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1. Introduction

Brain–computer interface (BCI) systems translate the user’s 
intention coded by brain activity measures into a control signal 
bypassing the normal communication pathway of muscles 

and peripheral nerves. These control signals can potentially 
be employed to substitute motor capabilities (e.g. brain- 
controlled prosthetics for amputees or patients with spinal cord 
injuries, brain-controlled wheelchair) or to help in the restora-
tion of such functions (e.g. as a tool for stroke rehabilitation), 
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Abstract
Objective. In electroencephalography (EEG)-based brain–computer interface (BCI) systems 
for motor control tasks the conventional practice is to decode motor intentions by using scalp 
EEG. However, scalp EEG only reveals certain limited information about the complex tasks 
of movement with a higher degree of freedom. Therefore, our objective is to investigate the 
effectiveness of source-space EEG in extracting relevant features that discriminate arm movement 
in multiple directions. Approach. We have proposed a novel feature extraction algorithm based on 
supervised factor analysis that models the data from source-space EEG. To this end, we computed 
the features from the source dipoles confined to Brodmann areas of interest (BA4a, BA4p and 
BA6). Further, we embedded class-wise labels of multi-direction (multi-class) source-space EEG 
to an unsupervised factor analysis to make it into a supervised learning method. Main Results. Our 
approach provided an average decoding accuracy of 71% for the classification of hand movement 
in four orthogonal directions, that is significantly higher (>10%) than the classification accuracy 
obtained using state-of-the-art spatial pattern features in sensor space. Also, the group analysis 
on the spectral characteristics of source-space EEG indicates that the slow cortical potentials 
from a set of cortical source dipoles reveal discriminative information regarding the movement 
parameter, direction. Significance. This study presents evidence that low-frequency components 
in the source space play an important role in movement kinematics, and thus it may lead to new 
strategies for BCI-based neurorehabilitation.

Keywords: brain–computer interface, EEG source imaging, source localization, supervised 
factor analysis, multi class classification, multi direction hand movement
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etc. Electroencephalography (EEG) has become an attractive 
modality for acquisition of brain signals for BCI due to its 
high temporal resolution, cost-effectiveness and portability. 
However, the macroscopic observation of brain signals pro-
vided by scalp EEG does not give a sufficiently accurate esti-
mate of neural activity for many applications due to the volume 
conduction effect [1]. Therefore, it is challenging to interpret 
the neurophysiological phenomenon behind complex tasks just 
by observing scalp topographies generated from EEG [2–4], 
thus necessitating the use of cortical source-space analysis.

Electrophysiological imaging of the human brain is pre-
sented in [5] where various methods are reviewed. In the 
absence of functional magnetic resonance imaging (fMRI), 
neuroimaging can be done using inverse modeling of scalp 
EEG. Recent advances in high-density EEG recording and 3D 
source reconstruction algorithms resulted in increasingly reli-
able EEG source localization methods that make EEG an alter-
native low-cost neuroimaging tool [6]. In the past decade, the 
number of publications focusing on EEG source localization has 
surged [7–13]. There are also studies focusing on EEG source 
localization to classify motor imagery tasks [14, 15]. However, 
decoding parameters related to fine arm movement, such as 
type, direction and speed, has not been investigated exten-
sively in source space. In contrast, there are sensor-space-based  
studies reporting the decoding of parameters such as type [16–19],  
speed [16, 20, 21], direction [22, 23] and force [24]. For an 
extensive review of non-invasive decoding of arm movement 
kinematics using sensor-space EEG, one can refer to [25].

As the extraction of high-dimensional cortical source fea-
tures in real time is a computationally intensive task, dimension 
reduction techniques need to be applied when computing the 
features in cortical source space. Therefore, defining an anatom-
ical region of interest (ROI) makes it easier to analyze different 
functional clusters by reducing the number of voxels to be pro-
cessed. In the case of motor task analysis, it is a well-established 
fact that the primary motor cortex is involved in motor functions. 
There are other fMRI-based studies that report that the neuronal 
clusters in the primary motor cortex (also known as M1) are 
directionally tuned and are spatially segregated along the cor-
tical surface [26, 27]. Task priors from the relevant ROIs have 
been found to result in improved classification accuracy [28].

Even though source localization and the anatomical ROI can 
help us appreciate the underlying neural activity of a given task, 
they are not sufficient a priori for data modeling. As there are 
several unknown (or rather, unobservable) cortical sources that 
contribute towards a given task to varying degrees, it is very diffi-
cult to model any neural observation solely based on the observ-
able recordings irrespective of the data acquisition modality 
[29]. Since the scalp EEG is observable as a two-dimensional 
signal (electrodes  ×  time samples) in the continuous raw data, 
we can refer to these observable recordings as ‘manifest vari-
ables’. As the actual cortical sources are not observable directly 
from the scalp EEG, we refer to these cortical sources as ‘latent 
variables’. There is a need to contemplate the behavior of under-
lying neurophysiological phenomena of multidirectional hand 
movement in terms of manifest variables and latent variables 
corresponding to scalp electrodes and cortical sources, respec-
tively. Factor analysis [30] is one such algorithm that extracts the 

information embedded in the latent space. Santhanam et al has 
used a traditional factor analysis-based approach for neural pros-
thesis [29]. In that study, conducted on monkeys, they tried to 
explain the variability of the neural population when reach-out 
movement tasks are performed. The variability shown by a set 
of neurons is categorized into ‘shared’ and ‘independent’ vari-
ability. Shared variability is the variability that is common to dif-
ferent neurons for a given task, whereas independent variability 
corresponds to the unique neural response shown by a neuron. 
However, the factor analysis method presented in [29] cannot 
leverage the class labels as it is unsupervised. Therefore, we pro-
pose a supervised approach to learning the factor representation 
across classes by leveraging the spatial information of source 
dipoles. Our hypothesis is based on the concept of a motor 
homunculus which highlights that the cortical sources involved 
in complex movement tasks are located close together [31].

