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Abstract—In this paper, to address the safety of brain-

controlled vehicles under emergency situations, we propose a 
novel method of emergency situation detection by fusing driver 
electroencephalography (EEG) signals with surrounding 
information. We first build a novel EEG-based detection model of 
driver emergency braking intention. We then recognize 
emergency situations by fusing the result of the proposed EEG-
based intention detection model with that of the obstacle detection 
model based on surrounding information. The real-time detection 
system of driver emergency braking intention is implemented on 
an embedded system, and the driver-and-hardware-in-the-loop-
experiment of the proposed detection method of emergency 
situations is performed. Experimental results show that the 
proposed method can detect emergency situations with the system 
accuracy of 94.89%, false alarm rate of 0.05%, and response time 
of 540 ms. This study has important values in the future 
development of brain-controlled vehicles, human-centric 
advanced driver assistant systems, and self-driving vehicles and 
opens a new avenue on how cognitive neuroscience may be applied 
to human-machine integration. 
 

Index Terms—EEG, emergency situation, braking intention, 
brain-controlled vehicles.  
 

I. INTRODUCTION 
ANY factors (such as aging and chronic health 
conditions) have caused the increase in disability rate. 

Approximate 15% of the world population live with some types 
of disabilities, and 2-4% of the disabled have significant 
difficulties in functioning [1]. Living independence has become 
a severe problem for the disabled people with neuromuscular 
disorders. Brain-computer interface (BCI) is considered as a 
solution because it does not depend on users’ speech or 
neuromuscular control. As a cheap and convenient recording 
method of brain activities, electroencephalography (EEG) has 
been widely used to develop various BCIs. To improve the 
mobility of the disabled, EEG-based BCIs have been studied to 
build brain-controlled wheelchairs [2]-[5] or brain-controlled 
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vehicles [6]-[9]. We have developed an EEG-based destination 
selection system for the disabled to use intelligent vehicles [8], 
as shown in Fig. 1. The disabled individuals only need to first 
choose the desired destination by using such system. Then, the 
vehicle transports the driver to the desired one. 

  
However, when emergency situations (e.g., unexpected 

crossings of pedestrians and sudden braking of the leading cars) 
happen, the safety of brain-controlled vehicles is a big 
challenge. For current intelligent vehicles, the conventional 
methods for solving the problem are to use sensor-based 
obstacle detection systems. In these systems, vehicle-mounted 
sensors (such as near infrared radiation (NIR) [10], far infrared 
radiation (FIR) [11], RADAR [12], and LASER scanner [13]) 
are widely used to detect and track people on road environments 
for preventing collisions between vehicles and pedestrians. If 
the information collected by obstacle detection systems 
indicates that an obstacle exists in front of the traveling vehicle, 
the vehicle alerts the driver or brakes automatically to avoid a 
collision.  

However, using sensor-based obstacle detection systems to 
recognize emergency situations has two following weaknesses. 
One is that these methods can only detect whether there is an 
obstacle ahead (i.e., ‘potential’ upcoming dangers) rather than 
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Fig.1. Brain-controlled vehicle 
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‘real’ dangers. The other is that these methods currently have 
limitations in system performance because they are strongly 
affected by environmental factors [14]. 

Along with another direction of the research, some 
researchers have adopted behavior or physiological data of a 
driver to recognize driver braking intention to address the safety 
challenge under emergency situations [15]-[17]. Since the 
methods based on behavior data need to use the action of a 
driver, they are not suitable for brain-controlled driving for the 
disabled. In this regard of the methods based on physiological 
signals, Haufe et al. used event-related brain potentials (ERPs) 
of EEG and electromyography (EMG) signals to detect driver 
emergency braking intention. Their offline data analysis 
showed that EEG-based predictions were faster than using 
EMG signals, and using EMG signals did faster than using 
behavioral data (e.g., gas and braking pedals) given the same 
predictive accuracy [15]. The system was further tested offline 
by using data collected from the real driving [16]. In [17], Kim 
et al. combined different temporal EEG features to detect 
braking intention in diverse emergency situations. Their offline 
data analysis indicated that using the feature combinations 
performed slightly better than the ERP-based methods in [17]. 
For brain-controlled driving, Teng et al. have used spectral 
features of EEG signals to build a detection model of 
emergency braking intention [18] and further optimized this 
model [19]. 

