answering this question is of interest in many applications,

for example in the case of non-invasive brain activity

measurements, such as electroencephalography (EEG) or
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functional magnetic resonance imaging (fMRI), where

the neural connectivity is characterized [1]–[10]. Also in

cardiological studies one is interested, for example, in the

relation between cardiovascular and cardiorespiratory data

[11]–[15].

A traditional approach to analyze the relation between

multivariate biomedical signals is to use the coherence

function [16], the partial coherence [17], or approaches based

on time-varying extensions of the coherence function [15],

[18]. However, the coherence function is not a directional

measure, i.e., it does not provide the direction of the

information flow. Therefore, several techniques based on

linear multivariate autoregressive (MVAR) models have been

proposed to quantify causality in the frequency domain.

One of the most frequently applied methods is the directed

transfer function (DTF), that was introduced by Kaminski

and Blinowska [19] as a multivariate measure of the intensity

of activity flow in brain structures. A further multivariate

approach for the estimation of causality between time series is

the directed coherence (DC), a terminology introduced in [20]

and reviewed by Baccalá et al. in [2], which was first applied

to analyze neural data. The partial directed coherence (PDC)

and the re-examined definition of the generalized partial

directed coherence (gPDC) were introduced by Baccalá et

al. [21], [22]. The PDC is a conceptional generalization of

the DC, whereas the gPDC is a natural generalized definition

of the PDC. It allows to perform a multivariate analysis that

is capable of detecting the interactions between two signals

after removing the contribution of all the other signals. gPDC

also has the advantage of being scale invariant and more

accurate for short time series as compared to the PDC. Thus,

the gPDC is able to distinguish between direct and indirect

connections. To overcome the limitation of stationarity, Milde

et al. [23] presented a technique to estimate high-dimensional

time-variant autoregressive (TVAR) models for interaction

analysis of simulated data and high-dimensional multi-trial

laser-evoked brain potentials (LEP). Systematic investigations

on the approach to use a Kalman filter for the estimation of

the TVAR models were performed by Leistritz et al. [24]. A

mathematical derivation of the asymptotic behaviour of the

gPDC has been presented by Baccalá et al. [25]. Omidvarnia

et al. [26] modified the time-varying generalized partial

directed coherence (TV-gPDC) method by orthogonalization

of the strictly causal multivariate autoregressive model

coefficients. The generalized orthogonalized PDC (gOPDC)
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minimizes the effect of mutual sources and was applied

on event-related directional information flow from flash-

evoked responses in neonatal EEG. All the above-mentioned

multivariate measures rely on the concept of Granger causality

between time series [27] and can be interpreted as frequency

domain representations of this very popular concept of

causality.

However, a severe challenge in estimating the parameters

of MVAR models is the sensitivity of classical estimators

towards artifacts or outliers in the measurements [5], [28]–

[35]. The presence of artifacts or outliers was frequently

reported, e.g., in fMRI [36] or ECG [35] measurements.

Researchers often must exclude contaminated signal parts

[5], [28], [29], [31]–[33] which can lead to a significant

loss of data. Finally, since MVAR models are bound to

describe linear relations between time series, they fail to

detect nonlinear causalities, which have been reported for a

variety of biomedical signals [37]–[39].

Our contributions are as follows: We propose a new

directed coherence measure called the robust time-varying

generalized partial directed coherence (rTV-gPDC). The

parameters of the gPDC are estimated using a Kalman

filter. In this way, the assumption of stationarity is dropped.

Based on robust statistics [34], [40], [41], we introduce a

computationally attractive one-step reweighting algorithm

that is incorporated into the Kalman filter to handle artifacts.

We adapt a method by Chowdhury [42] to approximate the

often unknown nonlinear function with the help of a family

of piece-wise linear functions using a TVMA model that

captures causalities that cannot be explained by the TVAR

model, i.e., are nonlinear. With this TVMA model, we extend

the gPDC to nonlinear causality patterns to reveal nonlinear

relations between multivariate time series. We evaluate our

method numerically both in terms of accuracy and robustness

and compare it to an existing method [43]. Further, we

apply our method to clinically collected traumatic brain

injury data and display the interactions between intracranial

pressure (ICP), arterial blood pressure (ABP) and brain tissue

oxygenation level (PtiO2) signals.

The paper is organized as follows. Section II briefly revisits

some important existing methods. Section III introduces a

novel time-varying frequency domain approach to assess

causality between time series based on TVAR and TVMA

models as an extension of the gPDC. The new approach is

validated on simulated TVAR data in Section IV, whereas

Section V is devoted to an application of the approach to a

real clinically collected multivariate biomedical time series.

Section VI discusses the approach based on the achieved

results and addresses the advantages and drawbacks, before

Section VII concludes the paper.

II. BACKGROUND ON MEASURING CAUSALITY IN THE

FREQUENCY DOMAIN

This Section briefly reviews the TVAR model and the

frequency domain causality measures including the gPDC.

A. Multivariate Autoregressive (MVAR) Model

Let x(n) = [x1(n), x2(n), . . . , xM (n)]T denote an M -

dimensional multivariate time series whose consecutive mea-

surements contain information about the underlying processes.

A common attempt to describe such a time series is to model

the current value as a linear summation of its previous values

plus an innovation term. This very popular time series model

is called the MVAR model and is given by

x(n) =

P
∑

p=1

Apx(n− p) + v(n), (1)

where P is the model order, v(n) =
[v1(n), v2(n), . . . , vN (n)]T is a white noise vector, and

Ap are the parameters that define the time series:

Ap =







a11 . . . a1M
...

. . .
...

aM1 . . . aMM






. (2)

Here, aij reflects the linear relationship from channel j to

channel i, where i, j = 1, . . . ,M .

B. Frequency Domain Causality Measures

1) Granger Causality: The economist Sir Clive W. J.

Granger defined the concept of causality by exploiting the

temporal relationships between time series [27], [44]. In his

definition, the general idea of causality is expressed in terms of

predictability: If a signal X causes a signal Y , the knowledge

of the past of both X and Y should improve the prediction of

the presence of Y as opposed to the knowledge of the past of

Y alone.