Further, the spectral characteristics of movement-related tasks 
are not conclusive, as there have been studies that report different 
frequency bands of interest ranging from delta (or slow cortical 
potentials  <4 Hz) [32] up to high gamma (>60 Hz) [33, 34].  
One should be cautious while analyzing time–frequency maps 
due to power-law dynamics (spectral power decreases with 
increasing frequencies). Some of the other related studies 
involving spectral characteristics of EEG cortical space fea-
tures can be found in [35]. Thus, there is a need to analyze 
the role of different frequency bands in a multi-directional  
hand movement task without a lot of prior assumptions.

Our objectives in the current work are as follows. The pri-
mary goal of this work is to investigate the effectiveness of 
the source-space EEG in extracting useful features to discrimi-
nate arm movement directions. Further, instead of relying on 
traditional feature extraction methods, we propose a novel 
supervised factor analytic approach which, we believe, helps 
in better data interpretation. Also, we put forward our approach 
to help visualize the cortical source features that are more rele-
vant to a given movement direction stimulus. To the best of our 
knowledge, there are very few studies that use cortical source-
space information to extract discriminative features to decode 
the direction of arm movement from EEG. Therefore, we bring 
in our main contribution towards discriminating features by 
modifying classical unsupervised factor analysis to a super-
vised approach by embedding class-wise label information.

The remainder of this paper is organized as follows: sec-
tion 2 presents the participants, data acquisition, experimental 
setup and preprocessing; section  3 explains our proposed 
methodology highlighting the EEG source imaging and our 
novel feature extraction technique. Section  4 presents the 
results, followed by a discussion in section 5. Section 6 con-
cludes the paper.

2. Materials

2.1. Participants

Seven healthy right-handed participants (all male, age range 
25–36 years, mean ±31 4.4 (SD)) took part in this experi-
ment. All participants gave written informed consent before 
participation. The experimental protocol was approved by 
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the local Institutional Review Board of the Neural Signal 
Processing Laboratory at the Institute for Infocomm Research 
(I2R), Singapore.

2.2. Data acquisition

EEG was continuously recorded from 118 electrodes out 
of a 128-channel Quickcap placed on each subject’s head, 
according to the extended International 10–20 system. A 
Neuroscan SynAmps2 amplifier was used to record the EEG 
data during the experiment conducted at the Brain–Computer 
Interface Laboratory at the Institute for Infocomm Research, 
Singapore. Continuous EEG data were sampled at 250 Hz, 
followed by band-pass filtering between 0.5 Hz and 100 Hz. 
Subsequent data analysis was performed offline using custom-
written MATLAB® code.

2.3. Experimental setup

Our experimental setup involved center-out right-hand move-
ment in four directions (north, south, east and west) using 
the MIT-MANUS robotic arm [36] as indicated in figure 1. 
‘North’ indicates the movement of the subject’s hand outward 
and away from the body, ‘south’ indicates the subject’s hand 
movement inward and toward the body. Similarly, ‘west’ and 
‘east’ correspond to movement towards the left and right, 
respectively. In this experiment, subjects were seated in front of 
a monitor, and they were instructed to hold the MIT-MANUS 
robot arm with their right hand while their left hand rested 
on the table. The display monitor was placed at a comfort-
able viewing distance of about 60 cm in front of the subject. 
The cursor was shown in the form of a plus sign. The target 
was a circle of 1 cm radius displayed on the screen, initially 
positioned at the center. Every trial began with a rest period of 

4 s, and then visual cues were shown on the screen as a cursor 
and a target circle. Based on a randomized stimulus, the target 
circle shifted from the center of the screen to another position 
on the screen corresponding to the direction cue, allowing the 
subject to plan his hand movement in the direction instructed. 
The target circle remained at its new position for 2 s, after 
which the home circle disappeared, thus signaling the sub-
ject to move his hand. The center-to-target distance was about 
15 cm. Subjects performed a task of center-out movement by 
moving the robot arm to match a cursor with a target circle 
shown on the screen during one of the four conditions. The 
robot recorded different kinematic parameters such as posi-
tion, velocity and force applied. Subjects were instructed to 
finish their movement from center-to-target (distance 15 cm) 
within 0.5 s to avoid confusion regarding the duration of the 
reach. Moreover, the movement accuracy was not very critical 
as the task required only coarse movement to the target direc-
tion. None of the trials were rejected based on the movement 
trajectory information. The position of the target circle was 
continuously presented throughout the experiment. Electro-
oculography (EOG) was also recorded to monitor eye move-
ment. A total of 40 trials for each direction were recorded for 
each subject, thus resulting in 160 trials in four directions.

2.4. Preprocessing

EEG results recorded from all 118 channels were used for 
the analysis. Since our objective is to use the cortical time-
series information for better feature extraction, we used a 
dense EEG headset as suggested in [12]. Trial segmenta-
tion is based on randomized trial codes corresponding to the 
hand movement in ‘east,’ ‘west,’ ‘north’ and ‘south’ direc-
tions, analogous to ‘right’, ‘left’, ‘forward’ and ‘backward’ 
directions, respectively. Continuous EEG was segmented 

