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Abstract	

Objective: Despite the effective application of deep learning in brain-computer interface 
(BCI) systems, the successful execution of this technique especially for inter-subject 
classification in cognitive BCI has not been accomplished yet. In this paper, we propose a 
framework based on deep convolutional neural network (CNN) to detect attentive mental 
state from single-channel raw electroencephalography (EEG) data. Approach: We develop an 
end-to-end deep CNN to decode the attentional information from EEG time-series. We also 
explore the consequence of input representations on the performance of deep CNN by feeding 
three different EEG representations into the network. To ensure the practical application of 
the proposed framework and avoid time-consuming re-trainings, we perform inter-subject 
transfer learning techniques as classification strategy. Eventually, to interpret the learned 
attentional patterns, we visualize and analyze the network perception of attention and non-
attention classes. Main results: The average classification accuracy is 79.26% with only 
15.83% of 120 subjects having the accuracy below 70% (a generally accepted threshold for 
BCI). This is while with inter-subject approach, it is literally hard to output high classification 
accuracy. This end-to-end classification framework surpasses the conventional classification 
methods for attention detection. The visualization results validate that the learned patterns 
from raw data are meaningful. Significance: This framework significantly improves the 
attention detection accuracy with inter-subject classification. Moreover, this study sheds light 
into the research on end-to-end learning; the proposed network is capable to learn from raw 
data with the least amount of pre-processing which in turn eliminates the extensive 
computational load of time-consuming data preparation and feature extraction.  

Keywords: Attention, BCI, Convolutional Neural Network, Deep Learning, EEG, End-to-end Learning, Inter-subject 
Transfer Learning 

 

1.	Introduction	

With the advent of deep learning (DL), the state-of-the-art 
classification strategies and many other artificial intelligence 

tasks have been vastly improved. The emergence of deep 
learning can be associated with the advancement of neural 
network, which itself dates back to the time that researchers 
had a desire to model the human brain [1]. The most popular 
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types of deep neural networks include deep belief nets [2], 
recurrent neural networks [3], and convolutional neural 
networks (CNN). By achieving notable success in ImageNet 
challenge [4, 5], deep CNN has become the centre of attention. 
In this paper, we have also built our methodology on CNN.    

Deep learning first found successful applications in the 
fields of speech recognition and computer vision [6] and then 
gained attraction in other research areas like brain-computer 
interface (BCI) [7, 8], which is the domain of our research in 
this paper. A BCI system records, processes, and translates 
brain signals into output commands for a wide variety of 
applications such as assistive technology, neuro-
rehabilitation, and cognitive enhancement [9]. Among 
different techniques for brain signal recording, 
electroencephalography (EEG) is the most studied modality in 
BCI research [10]. It provides a portable, non-invasive, and 
low-cost solution to capture the signal with high temporal 
resolution. 

EEG-based cognitive BCI, which is the scope of this study, 
aims at assessment and enhancement of cognitive functions 
such as attention [11-14]. In these kinds of BCI systems where 
the subject’s attention level serves as a control signal, it is 
crucial to precisely detect attentive mental state from EEG. In 
this paper following our previous work [15], we addressed the 
problem of attention detection from single-channel EEG by 
introducing a novel framework.  

The prior-art methods for monitoring attentive mental state 
are mostly associated with specific fluctuations in EEG 
frequency bands. Plenty of studies have investigated attention-
induced fluctuations in beta [16, 17], alpha [18-20], and 
engagement between different frequency bands [21, 22].  
Overall, they report that increased activity in high-frequency 
bands like beta is an indicator of attentional arousal. 
Decreased theta beta ratio, alpha activity, and theta activity 
also indicate higher attentive behaviour. In these studies 
attentional information stored in spatial EEG has been 
underestimated.  

Taking the importance of spatial information into account, 
Hamadicharef et al. introduced a novel approach for attention 
level measurement from EEG [23]. Using two filters in a row 
including filter bank (FB) and common spatial pattern (CSP), 
they extracted spectral-spatial features from EEG which was 
recorded using multiple electrodes placed in various brain 
regions. Then, the extracted features were sent to a fisher 
linear discriminant (FLD) classifier for classification task 
[23]. Their approach outperformed the conventional methods 
based on only spectral features. In case of lack of spatial 
information (i.e. single-channel BCI), Fahimi et al. introduced 
a framework to differentiate attention from non-attention in a 
subject-specific manner [24]. They extracted several relative 
and ratio frequency band powers and performed mutual 
information (MI)-based feature selection to find the most 
informative features for each individual.  