However, using these methods based on recognizing driver 
braking intention to address emergency situations has three 
weaknesses. First, an emergency braking intention does not 
necessarily mean a real emergency situation. Second, currently, 
the false alarm rate (FAR) of these detection methods of driver 
emergency braking intention is high (especially for brain-
controlled driving), which makes it infeasible to apply these 
methods to practice. For example, the FAR of the method 
developed in [19] is 5.78%. Third, currently, all these braking 
intention prediction methods (including driving with limbs and 
brain-controlled driving) mentioned above are only tested in an 
offline or pseudo-online way since no real-time detection 
systems are implemented in these studies. 

In this paper, to address the safety of brain-controlled 
vehicles under emergency situations, we propose a novel 
method of emergency situation detection by fusing driver EEG 
signals with surrounding information. The contribution of this 
paper is threefold: 1) it proposes a novel method of emergency 
situation detection by combining EEG signals with surrounding 
information for a brain-controlled vehicle; 2) it builds a novel 
EEG-based detection model of driver emergency braking 
intention; 3) it implements the proposed detection system of 
emergency situations in C codes on an embedded hardware and 
tests the effectiveness of the proposed method by using driver-
and-hardware-in-the-loop experiments in a driving simulator.  

The remainder of this paper is organized as follows. The 
detection system is shown in Section II. Section III describes 
the offline and online evaluation of the proposed method. The 
discussion and conclusion are presented in Section IV. 

 
 

II. METHOD 

A. System Architecture 
The system architecture of the proposed method, as shown in 

Fig. 2, consists of three major components: 1) intention 
decoding algorithm, 2) obstacle detection model, and 3) 
decision rule. The working procedure of the proposed method 
is as follows. The intention decoding algorithm (IDA) first 
recognizes driver emergency braking intention by decoding 
EEG signals acquired from a driver’s scalp during driving, 
while the obstacle detection model (ODM) recognizes obstacles 
on the road in front of the traveling vehicle by using external 
sensors. The recognition results of IDA and ODM are then 
taken as the input of the decision rule, which outputs the final 
detection result of emergency situations.  

  
B. IDA 

The signal flowchart of the IDA is shown in Fig. 3. The 
purpose of training procedure was to determine the unmixing 
matrix of independent component analysis (ICA), the 
projection matrix of the common spatial pattern (CSP), the 
labels of extracted feature, and the parameters of regularization 
linear discriminant analysis (RLDA) classifier. 
1) EEG Data 

The data that we used for offline and pseudo-online analysis 
were collected and utilized in [19]. The data can be obtained by 
accessing http://pan.baidu.com/s/1jILMYGI.    

In [19], 12 subjects (10 males and 2 females; aged 20 to 25) 
participated in the experiment. The experiment was performed 
in a driving simulator. Three pedestrians, whose locations were 
randomly designated between 600 m and 2400 m relative to the 
origin of the road, stood on the right side of the lane. Emergency 
situations were simulated by using unexpected pedestrian road 
crossings at the location of 30 m before the traveling vehicle 
that run at 108km\h. Note that 30 m was set for better 
stimulating the emergency situations in the driving simulator 
and is too short and impossible to avoid collisions in the real 

 
 
 

Fig. 2. Architecture of the whole emergency situation 
detection system 
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world. For the normal driving situation, all pedestrians stayed 
still throughout the entire driving duration. The whole 
experiment was conducted on two different days separated by 
several days to avoid the effects of fatigue. Totally, there were 
thirty trials for normal driving and thirty trials for driving under 
emergency situations. The two kinds of trials were conducted 
in a random order. In each trial, participants were asked to 
perform the 2600-m driving and emergency situations only 
happened once in every emergency trial.  All participants were 
instructed to sit still in every trial and paid full attention to the 
virtual traffic scenario. Once they observed pedestrian sudden 
crossings, they were required to imagine stepping on the 
braking pedal immediately. Four extra trials were conducted for 
each participant to measure the response time of the 
participants. In detail, once the emergency situations happen, 
the participants need to shift their right feet from the gas pedal 

to braking pedal as quickly as possible. The response time of 
the participants was defined as the time interval from the onset 
of the emergency event to the angle change of braking pedal. 
The mean response time of 12 subjects was 833.7 ms. 