Figure 1. Experimental setup and task timeline. (a) Direction cues for 2D center-out movements are shown with the dark filled circle  
at the center referred to as the initial ‘Home’, and the target circle (blank circle on the circumference) indicating the final position.  
(b) Experimental setup including the reaching apparatus—a MIT MANUS robot. (c) Task timeline for the direction cue ‘NORTH’. The 
EEG recorded during the ‘Analysis Timeline’ has been used for further processing.
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into uniform epochs of 2 s each, with a baseline of 1 s (−1 
to 0 s) and movement for 1 s (0–1 s), thus covering move-
ment prep aration and execution. It is to be noted that the 
subjects were instructed to finish their movement within 
0.5 s, therefore the EEG corresponding to 0.5–1 s gives us 
the post-movement information. Raw EEG data from all 
118 channels were band-pass filtered between 0.5 and 100 
Hz using a 14th-order Chebyshev Type-2 filter. Artifact cor-
rection was done using independent component analysis 
(ICA) with the help of EEGLAB toolbox [37]. ICA was 
implemented using an extended infomax algorithm applied 
to all 118 EEG channels across 160 concatenated trials 
corre sponding to four different classes, where each trial 
epoch was of duration 2 s. Artifact removal involves visual 
inspection of every independent comp onent (IC), which 
is a tedious process. The ADJUST (automatic detector–
joint use of spatial and temporal features) plug-in exten-
sion to the EEGLAB toolbox was used [38] to avoid the 
time-consuming process of manual inspection of all ICs. 
ADJUST is an automated artifact detection algorithm that 
uses various statistical measures such as spatial average 
difference (SAD) score, maximum epoch variance (MEV) 
and temporal kurtosis (TK) to identify eye-related artifacts 
such as eye blinks, horizontal and vertical eye movements, 
and other generic discontinuities. Independent components 
that were identified as artifacts by the ADJUST plugin were 
then removed, followed by interpolation of removed comp-
onents. EOG artifacts were also removed by finding the arti-
fact comp onents that are highly correlated with the recorded 
EOG. The rest of the data were then back-projected into 
the sensor space. Subsequently, the local surface Laplacian 
filter was applied to the data as it is found to be robust in 
separating out muscle artifacts [39].

3. Methods

3.1. EEG source imaging

EEG source localization requires transforming the sensor 
domain into the source domain, even though the number of 
cortical sources vastly outnumber the number of scalp elec-
trodes. This ill-posed problem has to be solved using several 
constraints and a priori information about the cortical region 
of interest. To convert EEG data from the sensor domain to 
the source domain we require a forward head model and a 
subsequent inverse solution. A simple analysis pipeline of our 
proposed method is illustrated in figure 2.

3.1.1. Forward modeling. Forward modeling is a critical stage 
in source imaging as it affects the accuracy of EEG source 
localization results substantially. The forward model is the 
subject’s head model that can determine the scalp measure-
ments, provided the locations of cortical sources are known. 
Various physical properties such as geometrical shape, con-
ductivity values of different layers of the brain and also the 
number of voxels (3D volumetric pixels) are considered in the 
forward model. To achieve good source localization acc uracy, 
we consider local anisotropies in different layers of the brain 
with the following conductivity values: 0.018 S m−1, 0.44 S 
m−1 and 0.25 S m−1 for the skull, scalp and cortex, respectively 
[12]. A template anatomy of the International Consortium for 
Brain Mapping (ICBM-152) co-registered in MNI (Montreal 
Neurological Institute) space is used for the forward model 
[40]. After that, the template head model is warped to fit the 
template MNI anatomy of a subject using the Neuroscan tem-
plate 3D digitized locations of all 118 channels used in the 
study. It is suggested that when a subject’s MRI is not avail-
able, EEG source localization should include a multilayer 

Figure 2. Procedural block diagram describing the proposed source-space feature extraction. Raw EEG data extracted from 118 electrodes 
are preprocessed as shown, followed by source-space feature extraction. An expanded view of source-space feature extraction (sub-block) 
is shown in the right half of the figure. The schematic shows inverse modeling using the sLORETA technique followed by the selection of 
anatomical ROIs in the Brodmann atlas (BA4, BA6). Forward modeling of EEG data is shown in the top pipeline of the source imaging 
block. It involves the EEG sensor montage and ICBM152 template anatomy and a three-layer realistic-geometry head model. Cortical  
time-series information is downsampled into designated ROIs (BA4 and BA6) for further feature extraction and classification.
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BEM with a realistic estimate of conductivity values and 
warped to co-registered electrode positions [41]. Previous 
studies have shown that the template anatomy can still pro-
vide comparable results in the case of group analysis [42, 43].  
Following this, the cortical surface is tessellated into a trian-
gular mesh composed of 15 002 vertices. A BEM is computed 
to achieve this tessellation using the OpenMEEG toolbox 
[44], which is reported to be reasonably accurate and also 
easier and faster to compute than the finite element method 
[45]. Solving this forward model results in a lead field matrix 
(Θf ) that is essentially a subspace transformation matrix that 
transforms the sensor-space EEG into cortical source space. 
Mathematically, we can represent EEG source modeling as

εΩ = Θ +Jf (1)

where Ω is the sensor-space EEG recorded from N channels 
and Θf  is the lead field matrix (LFM) of size ×N m ( �m N). 
Θf  describes the propagation of current from source dipoles 
(m) to each scalp electrode (N ). J is an ×m t matrix of source 
dipole time series and ε is the noise perturbation matrix with 
covariance matrix Ψ. Task-independent signal information 
from the pre-stimulus baseline period (−1 to 0 s) is used to 
compute the noise covariance matrix.

3.1.2. Inverse modeling. We used a standardized low- 
resolution electromagnetic tomography (sLORETA)-based 
current density estimation technique using the BrainStorm 
Toolbox [46] for inverse modeling. sLORETA is a variant 
of the weighted minimum norm estimation technique for an 
inverse solution [10].

3.1.3. Region of interest. For a balanced run-time complexity  
and memory demand, we define a cortical ROI that contains 
source dipoles mostly correlated with a movement-related 
parameter like direction. For this purpose, a ROI is chosen 
from the anterior and posterior primary motor cortex (M1) 
spatially segregated in the Brodmann atlas, referred to as 
BA4a and BA4p, respectively. Also, the voxels belonging 
to Brodmann area 6 (BA6) that comprises premotor cortex 
(PMC) and a part of the supplementary motor area (SMA) are 
also selected as they are reported to be associated with move-
ment involving spatial targets [47, 48]. From a warped cortical 
surface obtained after performing forward modeling, a total 
of 410 voxels corresponding to the ROI mentioned above are 
chosen for further analysis. It has been reported that the motor 
area specific to arm movement execution and imagery (also 
known as the hand knob region) is located near the precentral 
gyrus [14, 49].