Overall, in current methods of feature extraction, reduction 
of the signal into a few values neglects the dynamics of the 
signal and its temporal information. In addition to this 
problem, building a classification framework which is able to 
deal with the non-stationarity and high-dimensionality of EEG 
has been always a big challenge [25]. Deep convolutional 
neural networks with their ability in handling high-volume 
datasets, better learning algorithms and faster computational 
resources are becoming a superior alternative for EEG 
classification task.  

Although to the best of our knowledge DL has not been 
utilized so far for the detection of mental attention from EEG, 
there have been some attempts to apply DL for other purposes 
in EEG-based BCIs. Rezaei Tabar and his colleagues boosted 
the classification accuracy of motor imagery (MI) BCI by 
proposing a deep network composed of CNN and stacked 
auto-encoders (SAE). In their work, EEG was converted into 
images using short time Fourier transform (STFT). Then, 
these images were fed into a 1D CNN (convolution over time) 
for feature learning. The learned features  were then sent  into 
a SAE network for classification [26]. The performance of 
their proposed network was investigated on BCI competition 
IV-2b dataset. The authors report that their methodology 
achieves a higher classification accuracy than the winner of 
the competition [26]. Jirayucharoensak et al. also used SAE to 
build a deep learning network [27]. They extracted principal 
components of power spectral densities from 32 EEG channel 
as input to their proposed DL network comprised of three 
auto-encoders and two softmax layers in order to classify 
different levels of emotion [27].  

In a more recent study, Sakhavi et al. developed a new 
classification framework for MI-based BCI by introducing 
envelop representation of EEG using Hilbert transformation 
and passing it through a CNN [28]. Their data representation 
was inspired by filter-bank common spatial pattern (FBCSP). 
They claim that by applying their algorithm on BCI 
competition IV-2a dataset, they beat the state-of-the-art 
classification accuracy reported so far [28].  

In another work, Lu et al. introduced a deep learning 
network based on restricted Boltzmann machine (RBM) for 
MI classification. They named it frequential deep belief 
network (FDBN). In FDBN, frequency representation of EEG, 
generated using fast furrier transform (FFT) and wavelet 
decomposition techniques, passes through three RBMs and an 
extra output layer for classification [8]. Zhang and Li also 
employed RBM to develop a deep learning scheme but for a 
different purpose; mental workload (MWL) classification 
[29]. They considered EEG channels with relatively higher 
importance simply based on the network weights between 
input layer and the first hidden layer. Another study used 
recurrent-convolutional neural network for MWL 
classification [30]. In their approach, EEG time series were 
transformed into spectral images before being used in the deep 
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recurrent-convolutional network. They suggest that such 
representation of data preserves temporal, spectral and spatial 
information [30]. 

Ma et al. targeted at learning discriminative motion-onset 
visual evoked potentials (mVEP) features by using a 
combination of multi-level compressed sensing and RBM 
[31]. They report that deep features, obtained from this 
method, perform better than conventional amplitude-based 
features. They used support vector machine for classification 
[31]. The aspect which should have been further considered in 
their work is optimal channel selection. It is more efficient to 
consider only channels with strong visual evoked potentials 
and exclude those with irrelevant information. 

In order to provide an insight into the neurophysiological 
phenomena affect the decision of deep neural network (DNN), 
Strum and colleagues put forward the idea of using layer-wise 
relevance propagation (LRP) with DNN. In their 
methodology, LRP in a backward way decomposes the 
network decision into some values which are defined as the 
relevance of each input component with the decision [32]. In 
term of classification accuracy, their methodology did not 
outperform the common spatial pattern with linear 
discriminant analysis (LDA) classifier.  

In the present paper, as a follow-up to our previous  work 
[15] , we enhance the detection of attentive mental state from 
EEG signal by building an effective CNN-based classification 
framework. We develop a framework which addresses the 
problems of: 1) deterioration of classification accuracy due to 
information loss caused by feature extraction, 2) inter-subject 
transfer learning, and 3) interpretability of what CNN learns. 
To address the first problem, we develop an end-to-end 
network that can efficiently learn from raw EEG data instead 
of pre-extracted properties. This also removes the 
computational load of unnecessary processing. To solve the 
second issue, we implement the classification strategy with 
inter-subject transfer learning techniques. In one approach, the 
network learns a general model based on the data from a pool 
of subjects. Then, it transfers the knowledge to a new subject. 
In a more adaptive approach, the model will be updated based 
on a subset of new subject’s samples.  In this way, the 
problems of time-consuming re-trainings and low inter-
subject classification accuracy will be addressed. It also 
guarantees the application of the proposed framework for real-
time BCI systems. Finally, to interpret the features learned 
through the network, we visualize the network perception of 
each class (attention/non-attention). The comparison of the 
proposed method with the baseline methods [22]  verifies that 
the introduced framework outperforms the state-of-the-art 
performance. The proposed framework has been also applied 
on a multi-channel dataset to investigate the performance and 
generalizability of the method. The results suggest that the 
end-to-end framework is promising for multi-electrode setting 
as well. 