EEG potentials were collected from 16 electrodes (F3, Fz, 
F4, C3, Cz, C4, T7, T8, P7, P3, Pz, P4, P8, O1, Oz, and O2) 
based on an international 10-20 system and referenced to the 
mean of the right and left earlobes. EEG signals were acquired 
at the sampling rate of 1000 Hz and filtered with a power-line 
notch filter of 50 Hz and band-pass filter between 0.53 and 60 
Hz. All data were given in the mat (MATLAB). 
2) Preprocessing 

EEG data were first processed by ICA to remove the blinking 
artifact, which is the major artifact in this experiment. ICA is a 
kind of blind source separation method, which can be written as  

													"($) = '( · *($) ,                               (1) 

 
Fig. 3. Flowchart of Intention Decoding Algorithm (IDA) 
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where *($) = [,(($), ,.($),⋯ , ,0($)]2 , ,0($)  represents the 
data collected from the 3$ℎ  electrode, "($) =
[5(($), 5.($),⋯ , 50($)]2, 50($) represents the 3$ℎ independent 
component, and $ stands for sampling time point. In this paper, 
3  was equal to be 16 and the unmixing matrix '(  was 
determined by infomax algorithm [20]. Visual inspection was 
carried out by offline analysis based on both the time course and 
scalp maps of the independent components (ICs). ICs, which 
abruptly jump and show different temporal and spatial patterns 
compared to others, were considered to be related to the 
blinking artifact. We recorded the labels of the ICs most related 
to the blinking artifact and set the corresponding ICs to be zero 
in the training and testing procedure. In this paper, the first IC 
was set to zero, which corresponds to the blinking artifact.  

Then, the inversed ICA was applied to ICs to obtain the 
filtered EEG by  

         *($) = '(
6( · "($)                              (2) 

After that, the data were downsampled to 200 Hz. Baseline 
correction was applied to reduce the drift by using the first 10% 
sampling points of the current window. The common average 
reference (CAR) was used to filter the common disturbance 
among all channels. 
3) Feature Extraction and Classification 

In feature extraction, CSP was first applied to improve the 
quality of features. 16 channels were transformed into m virtual 
channels by CSP, which can be written as 

																																7($) = '. · *($)                              (3) 

where 7($) = [8($), 8.($),⋯ , 89($)]2 , 89($)  represents the 
data of the :$ℎ  virtual channel, and '.  is the projection 
matrix.  
   Then, the original power spectrum features 7(;)  were 
calculated by applying Fast Fourier Transformation (FFT) to 
7($).  

After that, we used the correlation analysis to extract the <-
dimensional feature vector from the original power spectrum 
feature vector	7(;), which can be expressed as  

                       =(>) = |@ABB(C((>), C.(>))|  ,                        (4) 

where C((>) = [D:E(1),⋯ , D:E(G), <AE(1),⋯ , <AE(H)]2 , 
D:E(G)  and <AE(H)  represent the value of the >$ℎ  feature of 
7(;) in the G$ℎ	emergency sample and the H$ℎ normal sample, 
respectively. C.(>) = [1(1),⋯ ,1(G), −1(1),⋯ ,−1(H)]2 �
1(G) and −1(H) represent the class label of D:E(G) and <AE(H), 
respectively. =(>)  represents the absolute value of the 
correlation coefficient between C((>) and C.(>). Larger value 
of =(>) means better classification performance. The features 
associated with the <  largest =  were extracted as the final 
features and directly used during the process of testing. That 
means,  the correlation analysis does not need to be applied for 
testing.  

Finally, RLDA was applied to build the classifier, which can 
be expressed as  

                                      5 = J2, ,                                         (5) 

where ,  is the input feature vector, 5  is the output of the 
classifier, J = Σ′M/(O( − O.) is the projection matrix, O( and 

O. represent the mean value of the two class, respectively, and 
P′M	is the regularized within-class scatter matrix, which can be 
calculated by  

																																			P′M = (1 − Q)PM + QCS ,                        (6) 

where ΣM  is the within-class scatter matrix, Q ∈ [0,1]  is the 
tuning parameter, S is identity matrix, C = $BV@D(PM)/W, and 
W is the dimension of PM . A threshold XB is set to discriminate 
the output 5 . If 5 > XB , the output of IDA 50Z[  equals 1, 
corresponding to the emergency braking intention. If 50Z[ 
equals -1, corresponding to the normal driving. 

Note that we used the trial-and-error method to determine the 
number of the virtual channels : and the dimension < of the 
final feature vector by manual tuning. The decision criterion 
was to make the value of the area under curve (AUC) largest 
for each subject. 