Granger causality is based on assuming stationarity and

requires a good fit of the underlying AR model to the data at

hand. More recently, time-varying approaches using Granger

causality have been proposed, such as in [45], [46], by

incorporating TVAR models with time-dependent parameters

and time-dependent estimates of the variances of the predic-

tion errors. In addition to the time-variation, also nonlinear

approaches of Granger causality have recently been published

[38], [46]. A survey of Granger causality from a computational

viewpoint was published by Liu and Bahadori [47].

2) Generalized Partial Directed Coherence: Based on

Granger causality and MVAR models, several frequency do-

main based measures have been introduced to determine

the directional influence in multivariate systems. One of the

recently proposed methods is the PDC, introduced in the

context of analyzing neural data by Baccalá in [21]. It reveals

the information flow between isolated pairs of time series.

A re-examined and improved modification of the PDC was

proposed by Baccalá in [22]: the generalized partial directed

coherence. The gPDC aims at improving the performance

under scenarios that involve severely unbalanced predictive

modeling errors and it features hugely reduced variability

for short time series, which is required for bootstrap-based

connectivity testing approaches [22], [48], [49].

In the original definition of the gPDC, time-invariance and
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stationarity of the data are required. It is based on the MVAR

parameters comprised in (2), which have to be transformed

into the frequency domain by

Ā(f) = IM −
P
∑

p=1

Ape
−i2πfp, (3)

where i is the imaginary unit and f is the normalized frequency

in the interval [−0.5, 0.5]. The gPDC [22] is defined as

πij(f) =
1
σi

Āij(f)
√

∑M

m=1
1
σ2
i

Āmj(f)Ā∗

mj(f)
, (4)

where σi refers to the standard deviation of the innovations

processes vi(n) and * refers to complex conjugate.

III. ROBUST TIME-VARYING GENERALIZED PARTIAL

DIRECTED COHERENCE (RTV-GPDC)

This Section is dedicated to describing and analyzing our

proposed methodological approach to robustly assess the linear

and nonlinear causality between time series based on a new

method called the robust time-varying generalized partial

directed coherence (rTV-gPDC).

A. TVAR and TVMA Models for Nonlinearity Approximation

For non-stationary multivariate time series, an explicit

description of the variation is necessary due to the time-

dependent MVAR parameters Ap(n). This is realized by

extending (1) to the TVAR model

x(n) =

P
∑

p=1

Ap(n)x(n− p) + v(n), (5)

where v(n) is assumed to be a white noise process.

The TVAR model is based on linear equations; thus, it is

only able to describe linear relationships between time series.

However, most physiological systems are subject to more

complex and nonlinear forms [50].

For example, for cerebral hemodynamics, the Blood Oxygen

Level Dependent (BOLD) signal responses to stimulus tem-

porally in a nonlinear manner, and nonlinearity has also been

observed, when two identical stimuli induced close together

in time produce a net response with less than twice the

integrated response of a single stimulus alone [51]. It was

also reported that intracranial pressure (ICP), an important

indicator for secondary brain insult for traumatic brain injury

(TBI) patients, is associated with the cerebral blood volume

based on a nonlinear mechanism of auto-regulation [52].

If a dynamic process is not limited to linear interactions,

the residuals of the linear model will not be a white noise

sequence. If a specific nonlinear model is known for a given

application, e.g. from medical considerations, the best option

is to incorporate this information and to leverage upon this

specific knowledge. In many cases, however, specific knowl-

edge of the nonlinear function is not known, and thus a specific

nonlinear modeling approach is not possible.

For this reason, we adapt the approach of [42] and ap-

proximate the unknown nonlinear function by use of a family

of piece-wise linear functions. When v(n) is not white but

colored noise, Chowdhury suggests to approximate it by

v(n) ≈

Q
∑

q=1

Bq(n)r(n− q) + r(n). (6)

This approximation of the unknown nonlinear function is

obtained by extending the TVAR model in (5) by a stochastic

TVMA term (6) to

x(n) =

P
∑

p=1

Ap(n)x(n− p)+

Q
∑

q=1

Bq(n)r(n− q)+r(n) (7)

with n = 1, . . . , N and Q being the order of the MA part.

Here, Bq(n) is the time-varying M×M parameter matrix that

weights past values of r(n). If v(n) contains a structure which

could not be incorporated into the linear TVAR model, the

partly nonlinear relationship is approximated by the TVMA

term. Analogous to (2), we define the time-varying residual

parameter matrix Bq(n) as follows:

Bq(n) =







b11(n) . . . b1M (n)
...

. . .
...

bM1(n) . . . bMM (n)






. (8)

The time-varying residual parameter matrix Bq(n) and the

corresponding nonlinear extension of the TV-gPDC in (11)

are only greater than zero if the interactions of the signals are

nonlinear, as all linear interactions are captured by the TVAR

model and the corresponding linear TV-gPDC in (9).

B. Linear and Nonlinear Causality Analysis

A time-varying version of the gPDC can be obtained by

incorporating the TVAR model from (5) with the correspond-

ing time-dependent parameter matrix Ap(n). A time-varying

gPDC (TV-gPDC) is then defined as

πA
ij(n, f) =

1

σi(n)
Āij(n, f)

√

√

√

√

M
∑

m=1

1

σ2
i (n)

Āmj(n, f)Ā∗

mj(n, f)

. (9)

To further incorporate the nonlinear connectivity, the addi-

tional time-varying residual parameter matrix Bj(n) is trans-

formed analogously to the linear term by

B̄(n, f) =

Q
∑

q=1

Bq(n)e
−i2πfq. (10)

We thus propose the nonlinear extension of the TV-gPDC as

πB
ij(n, f) =

1

σi(n)
B̄ij(n, f)

√

√

√

√

M
∑

m=1

1

σ2
i (n)

B̄mj(n, f)B̄∗

mj(n, f)

(11)

by integrating B̄(n, f) from (11) into the definition of the

TV-gPDC.
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The separation between linear and nonlinear causalities

helps in displaying nonlinear interactions by use of approxima-

tion in situations where no specific nonlinear model exists and

in detecting moments when the causality becomes strongly or

almost purely nonlinear. However, while the MA part reflects

the presence of nonlinear causalities, it is likely quantified, if

only partly, also by the linear AR part of the model.

C. Robust Estimation of TVAR and TVMA Model Parameters

The estimation of the time-varying parameter matrices

Ap(n) and Bq(n) can be performed in different ways. One

way is to evaluate the signals within moving short-time

windows and to assume local stationarity. Another approach is

to estimate the time-varying parameters with adaptive filters,

such as the RLS algorithm [53], the LMS algorithm [28] or

the Kalman filter [23]. One advantage of the latter approach

is the absence of the local stationarity assumption.