The rest of this paper is organized as follow: Section 2 
describes the data and recording protocol. It then continues 
with presenting the proposed methodology including pre-
processing, data representations and deep CNN structure. 
Section 3 presents the results and section 4 provides a 
comprehensive discussion. Finally, section 5 concludes the 
study.  

2.	Materials	and	Methods	

2.1	Data	

This study uses EEG data collected from healthy subjects 
as part of a clinical trial registered under NCT02228187 in 
clinicaltrials.gov. Note that this study is not a clinical trial and 
does not report on clinical outcomes, it only uses the EEG 
data.  

A total number of 120 healthy subjects performed the 
Stroop color test which is a well-known task to study attention 
[33, 34]. It can be traced back to John Ridley Stroop who 
reported the Stroop effect in his work in 1935 [35]. Then, it 
gained great attraction in the fields of cognitive sciences and 
psychology such that a wide variety of experiments based on 
Stroop effect have been studied in these fields [33, 36].  

During test, a colored word was presented on a screen and 
subjects were asked to name the color in which word is 
written. In fact, subjects were experiencing a conflict of 
information; what the word says and what is the color of the 
word. Thus, subjects needed to obtain and maintain their 
attention during Stroop color task [37]. During each session, 
participants performed 40 repetitions of Stroop test (attention) 
followed by a rest period (non-attention). Therefore, they 
underwent a change of mental state (attentive/non-attentive) 
during the task. Overall, each session took approximately 10 
minutes. Figure 1 shows the recording protocol and an 
example of task demonstration. 

To ensure the easement of elderly participants in the long-
term treatment program, their brain activity was recorded 
using a dry EEG headband with a single bi-polar channel 
which was positioned at the frontal area (Fp1-Fp2). The 
sampling frequency was 256Hz. There are strong evidences 
from several studies which prove the efficiency of frontal EEG 
channel in studying attention-related tasks [11, 14, 22, 24, 38]. 

2.2	Pre-processing	

We applied a 2s sliding window with 50% overlapping to 
segment the continuous EEG time series. The rationale behind 
choosing 2s for EEG segment length was that the subjects took 
2s on average to respond to each question in Stroop task. Data 
were visually screened to discard noisy trials. Additionally, 
since the maximum amplitude of EEG recorded from scalp is 
100 µv [39], we set a threshold at ±100µv to discard the 
segments affected by ocular artefacts or other noises. We also 
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filtered EEG above 0.5Hz to eliminate any plausible low-
frequency artefacts that remained. 

2.3	Deep	CNN	

2.3.1	Input	Representation	
To preserve the information and minimize the 

computational load, we prepare raw EEG with minimal 
amount of processing as input. In fact, we avoid any pre-
feature extraction and/or transferring EEG into image which 
are the main sources of information loss and computational 
costs. Based on the single-channel EEG data which provide a 
1D input for the network, we defined 3 input representations 
for the network without pre-extracted features. In all 
representations, the segments were down-sampled by 3 with 
respect to the original value of 256Hz, resulting in 171 time 
points for 2s intervals. 
• Data Representation 1 (DR1): Raw EEG data were pre-

processed as described in section 2.2.  
• Data Representation 2 (DR2): Raw EEG segments were 

band-pass filtered at 0.5-40 Hz.  
• Data Representation 3 (DR3): Raw EEG segments were 

filtered at 5 classical bands; δ (0.5-4 Hz), θ (4-8Hz), α 
(8-12 Hz), β (12-30 Hz), and low γ	(30-40 Hz). 

Note that in all representations, the data were first pre-
processed as described in section 2.2 in order to remove 
artefacts. 

2.3.2	Network	Architecture	
The early convolutional neural network (LeNet-5) 

introduced by LeCun [40], was composed of a sequence of 
convolution and pooling layers. Since then, numerous 
attempts have been made to upgrade the CNNs through some 
extensions such as batch normalization [41] and dropout [42] 
in order to accelerate training, avoid over-fitting and better 
preserve the information. In this study, we also exploit of 
some of these techniques. 