C. ODM 
In this paper, we did not study how to detect obstacles on the 

road by using some kinds of sensors. Instead, we used a 
performance model of sensor-based obstacle detection methods 
to simulate the detection outcome. That means, we simply 
emulated a circumstance as if we had an obstacle detection 
system that had certain imperfect performance characteristics to 
enable proof of principle in our simulations. We defined that -1 
and 1 correspond to the situations where no obstacles exist and 
situations where some obstacles are in front of the traveling 
vehicle, respectively. Two command sets Φ(  and Φ. , which 
both consist of M commands, were established, corresponding 
to the normal driving and emergency situations, respectively. 
The output 5]Z9  of the ODM was generated from those 
command sets according to the true situation R_  through the 
following model. 

 
The parameters of the performance model ψ(  (i.e., false 

positive rate) and ψ. (i.e., detection rate) were set to be 0.8% 
and 98.41% according to the findings (as are often the case) of 
[11], respectively. 

D. Decision Rule 
The decision rule of emergency situations can be expressed 

as: 
                          50Z[ = 1 ∩ 5]Z9 = 1.                             (7) 

 
If this rule is satisfied, the driving situation is discriminated 

as an emergency situation and a braking command is issued 
immediately; otherwise, the driving situation is discriminated 
as a normal situation and the vehicle continues traveling.  

Model 
Define: 	R( ∊ Φ(, R. ∊ Φ. 
												P(=( = 1) = ψ(,					P(=( = −1) = 1 − ψ(,	 
													P(=. = 1) = ψ.,					P(=. = −1) = 1 −ψ.,		 
 

If 											R_ = −1 
  				5]Z9 ∊ Φ( 

Else 
 			5]Z9 ∊ Φ. 

Return  5]Z9 
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Since human brain state changes over time, the performance 
of the IDA may gradually get worse. Thus, we retrained the 
classifier online using the adaptive sample set. The adaptive 
sample set ef($)for the $th RLDA retraining can be constructed 
by  
																																			ef($) = eg + eh($),                               (8)  
where eg  represents the original sample set saved offline to 
train RLDA. eg  was made up of normal and emergency 
samples. A sample was an n-dimension feature vector that was 
inputted to the RLDA. eg was maintained consistent during the 
test process. eh($) represents the new normal sample set added 
for the $ th RLDA retraining. If the IDA and ODM both 
discriminate the current situation to be a normal situation, this 
sample will be added to eh($). When the number of samples 
saved in eh($) reaches Q (in this paper Q=75), ef($) will be 
used to retrain RLDA (i.e. calculating the new values of the 
parameters of the RLDA) and eh($) will be cleared. The time 
interval of two consecutive retraining processes was set to be 
10 seconds. 

E. Performance Assessment 
To assess the performance, false alarm rate (FAR), hit rate 

(HR), system accuracy (SA), and response time (RT) were used. 
FAR was defined as the ratio of issued emergency commands 
to the total number of commands in the normal driving process. 
HR was defined as the ratio of the number of correct hits to the 
number of emergency trials. A correct hit means that the 
braking intention is detected within 1200 ms after emergency 
situation onset. RT was defined as the time length from the 
occurrence of emergency situations to the first “emergency 
situation” command issued by the system. SA was defined as  

																ei = ((6jfk)lmk
.

                                   (9) 

The proposed detection system was tested in pseudo-online 
and online ways. Pseudo-online testing was employed to 
simulate an online procedure to test the system before testing it 
online in real experiments. It was similar to the online testing, 
but the testing data were collected in advance. For pseudo-
online and online testing, we used a sliding window to compute 
and output the detection result every cycle (i.e., every step). 
That is, the sliding window was shifted with a step size 
continuously. 

III. EXPERIMENT AND RESULTS 

A. Pseudo-online Results 
1) Parameter Settings 

 
As shown in Fig. 4, one sample was a data window of 1 s. 

For each trial, 3 normal samples were extracted between 3 s and 
6 s before the onset of emergency situations and one emergency 

sample was extracted between 1.2 s before and after the onset 
of emergency. The specific start and end time points of the 
emergency sample for each subject can be seen in Table I. In 
this way, 90 normal samples and 30 emergency samples were 
acquired for each subject. 