Another advantage is the possibility to incorporate statisti-

cally robust estimators, e.g., the robustly filtered τ -, M - or S-

estimators [34], [41] into the the adaptive filter algorithms.

As biomedical signals are often contaminated by artifacts

or outlying values, it is advisable to estimate TVAR and

TVMA model parameters robustly. However, advanced robust

methods for dependent data are not always applicable because

of their high computational complexity [34], [41]. Therefore,

we introduce a computationally light and robust one-step

reweighting algorithm in this paper.

1) Transition to the State Space Model: Since the Kalman

filter estimates the state of a state space model, the TVAR and

TVMA models must be defined in the state space [54]. This

is achieved by using the following notation

a(n) = vec
(

[A1(n),A2(n) . . . ,AP (n)]
T
)

(12)

b(n) = vec
(

[B1(n),B2(n) . . . ,BQ(n)]
T
)

(13)

θ(n) =

[

a(n)
b(n)

]

, (14)

where a(n) is the PM2×1 AR parameter vector, b(n) is the

QM2× 1 MA parameter vector, and θ(n), as defined in (14),

is the unknown parameter vector of dimension (P+Q)M2×1.

The prediction error

r̂(n) = x(n)− x̂(n|n− 1) (15)

is defined by the residual of the estimation process from

previous time-steps, where x̂(n|n−1) is the a priori estimate

of x(n), given information up to the previous time step.

The TVAR and TVMA models can then be represented in

the state space by making the following definitions:

X̃(n) = [xT (n− 1),xT (n− 2), . . . ,xT (n− P )] (16)

R̃(n) = [r̂T (n− 1), r̂T (n− 2), . . . , r̂T (n−Q)] (17)

C(n) = IM ⊗ X̃T (n) (18)

D(n) = IM ⊗ R̃T (n) (19)

Φ(n) =

[

C(n)
D(n)

]

(20)

Here, X̃(n) contains the P previous measurements, R̃(n) rep-

resents the Q previous residuals defined in (15), ⊗ represents

the Kronecker product, and Φ(n) is the (P +Q)M2×M ma-

trix representing previous measurements C(n) and residuals

D(n).
When estimating the TVAR and TVMA model parameters,

the observation is given by x(n) and θ(n) is the unknown

parameter vector that is sought for. Thus, the system equation

of the Kalman filter is given by

θ(n) = θ(n− 1) +w(n), (21)

where θ(n) and θ(n−1) are the current and previous state, re-

spectively, and w(n) is the noise term with w(n) ∼ N (0,Q).
As it is not possible to measure the true state θ(n) itself,

but an observation x(n), the measurement equation is given

by

x(n) = ΦT (n)θ(n) + ξ(n), (22)

where the measurement noise ξ(n) is distributed as

N (0,R(n)), i.e. in this work, we assume that the covariance

of the measurement noise R(n) is time-varying.

2) The Kalman Filter Implementation: The Kalman filter

consists of a prediction and a correction step. The one-step

ahead prediction of the parameter vector θ̂(n|n − 1) and of

the state covariance matrix P̂(n|n− 1) are given by

θ̂(n|n− 1) = θ̂(n− 1) (23)

P̂(n|n− 1) = P̂(n− 1) + Q̂, (24)

where Q̂ is the estimate of the system noise covariance matrix,

defined as Q̂ = λIL. The state covariance matrix P̂(0|0) is

initialized with the PM2 × PM2 identity matrix.

The correction step is performed as follows:

G(n) = P̂(n|n− 1)Φ(n)
[

ΦT (n)P̂(n|n− 1)Φ(n) . . .

+R(n)
]

−1

(25)

θ̂(n) = θ̂(n|n− 1) +G(n)r̂(n) (26)

P̂(n) =
[

I(P+Q)M2 −G(n)ΦT (n)
]

P̂(n|n− 1). (27)

First, the (P +Q)M2 ×M -dimensional gain G(n) needs to

be computed. The measurement noise covariance matrix R(n)
is given by

R(n) = (1− λ)R(n− 1) + λr̂(n)r̂(n)T (28)

with R0 = IM and with r̂(n) being the prediction error that

is defined as

r̂(n) = x(n)− x̂(n|n− 1) (29)

x(n)−ΦT (n)θ̂(n|n− 1). (30)

λ is the update coefficient, which is a constant that has to be

set a priori. The higher the value of λ, the quicker the model

will adapt to changes, i.e. the more influence is given to the

current prediction error.

The second equation of the correction step (26) yields an a
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posteriori estimate of the model parameters θ̂(n) by weighting

the a priori error. The a posteriori state covariance matrix

P̂(n) is given by (27).

3) Proposed Robust Algorithm: In order to reduce the influ-

ence of outliers, we develop a one-step reweighting algorithm,

which we incorporate into the Kalman filter. In physiological

measurements, the major concern are additive outliers in the

observations that are caused by subject motion and constitute

an external non-Gaussian contamination process. As can be

deduced from the state space model, a single outlier can con-

taminate multiple prediction errors in the parameter estimation

algorithm of the standard Kalman filter. The procedure of

the proposed robust algorithm is shown in Fig. 1. For each

univariate time series and each time step n, the algorithm

proceeds as follows:

Let x̃m(n) be defined by

x̃m(n) = [xm(n−
L

2
), . . . , xm(n), . . . , xm(n+

L

2
)]. (31)

Then, we robustly estimate the mean of x̃m(n) by

µ̂rob,n(x̃m(n)) = median (x̃m(n)) , (32)

where L is an even integer. The normalized median absolute

deviation (MAD) is used to robustly estimate the standard

deviation of the univariate prediction error r̃m(n)

σ̂mad,n(r̃m(n)) = 1.4826·median (|r̃m(n)− median(r̃m(n))|)
(33)

with

r̃m(n) = [r̂m(n− L), . . . , r̂m(n)]. (34)

The constant in (33) provides consistency with respect to a

Gaussian distribution [34], [41]. Both the robust mean of the

time series and the robust standard deviation of the prediction

error are time-varying. Next, we determine a threshold

ci(n) = k · σ̂mad,n(r̃m(n)), (35)

where the tuning constant k depends on the chosen weighting

function and is set to k = 4.685 and k = 1.345 for

Huber’s weighting function and bisquare weighting function,

respectively [41].