In convolutional layers, the filter (kernel) convolves over 
input and produces element-wise multiplications. These 
numbers will be summed up and produce a single value for 
that receptive field. Repeating this procedure by sliding the 
filter all over the input generates a single value for each 
receptive field. It will eventually produce the activation map 
or feature map as the output of convolutional layer. Using the 
subsequent pooling layer targets at reducing the dimension of 
feature map by replacing each patch with a single value based 
on the operation of interest (for example maximum for max-
pooling). As the input passes through the layers, the high level 
feature maps will be generated. For classification tasks, the 
last layer of CNN is a fully-connected layer which takes the 
output of the previous layer and outputs an n-dimensional 
vector (n is the number of classes). In Softmax, for example, 
each element of this vector represents the probability that the 
original input belongs to the corresponding class. In this 
procedure, the network parameters are learned through back-
propagation.  

In the present study, the EEG data representations, as 
described in section 2.3.1, are imported into the network as 
input. Since the input data are time series, 1D filter has been 
used across time for convolution. The effectiveness of using 
1D filter across time even for 2D inputs has been proven in the 
literature [26, 28]. To generate high level features, we inserted 
three convolutional layers with 1D filter for the network. The 
first layer with 60 filters and kernel size 1×4 is followed by a 
max-pooling layer with pool size 1×2. The output of max-
pooling passes through the second convolution layer with 40 
filters and kernel size 1×3. Finally, after the third convolution 
layer with 20 filters and kernel size 1×2, the generated feature 
maps are flattened into a vector. This vector then passes 
through a dropout layer with the probability of 20% before 
being fed into the first fully connected layer of size 100.  Then, 
we inserted the second dropout layer with the probability of 
30% before the second fully connected layer (Softmax) to 
overcome the over-fitting. Finally, the features are fed into the 
Softmax layer for classification. Note that by decreasing the 
temporal dimension over layers, a smaller kernel size is used. 
The activation function of type rectified linear unit (ReLU) 
has been employed after each convolution layer and the first 
fully connected layer. For the optimization algorithm,  we 
applied the ADAM method [43]. Figure 2 depicts the 
schematic diagram of end-to-end deep CNN-based 

	
(a) Recording protocol; Stroop test followed by a rest period. 

 

	
(b) An example of test demonstration 

	
(c) Segmentation of EEG with reference to question onset. 

Figure 1. Stroop color task- (a) recording protocol, (b) test display, and 
(c) segmentation diagram. 
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classification framework for inter-subject transfer learning in 
BCI. 

3.	Results	

In this work, the deep learning experiments were conducted 
in a Python environment on an Ubuntu system powered by 
NVIDIA GeForce GPU. The baseline methods, which have 
been described below, are implemented in Matlab R2013b 
environment on an Intel Xeon CPU @3.5GHz with 16 GB 
RAM (except the classification stage of baseline 1 that is done 
in Python). 

3.1	Baseline	

In order to provide a fair baseline for the proposed 
technique, we implemented the classification framework as 
introduced in [22] for the single-channel data to classify 
between attention and non-attention. Additionally, to be 
consistent with the proposed data representations, we 
performed the conventional feature extraction and 
classification method using the same frequency bands as 
described in data representation 3. Note that other techniques 
for attention detection/measurement presented in other studies 
exploit the spatial information of multi-channel EEG [23] 
which is not feasible to implement in the case of single-
channel EEG.  

According to the method in [22], frequency band energies 
including delta (0.5-3Hz), theta (4-7Hz), alpha (8-13Hz), beta 
(14-30Hz) and alpha beta ratio were extracted using fast 
furrier transform (FFT) and sent into support vector machine 
(SVM) with polynomial kernel function for classification.  

As second baseline, we band-pass filtered the data in 5 
subsequent frequency bands including δ, θ, α, β and low γ (as 
described in DR3) using Chebyshev type II. Then, the band 
powers were computed (mean of squared values) and sent into 

LDA for classification. Note that unlike [22] which used  k-
fold cross validation, we performed inter-subject classification 
approach (leave-one subject-out)  in both baseline methods to 
provide fair comparison with the results of deep CNN. The 
baseline 1 reached an average accuracy of only 50.70%. 
Additionally, to improve the accuracy, we normalized the 
features of baseline 1. As a result, the average accuracy 
improved to 67.90%. Table 1 left side summarizes the baseline 
results. As can be seen, baseline1 and 2 respectively led to the 
average accuracies of 67.90 and 68.23 with no statistically 
significant difference between them (p_value= 0.87). More 
than 50% of subjects have accuracy below 70% (as accepted 
threshold for BCI performance [44, 45]). It requires a lot of 
effort to increase the accuracy for these subjects. 