  Offline analysis was conducted to determine the parameters 
for each subject. We applied a six-fold cross-validation to the 
samples and calculated the mean AUC of the RLDA classifier 
across all folds and trials. Parameters that generated the highest 
AUC were chosen and used in the pseudo-online evaluation. 
The chosen parameters are shown in TABLE I.  

 

For the pseudo-online test, six-fold cross-validation was used. 
In each fold, 25 trials were used for training, and the other trials 
were used for testing. We conducted the pseudo-online test with 
the window of 1 s and step of 20 ms.  

2) Evaluation Results  
We first conducted the pseudo-online test of the braking 

intention detection method based on the IDA. Fig. 5 shows the 
final features selected by correlation analysis to train RLDA at 
all frequencies between 1 and 60 Hz over virtual channels for 
Subject 10. The black blocks represent the selected features, 
while the white blocks stand for the remaining features. Then, 
the proposed method of the emergency situation detection (i.e., 
the whole system) was tested. Fig. 6 shows the FAR, HR, SA, 
and RT of the IDA and whole system. We can see that the means 
with standard deviations of FAR, HR, SA, and RT of the IDA 
are 2.52%±1.13%, 93.61%±7.51%, 95.55%±3.53%, and 
348.92±123.48 ms, respectively, whereas the means with 
standard deviations of the FAR, HR, SA, and RT of the whole 
system are 0.0172%±0.0070%, 93.89%±5.24%, 
96.94%±2.62%, and 498.51±63.51 ms, respectively.  

Fig. 4. Extraction of normal samples and emergency 
samples for training 

TABLE I 
CHOSEN PARAMETERS FOR 12 SUBJECTS 

Subject 
Number of 

Virtual 
Channels : 

Dimension of 
Feature Vector < 

Start and End 
Time Point of One 

Emergency 
Sample 

1 6 100 0.2 s-1.2 s 
2 16 100 0.2 s-1.2 s 

3 4 50 0.2 s-1.2 s 
4 8 10 -0.2 s-0.8s 
5 14 50 -0.2 s-0.8s 
6 16 20 -0.2 s-0.8s 
7 2 30 0.2 s-1.2 s 
8 10 40 0 s-1 s 
9 2 30 0.2 s-1.2 s 
10 12 40 -0.2 s-0.8s 
11 16 20 0 s-1 s 
12 14 10 -0.2 s-0.8s 

Number of virtual channels was chosen from 2 to 16 with the interval of 2. 
Dimension of feature vector was chosen from 10 to 100 with the interval of 
10. Negative start time point of emergency samples means that the time point 
is before the occurrence of emergency situations and positive value means 
the time point is after the occurrence of emergency situations. 
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Furthermore, we can see that the IDA and whole system both 
show relatively small variation in the FAR, HR, and SA across 
all subjects. However, they show relatively large variation in 
RT. The comparison in all measures between the proposed 
methods and benchmark method in [19] is shown in TABLE II.  

We can see that, on average, the proposed EEG-based 
method of emergency braking intention detection reduces the 
FAR from 5.78% to 2.52% and the RT from 420 ms to 349 ms, 
and increases the SA from 94.05% to 95.55%, while having the 
almost same HR (93.89% VS 93.61%). If an emergency braking 
intention meant an emergency situation, compared to the 
method reported in [19], the proposed method of emergency 
situation detection would reduce the FAR to 0.0172% and 
improve the SA to 96.94%, but increases the RT to 499 ms, on 

average.  
Multiple one-way ANOVAs with significance level set to be 

0.01 showed that there was significant difference in FAR 
between each of the three methods (all p<0.002). There was no 
significant difference in HR between the benchmark and IDA 
(p=0.993), benchmark and whole system (p=1), and IDA and 
whole system (p=0.993). There was no significant difference in 
SA between the benchmark and IDA (p=0.512), benchmark and 
whole system (p=0.068), and IDA and whole system (p=0.462). 
The difference in RT was significant between the benchmark 
and IDA (p=0.007), but not significant between benchmark and 
whole system (p=0.098), and IDA and whole system (p=0.322). 

 
                                                     (a)                                                                                            (b) 

 
                                                     (c)                                                                                            (d) 
Fig. 6. Evaluation results of pseudo-online test. (a) False alarm rate. (b) Hit rate. (c) System accuracy. (d) Response time. 