3.2. Factor analysis-based EEG modeling

It is known that many cortical sources synchronize/ 
desynchronize during certain tasks. A certain degree of cor-
relation exists between cortical sources belonging to a region 
associated with similar functionality. However, each of these 
source dipoles is unique to some extent, thus resulting in a com-
plex neural mechanism for every task. Therefore, we need a 
mathematical model that can describe this distinction between 

the commonality and the uniqueness of each source dipole. 
Factor analysis is one such method that is rarely investigated in 
the context of non-invasive EEG source-space analysis. Factor 
analysis is useful for extracting the behavioral information that 
is common across source dipoles of a similar ROI and also to 
get some insight into the unique behavior within the source 
dipoles of interest. Especially for the relatively challenging 
task of classifying different directions of arm movement, it 
is critical to understand which neuronal cluster contributes 
towards the movement in a particular direction. Hereafter, we 
describe the mathematical framework for understanding factor 
analysis as an unsupervised approach followed by our contrib-
ution that embeds a supervised approach for the same.

Consider an EEG trial i recorded from N sensors for t time 
samples. After inverse modeling, we have m source dipoles 
as random variables, x x x x, , , ..., P1 2 3 , with respective means 
µ µ µ µ, , , ..., P1 2 3 . A mathematical model of factor analysis is 
expressed as

µ λ ξ λ ξ λ ξ ε− = + + +x ... .t t
i

t
i

t
ik

t t
1 2i i k i1 2

 (2)

Here ξ denote common factors signifying the non-zero 
correlation between factors and λij ( j  =  1, 2, ..., k) denotes 
factor loading. Note that there are certain assumptions that 
are natural consequences of the objectives of factor analysis. 
εi refers to the unique factor independently distributed with 
zero mean (E(εi)  =  0) with a finite variance ψ, thus resulting 
in ( ) ( )ε ψ ψ ψ ψ=Cov Diag , , , ..., P1 2 3 . The diagonal covariance 

( )ε = ΨCov  signifies the heteroscedastic noise that somewhat 
better explains the biological noise model as it does not make 
any assumption of identical noise variance for all sources. As 
the noise model is crucial in source imaging [50], it is desir-
able to select a model that can explain the data reasonably 
well. Both common factors and unique factors are important 
in factor analysis as they explain the shared behavior and the 
unique behavior of cortical sources. Unlike maximum like-
lihood estimation (MLE)-based factor extraction, we have 
chosen the principal axis method (PAM) as there is no need to 
assume a normal distribution in the noise model [51].

In matrix form, we can model the factor analysis as follows:

¯ λξ ε= +x (3)

computing the covariance of both sides:

( ) ( )
( )
λξ ε
ξ

Σ = +
Σ = Λ Λ + Ψ
Σ = Λ Λ + Ψ
Σ = ΛΛ + Ψ

′
′
′

cov cov
cov
I

.

 (4)

Since λij is the ( )ij th element of Λ, we can algebraically 
 represent (4) as ( ¯ )ξ = Λxcov ,i i  , and it follows that the correlation 
of x̄i and Ψi as ( ¯ )ξ λ= ∀ ∈ ∈x i m j pcorr , 1, 2, 3, ..., , 1, 2, 3, ...,i i ij  
is

σ λ λ λ λ ψ

ψ

= = + + + +

= +

x

h

var ...

.

ii i i i i im i

i i

1
2

2
2

3
2 2

2

( ) ( )
 (5)

Further, (5) can be partitioned into two components: 
the first component representing the common factors 
( )hi

2 , called ‘communality’, and the second unique to ψi, called 
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‘specific variance’. Note that the covariance matrix Σ cannot 
be expressed exactly as shown in (4), i.e. Ψ as a diagonal 
matrix. Factor analysis involves the correlation matrix R mod-
eled as an estimated Σ. Therefore, we use an estimator that 
will best approximate (4) as

≅ΛΛ + Ψ′R .ˆ ˆ ˆ (6)

By applying singular value decomposition on ˆ− ΨR , we decom-
pose Λ into ′CDC  (spectral decomposition) where the nor-
malized eigenvectors of ( )=′R c c 1i i  form an orthogonal matrix 
C and a diagonal matrix D with eigenvalues θ θ θ θ, , , ..., p1 2 3  as 
its diagonal entries.This matrix D can be decomposed into 

/ /D D1 2 1 2, and therefore the spectrally decomposed product 
′CDC  (or / / ′CD D C1 2 1 2 ) can be factored in the form of ˆ ˆΛΛ′ 

as ( )( )/ / ′CD CD1 2 1 2 . As Λ is of the form ×p m (m  <  p), only 
the top m eigenvalues of ( )θ θ θ θD , , , ..., p1 2 3 , and their corre-
sponding eigenvectors ( )=C c c c c, , ... m1 1 2 3  are considered. 
Therefore, Λ̂ can be written as θ θ θ…c c c, , , , m m1 1 2 2 . 
Now, R can be represented as [52],

∑ λΨ ≅ −
=

R .ii ii
j

m

ij
1

2
ˆ ˆ (7)

Following the extraction of factors, they are sorted in 
a descending fashion indicating their relative contribution 
towards the variance in a given trial. This means that the 
subset of factors that explain most of the variance (90% for 
example) in a given trial will be considered for further anal-
ysis. Since these subsets of factors correspond to the source 
dipoles within the ROI, they preserve the neurophysiological 
relevance of the experimental task.