Based on (35), if the current sample xm(n) does not exceed

the threshold ci(n) around the robust time-varying mean (32),

it is assumed to be noncorrupted, and it is passed to the

Kalman filter. If

|xm(n)− x̂m(n|n− 1)| > cm(n), (36)

the sample xm(n) is assumed to be corrupted. Therefore, a

weight

wxm(n)(n) = W (y(n)− µ̂rob,n(ỹ(n))) (37)

is calculated using either Huber’s or the bisquare type weight-

ing function.

After having determined w(n), the outlier-cleaned observa-

tion at time instant n is computed by

x∗(n) = w(n)x(n) + (1− w(n))x̂(n). (38)

It is then concatenated with the previous univariate samples

to form the outlier-cleaned current multivariate observation

x∗(n). With x∗(n), the Kalman filter can calculate a robusti-

fied prediction error

r̄(n) = x∗(n)−ΦT (n)θ̂(n|n− 1). (39)

It is important to note that also (16), (18), and (20) need

to be updated after each calculation of the cleaned time series

value x∗(n) if (36) is true. If (36) does not hold for any of the

samples, the proposed robust algorithm reduces to the classical

Kalman filter.

IV. METHOD VALIDATION

In this Section, a validation of the proposed algorithms is

presented. The first simulation evaluates the TVAR parameter

estimation by investigating its robustness against outliers and

its computational cost, whereas the second simulation is per-

formed to evaluate the proposed nonlinear causality measure.

A. Simulation Models

In the first simulation, we consider a second order 3-

dimensional MVAR process, which consists of two damped

stochastically driven oscillators x2 and x3 as well as of a

stochastically driven relaxator x1. This simulation has pre-

viously been used in [43] and [55] to evaluate time-varying

directed interactions in multivariate neural data, and was

chosen in order to be comparable with preceding approaches.

The model of the first simulation is given by

x1(n) = 0.59x1(n− 1)− 0.20x1(n− 2) + . . .

b(n)x2(n− 1) + c(n)x3(n− 1) + r1(n) (40)

x2(n) = 1.58x2(n− 1)− 0.96x2(n− 2) + r2(n) (41)

x3(n) = 0.60x3(n− 1)− 0.91x3(n− 2) + r3(n) (42)

with N = 5, 000 and time-varying parameters b(n) and c(n).
The parameter b(n) is a decaying oscillating function of n
and describes the influence of x2(n) on x1(n). The influence

of x3(n) on x1(n) is modeled by parameter c(n), which

is a triangular function between 0 and 1. The signal model

is driven by zero-mean unit variance Gaussian white noise

process ri(n).
In the second simulation, we consider a second order 3-

dimensional signal where the model contains nonlinear causal-

ity

x1(n) = 0.59x1(n− 1)− 0.20x1(n− 2) + . . .
√

|x3(n− 1)3|+ r1(n) (43)

x2(n) = 1.58x2(n− 1)− 0.96x2(n− 2) + r2(n) (44)

x3(n) = 0.60x3(n− 1)− 0.91x3(n− 2) + . . .

x2(n− 1) + r3(n). (45)

Again, the signals are driven by standard normal white

noise processes ri(n), i = 1, 2, 3. Here, x1(n) is nonlinearly

influenced by x3(n) and x3(n) is linearly influenced by x2(n).
The causality patterns are expected to express the relations

between x1(n) and x2(n) and x3(n), respectively.



0018-9294 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2017.2708609, IEEE
Transactions on Biomedical Engineering

6

Estimate signal parameters

µ̂rob,n(x̃i(n)) and σ̂mad,n(ǫ̃i(n))

Determine threshold

ci(n) = k · σ̂mad,n(ǫ̃i(n))
Is |xi(n)− x̂i(n|n− 1)| < ci(n)?

Update

x∗

i (n) = xi(n)

Determine weight

wxi
(n)

Update

x∗

i (n) = wxi
(n)xi(n) + (1− wxi

(n)) x̂i(n|n− 1)

xi(n)

yes

nox∗

i (n)

x∗

i (n)

Fig. 1. The procedure of the proposed robust algorithm

B. Setup of Simulation Evaluation

1) Parameter Estimation: In most of the publications on

causality analysis, only the resulting connectivity patterns are

evaluated in simulations. However, in this work, we first eval-

uate the TVAR parameter estimation in terms of its accuracy

w.r.t. the original parameters. For this purpose, we calculate

the mean square error (MSE) of the estimated parameter

coefficients âij(λ, n) given as

MSE(λ) =
1

NM2

N
∑

n=1

M
∑

i=1

M
∑

j=1

(

aij(λ, n)− âij(λ, n)
)2

(46)

as a function of the update coefficient λ to gain a comparable

quality criterion.

In order to compare the result to existing methods, the dual

extended Kalman filter (DEKF) from [43] has been evaluated

with the same simulation model and has also been iterated

with different values of the update coefficient.
2) Causality Analysis: To verify the correctness of the

causality coherence analysis, the causal coherence patterns of

the first simulation model are analyzed. As the first simulation

model is constructed such that only x1(n) is driven by x2(n)
and x3(n), only two connectivity patterns should have values

that differ from zero.
3) Robustness Against Outliers: A very important problem

in estimating the TVAR parameters is the sensitivity towards

artifacts or outliers in the data. Since biomedical signals are

frequently contaminated by artifacts or outliers [5], [28]–[35],

researchers often exclude contaminated measurements which

results in significant data loss.

To evaluate the results concerning robustness against out-

liers, we use a measure of robust statistics, i.e., the the maxi-

mum bias curve (MBC) [34]. The MBC reflects maximally

possible asymptotic bias induced by a specific amount of

contamination. The classical definition of the MBC [41] cannot

be straight forwardly applied to the TVARMA model, since

the non-stationarity of the data must be taken into account,

which yields

MBC(ν, θ(n)) = max
{

|b
θ̂(n)(F, θ(n))| : F ∈ Fν,θ(n), ∀n

}

(49)

where Fν,θ(n) = {(1 − ν)Fθ(n) + νG} is an ν-neighborhood

of distributions around the nominal distribution Fθ(n) with

G being an arbitrary contaminating distribution. In the non-

stationary setting, the MBC(ν, θ(n)) thus also captures tran-

sient instability of the filter due to changes in the data.