 
Fig. 5. Selected features by correlation analysis for Subject 10. 
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To show the effect of the performance of the ODM on the 

performance of the whole system, we tested the performance of 
the proposed system under the condition of three representative 
ODMs (i.e., ODM1 with ψ( = 1.5%  and  ψ. = 95%, 
ODM2	with ψ( = 0.8%  and ψ. = 98.41%,  and ODM3 with 
	ψ( = 0.3%	and	ψ. = 100% ). As shown in Fig. 7, it was 
found that better performance of the ODM can lead to better 
performance of the proposed system given the performance of 
the proposed IDA. 

 
B. Online Experimental Results  
1) Real-time Detection System implementation 

In order to perform the online experiment, we set up the real-
time detection system of emergency braking intention (as 
shown in Fig. 8, which consists of a digital brain wave 
measurement system of the SYMTOP company, China, a 
MinnowBoard-Max-Dual embedded hardware system of Intel 
company, a driving simulator, and a computer running the 
virtual vehicle with the driving scene. The embedded hardware 
system received the collected EEG data and output of the ODM 
and outputted 10 detection results per second.  
 

2) Experimental Procedure 

Two male subjects (aged 23 and 26) participated in the online 
experiment after their models were trained offline using the 
offline protocol in [19]. The online experimental protocol was 
reviewed and approved by the local research ethics committee 
and subjects signed the informed consent forms. In online 

experiment, 30 trials were conducted in a driving simulator 
located in a laboratory for each subject using the same 
simulated path and speed. Three adjacent pedestrians with 1-
meter space stood on the right side of the lane. Their positions 
were randomly designated between 1000 m and 1500 m relative 
to the origin of the road and unknown to subjects. The 
emergency situations were simulated by letting one of the 
pedestrians crossing the road at the position of 60 m in front of 
the vehicle in every trial. Once the proposed system detects the 
emergency situation, the vehicle will brake immediately and the 
current trial will end. One of the scenes of the online experiment 
is shown in Fig. 9.  

 
 

 
3) Results 

TABLE III shows the pseudo-online and online testing 
results of the proposed detection method of emergency 
situations for the two subjects. We can find that the proposed 
method shows good online performance with the FAR of 0.05%, 
HR of 89.83%, SA of close to 95%, and RT of 540 ms. However, 
compared to pseudo-online testing results, online testing results, 
online testing results in all measures got worse. The main 
reason for this difference in performance might be that the 
online task was changed from a “if-and-when” task to “when” 
task. That means, the certainty of emergency events increase as 
the task progresses since there were three pedestrians in fixed 
locations and subjects knew that one of them would step out. 

 

TABLE II 
COMPARISON OF THE AVERAGE RESULTS ACROSS SUBJECTS AMONG 

METHODS  

 FAR HR SA RT (ms) 

Benchmark 
in [19] 5.78% 93.89% 94.05% 420 

IDA 2.52% 93.61% 95.55% 349 

Whole 
System 0.0172% 93.89% 96.94% 499 

 

 
Fig. 7. Performance of whole system with different ODM. 
(a) False alarm rate. (b) Hit rate. (c) System accuracy. (d) 
Response time. 
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Fig. 8. Structure of real-time detection system 
 

 
 

Fig. 9. Online experimental scene  
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IV. DISCUSSION AND CONCLUSION 
In this paper, we have proposed a novel method of 

emergency situation detection by combining driver EEG signals 
with surroundings. We first built a novel EEG-based model to 
detect driver emergency braking intention and then fused the 
result of the EEG-based model of emergency braking intention 
detection with that of the obstacle detection model based on 
surrounding information to recognize emergency situations. 
The pseudo-online testing results showed that, compared to the 
method reported in [19], on average, the proposed EEG-based 
method of emergency braking intention detection reduced the 
FAR from 5.78% to 2.52%. If an emergency braking intention 
meant an emergency situation, compared to the method 
reported in [19], the proposed method of emergency situation 
detection would reduce the FAR to 0.0172%.   

Furthermore, we have implemented a real-time detection 
system of driver emergency braking intention on an embedded 
hardware and performed the driver-in-the-loop-experiment of 
the proposed detection method of emergency situations. The 
online experimental results showed that the proposed method 
of emergency situation detection can detect emergency 
situations with the SA of 94.89%, HR of 89.83%, FAR of 
0.051%, and RT of 540 ms. Compared to the average (833.7 ms) 
of brake pedal response time of the 12 subjects, the proposed 
system issued a braking command 293 ms earlier. Furthermore, 
it had similar response time to that of a typical ODM [21]. This 
shows the potential of developing such detection system.  