3.2.1. Supervised factor analysis for feature extraction. As 
the approach used so far is unsupervised, we plan to train 
a model to cluster a group of source dipoles xi(i  =  1, 2, ..., 
j...P) as indexed by factors and class labels. We use the spatial 
information of a given dipole xi in terms of its coordinates 

( ) ( )=S x x x y z, ,i i  to compute the Euclidean distance. There-
after, we use a class-wise label for every training trial t, as 
( ) =l t 1, 2, 3, 4) corresponding to the directional cues north, 

south, east and west, respectively. We define a within-class 
graph (Gw) and a between-class graph (Gb) to analyze the 
local neighborhood of nodes (source dipoles), where each 
node is assigned a weight as per the kernel function shown in 
(8) and (9) [53]:

( (
∥ ∥

) ( ) ( ) ( )

         
β= + −
−

∈ =
⎧
⎨
⎪

⎩⎪
W

x x
x N x l x l x1 exp if and

0 otherwise

w ij

i j
i j i j

,

2

 (8)

β= − −
−

∈ ≠
⎧
⎨
⎪

⎩⎪
W

x x
x N x l x l x1 exp if and

0 otherwise

b ij

i j
i j i j

,

2

( (
∥ ∥

) ( ) ( ) ( )

         
 (9)
where Ww,ij denotes the weight of the within-class graph and 
Wb,ij denotes the weight of the between-class graph. β is a 
Gaussian kernel parameter ( )β< <0 1  that controls the rate 

of decay. If xi and xj are neighboring dipoles and belong to the 
same class, then the within-class graph (Gw) will be assigned a 
non-zero weight. Similarly, a non-zero weight will be assigned 
to the neighboring nodes in the between-class graph (Gb) if 
those nodes belong to a different class.

We can represent the source space EEG as ε= +y A xi
T

i , 
where the optimization problem to solve for the maximization 
of inter-class and minimization of intra-class separation can 
be defined as:

( )∑ −y y Wmin
1

2 ij
i j w ij

2
, (10)

( )∑ −y y Wmax
1

2 ij
i j b ij

2
, (11)

( )∑∑ µ−
= =

ymin .
c

C

j

n

j
c

c
1 1

2
c

 (12)

The combined objective function of (10)–(12) is shown in 
(13) [54] (for derivation, please refer to the appendix)

( ( ) )α α+ −
=

A X L W X A

A XD X A

arg max 1

s.t. 1
b w

w

T T

T T 
(13)

where α is a shrinkage regularization parameter with an 
 analytical solution [55]. The diagonal matrix corresponding 
to the column sums of Ww and Wb is denoted as Dw and Db. Lb 
is the Laplacian matrix computed as −D Wb b. Then we com-
pute the transformation matrix A by applying the Lagrangian 
multiplier γ on (13) to solve the eigenvalue problem shown in 
(14) [56]:

( ( ) )α α γ+ − =A X L W X A A XD X A1 .b w w
T T T T (14)

Eigenvalue decomposition of A corresponding to the 
training set gives us the feature matrix. The proof of the solu-
tion to an eigenvalue problem shown in (14) is explained in 
the appendix. These features corresponding to the eigenvector 
(a a a, , ..., d1 2 ) are used for classified using Fisher’s linear dis-
criminant classifier (FLD) [57].

3.3. Benchmarking algorithms

To compare our approach with existing methods, we examine 
different variants of a popular spatial filter algorithm called 
‘common spatial patterns’ (CSP). Mathematically, the objec-
tive function of CSP (J(w)) has the form of a generalized 
Rayleigh quotient [2]. J(w) tries to maximize the variance of 
one class and minimize the variance of another class as shown 
by the following [2]:

( ) =J w
w C w

w C w

T

T
1

2
 (15)

where Ci denotes the covariance matrix of the ith class and w 
denotes the spatial filter.

One of the limitations of CSP is its sensitivity to over fit-
ting; as a result, there is a need for regularization. One of the 
approaches is to use a Tikhonov-regularized CSP (TRCSP) 
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that adds a regularization term to an objective function J(w) as 
shown in (16); another approach is to use shrinkage regular-
ized CSP (SRCSP) that penalizes the covariance matrix (Ci) 
as shown in (17) [58]:

ˆ( )
( )α

=
+

J w
w C w

w C w P w

T

T
1

2
 (16)

( )γ γ= − +C C I1 .c i (17)

Here α is the regularization parameter for TRCSP and γ is the 
regularization parameter for SRCSP. Tikhonov regularization 
is often used to penalize a solution with large weights. It applies 
quadratic penalties P(w) to regularize the objective function 
J(w), and the results show that TRCSP is more efficient than 
CSP amongst other regularization approaches [58]. We chose 
the regularization parameter for TRCSP (α) empirically as 
× −10 10 4 instead of cross-validation as it is computationally 

expensive. In contrast, SRCSP does not need cross-validation 
or heuristics for parameter selection (γ) as it has a closed-form 
analytical solution obtained using Ledoit and Wolf’s method 
[59]. The SRCSP approach is reported to provide better results, 
especially when the training dataset is small [55].

Since the traditional CSP is well-suited for two-class 
problem, we used one-versus-rest (OVR) approach to extract 
multi-class features corresponding to four directions. So, the 
covariance matrix C1 is calculated for trials corresponding to 
class i, while C2 is calculated for all the trials belonging to the 
other classes, i.e. ≠j i. After solving the eigendecomposition 
problem for W, features Fp(p  =  1,...,2m) are calculated as

∑=
=

⎛

⎝
⎜⎜

⎡

⎣
⎢

⎤

⎦
⎥

⎞

⎠
⎟⎟F Z Zlog var varp p

i

m

p
1

2

( )/ ( ) (18)

where E are time-series data and Z is the resultant subspace 
obtained by multiplying E with the spatial pattern matrix W. 
Only first and last two spatial filters (m  =  2) of W are used for 
feature computation. Subsequently, these multi-class features are 
classified using the FLD classifier [57] with the OVR approach.

3.4. Statistical analysis

We assessed the classification performance of the proposed 
method using one-way repeated measures ANOVA. The type 
of feature space (sensor or source) is considered as a between-
subjects factor (condition) with different regularization 

methods (CSP, TRCSP, SRCSP) as ‘levels’. Further, one-way 
ANOVA corrected for multiple comparisons is also performed 
to observe the significance across feature extraction methods 
considering the decoding accuracy as a dependent variable. 
Post-hoc tests were done using a Tukey honestly significance 
difference (HSD) test. To establish the statistical signifi-
cance of the proposed method, we set the significance level 
at p  <  0.05. All statistical tests are performed using the SPSS 
software.