In practice, even for simple (stationary lower order) AR

models, the MBC cannot be computed analytically [41]. We

therefore approximate the MBC at every time-step n by a

Monte Carlo procedure analogous to [41], p. 305–306. The

empirical MBC which we obtain displays the worst-case

bias over all Monte Carlo runs and time instances. By

choosing a very large variance in the outlier generating

process and choosing the worst case over 1000 Monte Carlo

experiments, for all time-instances, the empirical MBC as

closely as possible retains the meaning of the definition given

in Equation (49).

The outlier model consists of additive independently and

randomly placed outliers over the course of the signal x(n),
where each outlier has a random sign and a value in the range

of i) ±(3, 10) × σ̂mad and ii) ±10 000 × σ̂mad. In model i),

outliers exhibit values in a very close sigma range to the

true data values, whereas model ii) simulates values heavily

deviating from the bulk of the data to analyze the worst case

performance. The outliers are only introduced to x1(n) in the

first simulation, x2(n) and x3(n) are kept clean.

4) Computational Time: Another property of interest is

the computational time of the parameter estimation as well

as of the causality measure calculation. For the parameter

estimation, the main critical factors are the determined AR

and MA model orders P and Q, respectively, and the number

of time series M . The number of parameters to be estimated

is (P +Q)M2.

Moreover, for the causality measure calculation, the fre-

quency resolution is an additional parameter, which needs

to be considered. The orders and signal dimension are not

only crucial for the parameter estimation but also for the

causality measure calculations. Extensive simulations have

been performed for various settings and results are shown
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Fig. 2. Averaged MSE of (a) the parameter matrix A(n) and of (b) the
time-varying parameter b(n) and c(n) as a function of the update coefficient
λ. Averaged MSE for b(n) and c(n) are calculated as given in (46). Optimal
values of λ are obtained for (a) λopt,KF = 1.5 · 10−5 and λopt,DEKF =
1.5 · 10−2 and for (b) λopt,KF = 8.3 · 10−5 and λopt,DEKF = 1.8 · 10−2.

depending on all of the above mentioned parameters.

5) Nonlinearity: For the nonlinearity validation, we con-

sider the second simulation model, which incorporates linear

and nonlinear causalities. x1(n) is nonlinearly influenced by

x3(n), and x2(n) linearly influences x3(n). The causality

patterns are expected to express the relations between x1(n)
and x2(n) and x3(n), respectively. The causality of x2(n)
on x3(n) is only expected to show up in the linear causality

patterns, whereas the nonlinear causality of x3(n) on x1(n)
can also result in some residual linear patterns.

For this setting, N = 5, 000 and 256 frequency bins are used

for a normalized frequency range [0, 0.5], and the proposed

robust Kalman filter is evaluated for λ = 1.8 · 10−8, P = 2
and Q = 4.

C. Simulation Results

1) Parameter Estimation: Fig. 2a shows the averaged MSE

of the parameter matrix A(n) using the proposed robust

Kalman filter (KF) and the DEKF [43], calculated as given

in (46). The averaged MSE of the estimators with respect to

the true time-varying parameters b(n) and c(n) is shown in

Fig. 2b, likewise for the proposed Kalman filter and the DEKF.

For the whole parameter matrix A(n), the optimal update

coefficient λ for the proposed robust Kalman filter algorithm

is empirically determined as λopt,KF = 1.5 · 10−5, whereas

the optimal update coefficient for the DEKF algorithm equals

λopt,DEKF = 1.5 · 10−2. As it can be observed, the proposed

algorithm obtains lower averaged MSE values at the optimal

update coefficient value compared to the DEKF algorithm.

Fig. 3 shows the estimation of the TVAR parameters b(n)
and c(n) for the optimal update coefficient value over time,

for the proposed Kalman filter as well as for the DEKF. The

accuracy is very similar, and the estimate of the proposed

robust Kalman filter is slightly closer to the true parameter

value.

2) Causality Analysis: The result of the causality analysis

for the first simulation model is shown in Fig. 4 and suc-

cessfully reflects the time-varying partial connectivity from

channel 2 to channel 1 and from channel 3 to channel 1. The

causality from channel i to channel j is indicated by a direc-

tional arrow, such as, xi → xj , i, j = 1, 2, 3. The frequency

resolution is set to ∆f = 1/128 on the normalized frequency
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Fig. 3. Parameter estimation of (a) parameter b(n) and (b) parameter c(n)
with the optimal update coefficient.
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Fig. 4. Time-varying generalized partial directed coherence of the first sim-
ulation model using the proposed robust Kalman filter. The y-axis represents
the normalized frequency and the x-axis represents time direction expressed
in data samples.

range from 0 to 0.5. To evaluate statistical significance, we

have applied the surrogate data method by [56] with 1,000

realizations and determined the 95 % significance level of

the empirical distribution under the null-hypothesis of non-

causality to be 0.06.

3) Robustness: The simulations regarding the robustness

of the estimators are again conducted for the proposed robust

Kalman filter as well as for the DEKF. Both algorithms are

evaluated using the first simulation model and outlier models

i) and ii). The simulations are performed using 1,000 Monte

Carlo experiments for each scenario. Both estimator’s bias

characteristics are depicted in Fig. 5. Figures 5a and 5b are

obtained using outlier model i) and Fig. 5c and 5d show the

results using outlier model ii).

For a contamination with outliers having a small variance,

as shown in Fig. 5a and Fig. 5b, both the proposed robust

Kalman filter and the DEKF achieve reasonable results and the

proposed method outperforms the DEKF both on average and

in the worst case. A huge performance gain is visible in Fig. 5c

compared to Fig. 5d, i.e., when the signal is contaminated by

large-valued outliers. In Fig. 5d, the DEKF immediately breaks

down after contaminating the signal with only 1 % of outliers.

The proposed robust Kalman filter has a limited bias even up

to 30 percent of gross outlier contamination.