This study is important for the future development of brain-
controlled and self-driving vehicles in at least two implications. 
First, it can help address the driving safety under emergency 
situations by detecting the braking intention of drivers from 
EEG signals. Second, it provides some new insights into 
integrating humans with driving automations. For example, the 
proposed EEG-based emergency intention detection may be 
expanded to detect other driving intentions or human states. 
According to these detected intentions or states of humans, self-
driving vehicles can adjust their behaviors to make humans 
possess better user experience. 

From a wider perspective, the proposed methods open a new 
avenue on how to achieve better human-machine integration. 
For example, the intentions and states of humans can be 
detected via physiological signals and thus transmitted to 
machines in a manner that does not depend on overt human 
behaviors. Machines can use these detected intentions and 
states as additional information to improve their intelligence 
and performance. 

However, a significant amount of work still needs to be done 
before such system would be useful in a real vehicle on real 

roads among real pedestrians and they may open future research 
opportunities along this direction.  

First, given that the hit rate of the ODM was about 98%, the 
online hit rate of the proposed system was about 90%, which 
means that it would still hit a minimum of one out of 10 
pedestrians. One major reason for the proposed system 
decreasing the false alarm but not increasing the hit rate is that 
it was designed to work on the convergent recognition by the 
IDA and ODM. It is critically important to improve the hit rate 
of the proposed system since any missing hits can lead to a 
danger of collision for the real application. One potential 
solution to increase the hit rate of the system is to redesign the 
working procedure of the system. For example, since the ODM 
can detect an obstacle (a possible emergency event) a relatively 
long time before the real emergency event happens, the ODM 
can alert humans to make them pay attention to roads, once it 
detects an obstacle. This would be helpful to decrease the 
missing rate of the IDA and thus improve the hit rate of the 
whole system. How to alert humans and how the IDA and ODM 
are integrated and collaborate need to further be investigated 
and are potential research avenues to increase the performance 
of the whole system in this direction. 

Another potential solution is to improve the hit rate of the 
ODM and IDA models by using other advanced techniques. As 
the development of the sensing, image processing, and machine 
learning techniques, the hit rate of the ODM should be able to 
be further increased. Furthermore, the hit rate of the IDA may 
be improved by using the combination of features from 
different domains (e. g., temporal, spectral, and spatial domains) 
of EEG signals and nonlinear classifiers. It can be also 
improved by combining other physiological information and 
behavior data with EEG signals.  

Second, there are several limitations in the experimental test 
of the proposed system, which need to be further addressed. The 
first limitation is that the actual physical properties of the 
vehicle and road were not emulated completely. The second one 
is that the uncertainty of the occurrence of emergency events 
was small. In real-world conditions, greater uncertainty would 
be present and the performance of the system might be 
decreased. The third one is that the time length (1.44 minutes) 
of each trial was short for testing the performance of the 
proposed system, which involved a method to adapt the EEG 
classifier to drift over time. Under real-world conditions, one 
would drive for much longer time and greater drift in the 
performance of the EEG classifier would likely occur due to the 
fatigue and attentional drift of humans.  The fourth limitation is 
that we used sudden crossings of pedestrians as emergency 
situations in a simple driving scenario. However, other 
emergency situations and more complex driving conditions 
would exist in real world. These driving conditions (like road 
type, vehicle speed, and traffic condition) may affect driver 
braking response and thus influence the performance of the 
proposed detection system. 

Our future work will focus on addressing the limitations 
mentioned above, including redesigning the integration and 
collaboration rules of the IDA and ODM, improving the EEG-
based method of emergency braking intention prediction by 
combining other physiological information and behavior data 
with EEG signals and using nonlinear classifiers, and further 

TABLE III PSEUDO-ONLINE AND ONLINE TESTING RESULTS OF THE 
PROPOSED METHOD OF EMERGENCY SITUATIONS 

 FAR HR SA RT (ms) 

Pseudo-online 0.028% 96.67% 98.32% 507 

Online 0.051% 89.83% 94.89% 540 
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testing the proposed system by emulating actual physical 
properties of the vehicle and road, increasing the uncertainty of 
the occurrence of emergency events, and the length of driving 
trials. 
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