4. Results

4.1. Classification performance of source-space features

To assess the performance of our method in classifying dif-
ferent directions, we compared the cross-validation per-
formance with other traditional sensor-space techniques. 
As mentioned in 3.3, we used the FLD classifier while not 
rejecting any of the trials. To ensure robustness, we performed 
cross-validation of the whole dataset by taking 80% of the 
trials as a training set and the remaining 20% as a test set; 
this was then repeated five times by randomizing the order 
of trials. We used this ×5 5 cross-validation percentage acc-
uracy as the criterion for evaluating different methods that are 
tabulated in table 1, and a box plot of the same is shown in 
figure 3.

Individual subject-wise decoding accuracy is shown as a 
small jitter next to each box plot. The legends in figure 3 show 
different feature extraction techniques. All the feature extrac-
tion methods used in this study could classify with a decoding 
accuracy higher than the chance level (25%) for four-class 
classification. One-way ANOVA of classification accuracies 
resulting from various feature extraction methods revealed  
F(1, 7)  =  14.1541 with a p-value of × −e9.7 10 9 suggesting that 
one or more treatments are significantly different. However, 
these results overestimate the significance, and therefore 
Tukey HSD tests for multiple comparisons were performed. 
Tukey HSD tests revealed that at least one or more pairs of 
treatments (feature extraction methods) are significantly dif-
ferent. Pairwise comparisons of our proposed method and the 
rest showed statistically significant results except for SRCSP 
in the source space (F  =  3.305; p  >  0.05). Furthermore, two-
way repeated measures ANOVA with within-subject effects 
(sensor and source space), and three levels (CSP, TRCSP, 
and SRCSP) revealed a significant difference (F  =  54.683; 

Table 1. Percentage classification accuracies for four-class classification resulting from different benchmarking algorithms.

CSP (sensor)
TR-CSP 
(sensor)

SR-CSP 
(sensor)

CSP  
(source)

TR-CSP 
(source)

SR-CSP 
(source)

SFA  
(source)

S01 36.87 56.12 54.37 67.87 70.87 53.5 88.3
S02 34.12 30.87 49.25 36 48.25 63.12 73.67
S03 35.75 51.37 57.37 56 59.5 67.62 68.67
S04 29 34.75 47 30.87 63 67.25 72.37
S05 33 35.75 47 38.12 51.5 56.5 61.31
S06 38.37 51.12 44 49 67.12 59.87 78.06
S07 37.25 45.28 66.42 51.71 62.71 71.28 58.29

Mean 34.91 43.61 52.20 47.08 60.42 62.73 71.52
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p  <  0.001) between the two effects. Tests of between-subject 
effects of three feature extraction methods with Bonferroni 
correction for multiple comparisons showed significant dif-
ferences (F  =  8.654, p  =  0.002).

4.2. Source activation of hand movement in different  
directions

The results of sLORETA source localization showed cortical 
activation of movement of the right hand in different direc-
tions. A prior knowledge of anatomical ROI is an advantage 
as it can be used to validate our results. To illustrate this, we 
present the trial-averaged response of subject S01 from the 
source dipoles confined to Brodmann areas BA4aL, BA4pL 
and BA6L in figure  4. The stereotactic coordinates to plot 
this time series are shown in table  2. The most representa-
tive source dipole of these ROIs (BA4aL, BA4pL and BA6L) 
is shown as 3D stereotactic coordinates used in the forward 
model. Furthermore, to avoid the bias of prior neurophysio-
logical information about the motor task to reflect the cortical 
functioning, we have shown the full brain activation on the 
cortex surface in figure 5.

4.3. Source dipoles corresponding to hand movement in  
different directions

In this section, we illustrate the use of a factor analytic 
approach to visualize the source dipoles influencing the task. 
Although there are 410 dipoles chosen from Brodmann areas 
BA4a, BA4p and BA6 from both hemispheres, very few 
dipoles would essentially result in significant variance. In 
this study we have considered a false discovery rate (FDR) 
of p  <  0.01 as the criterion for selecting the dipoles based 
on the factor loading obtained from the supervised factor 
analysis. A FDR of p  <  0.01 allows us to limit the number 
of  false- positive source dipoles corresponding to a given 
directional cue. During different cross-validation runs for 
each subject, the number of dipoles selected after applying 

the statistical criterion is not constant. We observed that, on 
average, around 10 dipoles remained after the FDR-based 
criterion is applied. For the purpose of illustration, we have 
shown the dipoles corre sponding to hand movement in dif-
ferent directions of one of the subjects (S01) in the form of 
colored nodes in figure 7 using BrainNet software [60].

4.4. Spectral–temporal characteristics of multidirectional 
movement decoding

EEG source activations exhibited direction-specific move-
ment-related modulation. To illustrate this, we have plotted 
the time-series information of ROIs (Brodmann areas BA4aL, 
BA4pL, and BA6L) in figure 4. One can observe a clear peak 
in at least one of the Brodmann areas (BA4aL, BApL, and 
BA6L) at around 0.3–0.5 s after onset, which also shows that 
the anatomical ROIs have a temporal correlation with the 
actual movement duration of 0.5 s. To investigate the spec-
tral characteristics of source imaging, we band-pass filtered 
the cortical time series in different frequency bands ranging 
from delta (<4 Hz) to high gamma (60–90 Hz). The spec-
tral-domain responses are shown in figure 6 after computing 
the band power averaged over trials. In figure 6, each column 
indicates a different direction of movement and each row indi-
cates a characteristic frequency band.