4) Computational Time: Average computation times are

obtained by using the first simulation model, varying model



0018-9294 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2017.2708609, IEEE
Transactions on Biomedical Engineering

8

Fraction of Contamination

0 0.1 0.2 0.3

E
s
ti
m

a
to

r 
B

ia
s

0

1

2

3

4

5
maximum

95th-quantile

average

median

5th-quantile

(a)

Fraction of Contamination

0 0.1 0.2 0.3

E
s
ti
m

a
to

r 
B

ia
s

0

1

2

3

4

5
maximum

95th-quantile

average

median

5th-quantile

(b)

Fraction of Contamination

0 0.1 0.2 0.3

E
s
ti
m

a
to

r 
B

ia
s

0

20

40

60

80

100
maximum

95th-quantile

average

median

5th-quantile

(c)

Fraction of Contamination

0 0.1 0.2 0.3

E
s
ti
m

a
to

r 
B

ia
s

0

1000

2000

3000
maximum

95th-quantile

average

median

5th-quantile

(d)

Fig. 5. Estimator bias curves showing the maximum, average, and median
bias as well as its 95th- and 5th-quantile for (a) the proposed robust Kalman
filter with outlier model i), (b) the proposed robust Kalman filter with outlier
model ii), (c) the dual extended Kalman filter with outlier model i), and (d)
the dual extended Kalman filter with outlier model ii).

orders P = 1 : 10, 15, 20 and Q = 0, 1, 5, 10, and multivariate

signals with a maximum of 10 dimensions. All results are

averaged over 100 Monte Carlo runs. The computational

time of the parameter estimation using the proposed robust

Kalman filter is compared with the one of the DEKF. All the

computational time estimations have been performed using a

MATLAB R2012a environment on a PC equipped with Intel

Core i5-760 processor (2.80 GHz) and 8 GB RAM.

Fig. 6 shows the computational times for the proposed

Kalman filter as well as for the DEKF. It can be seen that

the DEKF is only faster for very low orders up to P = 4, but

the computational time grows faster with increasing order. At

an order of 20, for example, the proposed algorithm is almost

8 times faster than the DEKF approach, if the MA order is

set to zero. But even with an MA order Q = 5, the proposed

algorithm is still more than 4 times faster compared to the

DEKF approach.

In Fig. 7, the computational times depending on the signal

dimensions are depicted. Fig. 7a shows the times for fixed

AR model order P = 5 for the proposed robust Kalman filter

with MA model order Q = 0 and Q = 5 as well as, for

comparison, the times for the DEKF. The AR model order is

fixed to P = 20 in Fig. 7a.

According to Figs. 6 and 7, these plots reveal the superiority

of the proposed method in terms of computational cost in the

case of higher signal dimensions. After having estimated the

required model parameters, the rTV-gPDC calculation is per-

formed. The computational times of the rTV-gPDC calculation

mainly depend on the frequency resolution and on the size of

the estimated parameter matrices. The simulations are based on

a fixed sample length N = 1, 000 and the frequency resolution

as well as the estimated parameters are varied.

The results are illustrated in Fig. 8. Both the model orders P

AR Order

0 10 20

T
im

e
 (

s
)

0

50

100

150

200
DEKF

Robust KF with q = 10

Robust KF with q = 5

Robust KF with q = 1

Robust KF with q = 0

Fig. 6. Computational times of the parameter estimation depending on the
AR model order P and the order Q of the MA term using the proposed
robust Kalman filter algorithm and the DEKF algorithm. The simulations are
evaluated with random TVAR and TVMA model parameter values, M = 2
dimensions and N = 5, 000 samples.
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Fig. 8. Computational time of the analysis depending on (a) the signal
dimension M , (b) the AR model order P , (c) the frequency resolution with
signal dimension M = 2, and (d) the frequency resolution with signal
dimension M = 5. The simulations are evaluated with random model
parameter values and N = 1, 000 samples.

and Q, varied in Fig. 8b, and the frequency resolution, shown

in Fig. 8c and Fig. 8d, approximately linearly depend on the

computation time, whereas in Fig. 8a the computational time

grows faster for higher signal dimensions M . This is due to

the quadratic impact of M to the parameter order (P+Q)M2.
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Fig. 9. Linear time-varying generalized partial directed coherence of the
second simulation model using the proposed robust Kalman filter. The y-axes
represent the normalized frequency and the x-axes represent time direction
expressed in data samples.

x
2

  x
1

1000 3000 5000

Time (sample)

0

0.2

0.4

 N
o
rm

a
liz

e
d
 F

re
q
u
e
n
c
y x

3
  x

1

1000 3000 5000

Time (sample)

0

0.2

0.4

 N
o
rm

a
liz

e
d
 F

re
q
u
e
n
c
y

x
1

  x
2

1000 3000 5000

Time (sample)

0

0.2

0.4

 N
o
rm

a
liz

e
d
 F

re
q
u
e
n
c
y x

3
  x

2

1000 3000 5000

Time (sample)

0

0.2

0.4

 N
o
rm

a
liz

e
d
 F

re
q
u
e
n
c
y

x
1

  x
3

1000 3000 5000

Time (sample)

0

0.2

0.4

 N
o
rm

a
liz

e
d
 F

re
q
u
e
n
c
y x

2
  x

3

1000 3000 5000

Time (sample)

0

0.2

0.4

 N
o
rm

a
liz

e
d
 F

re
q
u
e
n
c
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 10. Nonlinear time-varying generalized partial directed coherence of the
second simulation model using the proposed robust Kalman filter. The y-axes
represent the normalized frequency and the x-axes represent time direction
expressed in data samples.

5) Nonlinearity: The causal patterns of the causality anal-

ysis are shown in Fig. 9 and Fig. 10 for the linear and

nonlinear causality, respectively. As expected, the linear rTV-

gPDC shows influence in the case of nonlinear causality from

x3(n) to x1(n), and in case of linear causality from x2(n)
to x3(n), whereas its nonlinear extension only recognizes the

nonlinear relation between x3(n) to x1(n) and the indirect

nonlinear influence of x2(n) to x1(n) over x3(n).

V. APPLICATION TO BIOMEDICAL TIME SERIES OF

TRAUMATIC BRAIN INJURY PATIENTS

This Section describes the application of the proposed

method to a multivariate biological time series of traumatic

brain injury (TBI) patients.

For TBI patients, continuous monitoring of physiological

signals, such as ICP, mean arterial blood pressure (MAP)

or brain tissue oxygen level (PtiO2), has become a golden

standard in neuro-intensive care units (ICU). As the primary

insult, the initial mechanical damage, cannot be therapeutically

reversed, the main target for TBI patient management is

to limit or to prevent secondary insults through continuous

physiological signal monitoring.

Cerebrovascular autoregulation is one of the important

mechanisms to sustain adequate cerebral blood flow [57], and

impairment of this mechanism indicates an increased risk to

secondary brain damage and mortality [58]. Cerebrovascu-

lar autoregulation is most commonly assessed based on the

pressure-reactivity index (PRx), which is defined as a sliding

window linear correlation between the ICP and ABP. [59].

However, as reported in [52], [60], the cerebrovascular au-

toregulation is governed by a nonlinear mechanism. Thus,

capturing the nonlinear association between ICP and MAP

can offer a more complete understanding of the autoregulation

process.

However, since the ICP, MAP and PtiO2 signals were

collected in actual ICU environments and the sensors are

sensitive to patient movements and bed angles, they are often

contaminated by noise and artifacts [61], [62], see e.g. Fig. 12.

The medical data have been recorded at the Neuro-ICU of

the National Neuroscience Institute, Singapore. 10 patients

were considered for the analysis. From a total number of

twelve different measured signals, three signals have been

extracted for further analysis: ICP, MAP, and brain tissue

oxygenation level (PtiO2). The pressures as well as the PtiO2

are measured in mmHG. The sampling frequency of all data

is fs = 0.1 Hz and no additional denoising or preprocessing

has been performed except for subtracting the mean. None of

the patients demongraphic nor personal information were used

in this study. The proposed robust Kalman filter is applied to

quantify the linear and nonlinear information transfer among

ICP, MAP and PtiO2 for TBI patients.

The choice of the optimal model parameters for real signals

is not straightforward as in the case of simulated data. Since

we do not know the true underlying TVAR and TVMA model

orders, we resort to model order selection [63]. In our case,

we use an Akaike type criterion, whose minimum provides a

model fit that trades off model error and complexity. As we

deal with multivariate signals and need to optimize parameters

of a time-varying system, only an average optimal choice can

be found. The criterion is given by

AIC(P,Q, λ) = log(det(σ̂2
r̄
(λ))) +

2(P +Q)M2

N
, (47)

where σ̂
2
r̄

is an estimate of the covariance matrix of the revised

prediction error r̄(n).

The optimal model orders and optimal update coefficient

were estimated using (47). All available physiological signals

have been used for the model order selection. As it is based

on the covariance matrix of the revised prediction error r̄(n),
the criterion is robust against artifacts and there was no need

to exclude certain parts of the signals. As an outcome, the
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Fig. 11. Model order selection based on Akaike criterion (47) and evaluated
for (a) the AR and MA model orders P and Q, and (b) for the update
coefficient λ. The optimal AR model order is determined to be Popt = 35
and the optimal MA model order is found to be Qopt = 2, where the
Akaike criterion takes its minimum value. The optimal coefficient value is
λopt = 0.04.
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Fig. 12. An example of the robust signal estimates and the measured signals
for (a) ICP and (b) MAP. Both measured signals exhibit multiple artifacts,
of which the sharp spikes are commonly caused by movements of patients or
sensors.

following parameters were chosen: Popt = 35, Qopt = 2 and

λopt = 0.04, see Fig. 11a and Fig. 11b.

A. Robustness Against Artifacts

Fig. 12 illustrates that ICP and MAP signals, given as

measured signals x1(n) and x2(n) respectively, can often be

contaminated with artifacts and outliers. Thus, the nonrobust

estimation of TVAR and TVMA model parameters result in

errors, whereas the use of robust signal estimates, x∗

1(n) and

x∗

2(n), yield robust estimates of the parameters. Moreover,

the artifacts in the measured signals also cause errors in the

estimation of causality. To investigate the impact of artifacts

on causality estimation and to evaluate the effectiveness of the

proposed robust estimation method, a numerical experiment

was conducted.

As shown in Fig. 13, artificial artifacts (sharp spikes high-

lighted in red) were added on a 15 minutes interval to a

4 hour segment of clean (a) ICP and (b) MAP signals.

These introduced artifacts heavily distort the non-robustly

estimated rTV-gPDC spectrum in Fig. 13c. Nevertheless, as

demonstrated in Fig. 13d, the proposed robust method is

able to smoothly estimate and reconstruct the patterns in the

rTV-gPDC spectrum despite the presence of artifacts. This

experiment justifies both the need and effectiveness of the

proposed robust method for causality estimation.

B. Causality and Patient Outcome

Experiments were conducted to compare the robust time-

varying generalized partial directed coherence (rTV-gPDC)
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Fig. 13. A simulation experiment to investigate the impact of artifacts
on causality estimations and to evaluate the effectiveness of the proposed
robust estimation method. In the experiment, we examined a 4 hours segment
of (a) an ICP and (b) a MAP signal, where x1(n) and x2(n) are the
measured signals, i.e. clean signals, on which artificial artifacts (sharp spikes)
were added on a 15 minutes interval, and x∗

1(n) and x∗

2(n) are the robust
signal estimates; (c) illustrates how introduced artifacts distort and destroy
the patterns in the non-robustly estimated TV-gPDC spectrum; and (d) then
demonstrates how the proposed method is robust against artifacts and able to
reveal the causality patterns in the rTV-gPDC spectrum.

spectra of patients with good and poor outcome. Pairwise

causality among ICP, MAP and PtiO2 patients were inves-

tigated. Outcomes of the patients were measured with the

Glasgow Outcome Scale (GOS). Figures 14 and 15 showcase

the rTV-gPDC spectra of patient A and B, who did not

survive, and Fig. 16 shows the rTV-gPDC spectra of patient

C, who achieved good recovery outcome. We observed that:

for patients A and B, there was high connectivity between

ICP → PtiO2 and MAP → PtiO2 in the frequency regions

around 0.01 Hz; however, this connectivity does not exist

in patient C. We suspect that strong causality observed in

patient A and B may suggest ineffective autoregulations, which

eventually lead to poor outcomes. Moreover, the detected

oscillations around 0.01 Hz may also indicate the presence

of a B-wave (around 0.5-2 cycle/minute [64]), which were

found to indicate the failing intracranial compensation [65].