5. Discussion

5.1. Comparison of feature extraction techniques

In this study, we have introduced a supervised factor ana-
lytic approach to extract the cortical source space features for 
multi-direction hand movement classification. Extending the 
results obtained in sensor space, we found that the cortical 
source space features could be modeled so as to explain the 
variability as well as the similarity of source dipoles related 
to a given task. Regarding classification performance, our 
method outperforms traditional sensor-space spatial filter 

Figure 3. Performance assessment of different feature extraction algorithms in terms of ×5 5 cross-validation accuracy of classifying the 
EEG corresponding to hand movement in four directions. The X-axis indicates different feature extraction algorithms with feature space 
(sensor/source) highlighted in braces. The Y-axis indicates the average ×5 5 cross-validation percentage accuracy. Jittered points indicate 
the decoding accuracy of individual subject.

J. Neural Eng. 14 (2017) 046008



V S Handiru et al

9

techniques such as regularized variants of CSP. We believe 
that the improvement in the classification accuracy compared 
with regularized variants of CSP could be because of the more 
discriminating spatial features in our proposed algorithm. 
The weights assigned to different source dipoles according 
to their relevance to the task label and neural anatomy add 
to the discriminability as compared with the spatial filters 
obtained from the traditional CSP approach. Our method is 
different from the CSP-based approach in the sense that CSP 
(and its regularized variants) maximizes the variance between 
two classes by solving the eigenvalue problem whereas our 
approach finds the most optimal eigenvalue corresponding to a 
given class (or task). As one can recall from (7), we extract the 
eigenvectors in a descending fashion corresponding to their 
relative contribution to the variance. In hindsight, CSP-based 

approaches derive the spatial filters based on the difference 
between the two classes as compared with task-specific neural 
correlates identified by our approach. Further, the weights 
assigned to each source node based on its neighborhood and 
the class label explain the task-specific feature extraction of 
our proposed method.

5.2. Contribution of the supervised factor analytic approach 
to source space feature extraction

In this study, we chose to use a factor analytic framework to 
construct a generative model that could reasonably describe 
how human cortical sources relate to the experimental task. 
Although we used a principal axis factor analysis-based 
approach to model the data that does not require a Gaussian 

Figure 4. Trial-averaged response of subject S01 to four different directional cues in (a) east, (b) west, (c) north, and (d) south directions, 
respectively. Legends indicate stereotactic coordinates corresponding to the centroid of different Brodmann areas. These coordinates are 
further shown in table 1. Shading indicates the deviation from the mean response. The X-axis denotes the experimental timeline in seconds 
and the Y-axis the normalized amplitude resulting from sLORETA.

Table 2. Stereotactic coordinates of significant cortical activation.

Anatomical region of interest Brodmann area nomenclature

Coordinates

x y z

Left anterior primary motor cortex (M1) BA4a 80 107 138
Left posterior primary motor cortex (M1) BA4p 62 117 123
Left preSMA BA6 74 134 133
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prior, there is a caveat that the factor analytic approach 
is iterative. Despite this caveat we have shown that our 
supervised factor analytic approach improves the classifi-
cation performance quite significantly compared with the 
traditional feature extraction method. Our future approach 
would involve training an online adaptive classifier that 
learns the convergence parameters from previous sessions 
and subjects.

5.3. Cortical source activation of hand movement in different 
directions

Our present EEG source-space analysis indicates that the cortical 
activation related to hand movement in four orthogonal direc-
tions is spatially segregated within the motor area, primarily 
in the hand region of M1. Our findings concur with previous 
studies that report spatial segregation of populations of neurons 
that are directionally tuned [26, 27, 61]. Time-series informa-
tion provided by brain scouts (BA4aL, BA4pL, and BA6L) in 
figure 4 reveal that the neuronal regions responsible for move-
ment in different directions are indeed spatially segregated. 
It can be seen that the activation of the contralateral posterior 
primary motor cortex (BA4aL) is higher for movement in the 
‘east’ direction, whereas contralateral anterior primary motor 
cortex (BA4pL) is more active during ‘west’ directional move-
ment. Similarly, the contralateral pre-supplementary motor area 
(BA6L) is significant while moving the arm in the ‘south’ direc-
tion, in contrast to anterior primary motor cortex (BA4L) in the 
case of movement in the ‘north’ direction. Of course, this is not 
indicative of how every trial should look. It merely adds to our 
knowledge that spatial segregation of a relatively complex arm 
movement is indeed interpretable. Visualization of full-brain 
inverse modeling in figure 5 illustrates that the grand average 
results show significant activation in the cortical areas spanning 
the premotor cortex, primary motor cortex and superior frontal 
gyrus in the contralateral hemisphere of the brain. Even without 
any priors of specific anatomical regions, the observations are 
in line with the neurophysiological behavior of sensorimotor 
functions to validate our source imaging results.

5.4. Spectral characteristics of cortical activation  
corre sponding to different directions

Spectral characteristics of movement-related tasks are always 
a subject of debate. Many researchers have shown the varia-
tions in the event related desynchronization/synchronization 
(ERD/S) spanning a wide range of frequencies. Although it 
is well-documented in the literature that the mu-rhythms are 
the frequencies of interest, there are also studies that report 
beta-band activity to be more consistent than the mu-band 
[62]. Although the experimental paradigms are not the same, 
it is still possible that beta and gamma rhythms might play an 
important role in multidirectional movement tasks. Therefore, 
we performed group analysis (n  =  7) of broad-spectrum cor-
tical activation (normalized amplitude of sLORETA) to inves-
tigate the spectral characteristics of source activation in terms 
of different characteristic frequency bands of EEG. Similar to 
the analysis done in section 4, we used full brain sLORETA 

maps to analyze spectral characteristics. In figure 6, we show 
the contralateral view of grand average cortical activation 
across subjects in different frequency bands ranging from 
delta (0.5–4 Hz) to high gamma (60–90 Hz). From figure 6, it 
is evident that motor areas show higher activation in the delta, 
alpha and beta frequency ranges.

5.5. Contribution of source dipoles for a given task

From figure  7 we can observe that the spherical nodes are 
of different sizes that indicate their relative contribution to 
the variance. In simpler terms: the bigger the source node, 
the more significant its contribution to a given task. The sig-
nificant source nodes are located along the precentral gyrus, 
although the anatomical region covers a much larger cortical 
surface. This visual illustration is subject specific, and the 
location of significant source nodes varies across subjects, 
albeit they all conform to the same anatomical ROI. Another 
interesting observation is that the significant nodes corre-
sponding to the movement in ‘north’ and ‘south’ directions 
are relatively more concentrated towards the central region. 
From a neurophysiological perspective, there are more mus-
cles and joints involved in moving one’s arm in the ‘north’ 
and ‘south’ directions, which signifies neural activation corre-
sponding to the elbow and shoulder. According to the con-
cept of the motor homunculus, the elbow and shoulder have 

Figure 5. Group average cortical source maps of all subjects 
(n  =  7, right handed). sLORETA source activation patterns 
resulting from hand movements in different directions (a) east,  
(b) west, (c) north, and (d) south. Cortical activation is shown in 
three orientations (from left to right): left lateral, dorsal and right 
lateral view of the cortex.
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distinct neuronal activation regions in the central part of the 
brain, although they occupy a relatively smaller overlapping 
area of the cortex. Further, it would be interesting to go beyond 
the neural correlates and observe the causal interpretation of 
stimulus (direction cue) on the cortical activation in different 
frequency bands (aka effects).

5.6. Limitations

In our current study, we have used the subject-independent 
template anatomy that is available from the MNI website, 
as we did not have subject-specific MRIs. Although there 
are studies which have reported robust forward modeling 
results from the template anatomy, it would be worth inves-
tigating the effect of the data-driven forward model pro-
posed in [63]. Furthermore, our study involved predefined 
ROIs based on well-documented literature concerning motor 
tasks. Note that the process is not completely automatic as 
it still requires manual intervention. Although manual ROI 
selection tends to give a better justification of source-space 
results and also saves computation time due to the reduced 
feature dimension, it is not robust when a given experimental 
paradigm does not have a specific ROI concerned with the 
task. ROI-based feature extraction would not be very helpful 
for studies involving functional interference across neural 

regions during a complex cognitive task. Figure 5 illustrates 
that the full-brain cortical map point towards the active 
regions nearly overlapping the predefined cortical ROI, 
which implies that source localization is not sensitive to pre-
defined regions. Further, it would be interesting to see how 
the features from data-driven ROI selection would affect the 
performance of our method. Our approach involved novel 
supervised learning for factor analysis that did not take into 
account any regularization of weights. There is a scope to 
regularize the objective functions, and this could lead to 
higher classification accuracies.

Figure 6. Left lateral view of group average sLORETA-based source activation maps corresponding to different frequency bands ranging 
from delta (0.5–4 Hz) to high gamma (60–90 Hz).

Figure 7. Subject-specific source dipoles selected using our 
proposed factor analytic method. FDR-corrected ( p  <  0.01) sources 
are shown in the form of spherical nodes corresponding to different 
directions: (a) east, (b) west, (c) north, and (d) south. Different sizes 
of these spherical nodes suggest their relative proportion of variance 
in factor loading.
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6. Conclusion

We have proposed a novel feature extraction method based 
on supervised factor analysis that considers the somatotropic 
organization of hand movement in four orthogonal directions. 
A mathematical framework based on supervised factor anal-
ysis is used to classify movement in four directions. In sce-
narios where decoding the motor actions with higher degrees 
of freedom is of paramount importance, prior knowledge of 
neurophysiology can aid in translating brain signals into con-
trol commands for effectors. Although it is difficult for current 
state-of-the-art brain-controlled devices to perfectly mimic 
real human arm functionalities, the development of more 
robust movement-decoding algorithms in the future will cer-
tainly push the boundaries of traditional neurorehabilitation 
practices based on BCI. The present work on multi-directional 
arm movement classification using cortical EEG features is 
a contribution in this direction. Compared with conventional 
methods that use sensor-space features, our source-space fea-
tures resulted in an improvement of more than 10% in the 
classification accuracy. Previous work from our group [22] 
emphasized improving the classification accuracy of four-
directional movement classification by using different regu-
larized approaches in wavelet-common spatial patterns in the 
EEG sensor space. In contrast, our current method empha-
sizes the cortical source distribution inferred from sLORETA 
inverse modeling. As a result, our method provides more infor-
mation about the neurophysiological aspects of right hand 
movement in four orthogonal directions. Further, we present 
the formulation of supervised factor analysis that takes spa-
tial information of source dipoles into account to preserve the 
local information of anatomical ROIs. The confinement of the 
ROI to motor regions helps not only to reduce the computa-
tion time significantly but also to achieve substantially higher 
classification accuracy than that of the sensor-space features. 
Different statistical tests revealed that source-space features 
enhance the classification accuracy of multidirectional hand 
movement.

Our future work will emphasize further improvement 
in classification accuracy by embedding the regularized 
approaches to factor analytic methods. For a better interpre-
tation of more complex tasks, we plan to use causal infer-
ence algorithms [64] to model the factor analytic problem 
in (2). Another interesting direction is online BCI for 
stroke rehabilitation, where real-time cortical imaging can 
be used to get more information about cortical activation 
over a period. We look forward to employing adaptation 
algorithms to learn across experimental sessions to reduce 
the overall computation time. With the advent of real-time 
source localization algorithms we are hopeful that our work 
will pave a new direction in interpreting the results of EEG-
based BCI.

Appendix

In this appendix, we derive the expression for the eigenvalue 
problem in (13) by optimizing the objective functions (10)–(12),
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From (12), we have
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The combined optimization problem of (A.1)–(A.3) can be 
defined as:
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ec is a n-dimensional identity vector. A Lagrangian multiplier 
is applied on the objective function (A.4) to obtain the optimal 
transformation matrix A as:

( ( ) ( ))α λ
∂
∂

− − − =
A

A P S A A A I 0.w
T T (A.5)

Further, (A.4) is converted into an eigenvalue problem as

( )α λ− =P S A A.w (A.6)

The eigenvalue problem in (A.6) is solved for the eigenvectors 
that are sorted in a descending order to give us the features for 
further classification.
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