C. Linear and Nonlinear Causality

In current practices, cerebrovascular autoregulation is com-

monly assessed based on the pressure-reactivity index (PRx),

which is defined as a sliding window linear correlation be-

tween the ICP and MAP signals. Our proposed method has the

advantage that it enables the simultaneous monitoring of the

linear and nonlinear causality between ICP and MAP. Fig. 17

shows two examples that compare the linear and nonlinear

causality MAP → ICP. We observed that, over certain regions

(e.g. second half of Fig. 17a and first half of Fig. 17b),

the estimated linear and nonlinear causality align closely. At

the same time, there are regions (first half of Fig. 17a and

second half of Fig. 17b), where almost no linear causality
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Fig. 14. Linear time-varying generalized partial directed coherence of ICP,
MAP, and PtiO2 of patient A
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Fig. 15. Linear time-varying generalized partial directed coherence of ICP,
MAP, and PtiO2 of patient B

Time (h)

F
re

q
u
e
n
c
y
 (

H
z
)

MAP → ICP

0 20 40
0

0.02

0.04

Time (h)

F
re

q
u
e
n
c
y
 (

H
z
)

PtiO2 → ICP

0 20 40
0

0.02

0.04

Time (h)

F
re

q
u
e
n
c
y
 (

H
z
)

ICP → MAP

0 20 40
0

0.02

0.04

Time (h)

F
re

q
u
e
n
c
y
 (

H
z
)

PtiO2 → MAP

0 20 40
0

0.02

0.04

Time (h)

F
re

q
u
e
n
c
y
 (

H
z
)

ICP → PtiO2

0 20 40
0

0.02

0.04

Time (h)

F
re

q
u
e
n
c
y
 (

H
z
)

MAP → PtiO2

0 20 40
0

0.02

0.04

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 16. Linear time-varying generalized partial directed coherence of ICP,
MAP, and PtiO2 of patient C
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Fig. 17. Two exemplary excerpts to compare the linear and nonlinear rTV-
gPDC at a fixed frequency (f = 0.0075 Hz) from MAP → ICP.

existed but a significant nonlinear causality was observed.

This suggests that there are nonlinear correlations between

neurophysiological signals that will not be captured by any

linear causality measure. Therefore, it may be worthwhile to

further investigate how estimation of nonlinear causality may

help to better measure cerebrovascular autoregulation.

VI. DISCUSSION

This Section provides a brief discussion on a selection of

parameters of the Kalman filter, as well as a description of the

findings and limitations of the presented TBI study.

A. Discussion of the Method

The update coefficient λ plays a role in how fast the Kalman

filter algorithm adapts to statistical changes of the signal, as it

controls the memory of the adaptive algorithm. By increasing

λ, the filter will adapt quicker to the signal and the general

accuracy of the estimated signal is increased. On the other

hand a small value of λ can increase robustness against long

bursts of outliers.

Thus, the determination of λ is a trade-off between

adaptation speed and robustness.

Another parameter to adjust the robustness of the Kalman

filter is the length of the signal window L to estimate a robust

mean in (32) and (31) and to estimate a robust standard

deviation in (33) and (34). As longer windows incorporate

more samples, the estimate improves for stationary (or

very slowly varying) signals. For highly non-stationary

signals, this parameter should not be too large, so that it

captures the quickly varying temporary characteristics. In

this work, the window length is chosen to be L = max(P, 50).

B. Findings and Limitations of the TBI Case Study

We observed that the proposed method is robust against ar-

tifacts and outliers in the TBI data and is capable to correct the

influence from artifacts and reconstruct patterns in the causal-

ity spectrum. We also demonstrated that the proposed method

can simultaneously capture linear and nonlinear causality

between neurophysiological time series signals, which may

offer additional information to allow better understanding

of patients’ cerebrovascular autoregulation status. Moreover,

significant patterns were observed in the causality spectrum
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that may act as new biomarkers to differentiate patients with

good and poor outcomes.

A limitation of the case study is its small cohort size.

Therefore, we did not aim to conclude any clinical findings

through the study. The case study aimed at demonstrating the

capabilities and limitations of the proposed method as a new

and effective tool to explore causality spaces that were not

studied before. Some interesting observations were discovered,

which can inspire more comprehensive and systematic clinical

studies for further investigations.

The Matlab implementation of the code for estimating the

linear and nonlinear TV-gPDC functions can be requested from

the first author.

VII. CONCLUSION

A new robust time-varying generalized partial directed

coherence (rTV-gPDC) measure was proposed. Robustness

against artifacts was incorporated via a computationally simple

one-step reweighting step in a Kalman filter. The proposed

method reveals nonlinear relations between multivariate time

series by combination of a term that captures linear interac-

tions and a second term that approximates the components that

cannot be captured using a linear model. We evaluated our

method numerically both in terms of accuracy and robustness

and compared it to an existing method. We applied our

method to real life multivariate time series from traumatic

brain injuries patients to showcase its potential clinical appli-

cations. Since restrictive assumptions on the stationarity of the

signals and the linearity of their relationship were relaxed, and

robustness against artifacts incorporated via a computationally

simple manner, the rTV-gPDC is potentially a good candidate

to analyze a broad range of signals.
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[2] L. A. Baccalá et al., “Studying the interaction between brain structures
via directed coherence and Granger causality,” Appl. Signal Process.,
vol. 5, no. 1, pp. 40–48, 1998.

[3] J. R. Sato et al., “Frequency domain connectivity identification: An
application of partial directed coherence in fMRI,” Hum. Brain Mapp.,
vol. 30, no. 2, pp. 452–461, 2009.

[4] Z. G. Zhang et al., “Local polynomial modeling of time-varying autore-
gressive models with application to time-frequency analysis of event-
related EEG,” IEEE Trans. Biomed. Eng., vol. 58, no. 3, pp. 557–566,
March 2011.

[5] G. Varotto et al., “Enhanced frontocentral EEG connectivity in pho-
tosensitive generalized epilepsies: A partial directed coherence study,”
Epilepsia, vol. 53, no. 2, pp. 359–367, 2012.

[6] M. Orini et al., “Assessment of the dynamic interactions between heart
rate and arterial pressure by the cross time-frequency analysis,” Physiol.

Meas., vol. 33, no. 3, pp. 315–331, 2012.
[7] ——, “A multivariate time-frequency method to characterize the influ-

ence of respiration over heart period and arterial pressure,” EURASIP J.

Adv. Signal Process., vol. 2012, no. 1, pp. 1–17, 2012.
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