We found another study which has attempted to classify 
attention from frontal single-channel EEG data [46]. In this 
study, the neurosky device was used for EEG recording. This 
device generates the attention indicator and some other 
information such as frequency band powers. The authors 
simply used the attention indicator obtained from the device 
to detect attentive state using LDA classifier. Initially, 10 
subjects were involved in the experiment but 4 of them failed 
to control their attention level (based on the attention 
indicator) and were excluded. Thus, the classification was 
done on the small population of 6 subjects. The average 
accuracy is 79.5% based on table 7 in their paper. The main 
limitation of their work, beside small sample size, is the way 
of classification that is done for each subject on each session 
separately and then averaged over sessions. This simplified 
way of classification (within subject and within session) will 
be certainly deteriorated by subject-to-subject and session-to-
session variations. They also reported that including 
frequency band powers did not improve the classification 
accuracy. Note that since the attention indicator used for the 
classification is generated by the recording device and no 

 

Figure 2. Schematic diagram of end-to-end CNN-based classification framework for transfer learning. The first tuple under convolution refers to kernel 
size and the second tuple shows the stride. After learning process, the learned features will be classified by softmax. The left boxes are respectively 

associated with data representation 1, 2, and 3. Note that in the case of data representation 3, the input EEG fed into the network is stored in 5 frequency 
channels but the network structure remains the same.		
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details of the algorithm are provided, it was not feasible to 
implement their methodology as baseline for our data. 

3.2	Deep	CNN	with	leave-one	subject-out	

In leave-one subject-out (LOO) approach, a generalized 
network will be learned using the data from a pool of subjects 
(source) and then the learned knowledge will be transferred to 
the new subject (target). This is actually a type of inter-subject 
transfer learning. Since retraining is not required, this method 
will be relatively less computationally demanding. In this 
study, we trained the network on the data from all the subjects 
excluding target subject and transferred the information to the 
target subject. Execution of this method led to the significantly 
better accuracies than baseline (p_value<0.0001) with 7.92% 
improvement on average. The average accuracies for DR1, 
DR2, and DR3 are respectively 76.20%, 75.07%, and 76.68% 
with no statistically significant difference between them. This 
method also showed considerable drop in the percentage of 
subjects with accuracies below 70% (as threshold [44, 45]) 
with only 26.67%, 24.17%, and 23.34% of total 120 subjects 
for DR1, DR2 and DR3 respectively. 

3.3	Deep	CNN	with	subject	Adaptation	

Although zero-shot learning method evades long time 
trainings for new subject’s data, this approach might 
encounter the problem of information change/shift when 
transferring the knowledge from the source to the target. To 
resolve this issue, we conducted the adaptive method in which 
retraining is done on a small sample size of new subject’s data. 
In this way, the problems of excessive re-training time and 
information shift can be both addressed.  

In this study, we used half of new subject’s samples for 
adaptation (2-fold). This strategy surpasses the baseline and 
LOO methods by achieving 79.26%, 78.12% and 79.86% 
average accuracies for DR1, DR2 and DR3 respectively. This 
means, on average, 11.02% increase compared to baseline 
(p_value<0.0001) and 3.10% increase compared to LOO 
(p_value<0.01). The population of subjects with poor 
performance decreased to only 15.83%, 17.50%, and 15.83% 
of total 120 subjects for DR1, DR2, and DR3 respectively. 
Table 1 summarizes the results of the baseline and end-to-end 
deep CNN methods. The performance of the different methods 
discussed can be visually compared in the box plot of the 
results shown in figure 3. Overall, CNN with subject 

 
Table 1. Average Accuracy for Baseline and Proposed Methods. Std Refers to Standard Deviation. 

 
BASELINE METHODS END-TO-END DEEP CNN WITH TRANSFER LEARNING METHODS 

FFT-SVM [22] DR3 -LDA 
CNN-LOO CNN-SUBJECT ADAPTATION 

DR1 DR2 DR3 DR1 DR2 DR3 
ACCURACY (STD) 67.90(11.02) 68.23(10.89) 76.20(8.98) 75.07(8.50) 76.68(8.80) 79.26(7.67) 78.12(7.75) 79.86(7.69) 

RANGE (MIN-
MAX) 

64.56(22.06-
86.62) 

62.06(26.31-
88.37) 

44.06(48.24
-92.30) 

44.45(46.84
-91.29) 

40.46(51.92
-92.38) 

35.24(58.45
-93.69) 

38.67(53.15
-91.82) 

36.02(58.78
-94.80) 

POPULATION 
WITH 

ACCURACY<70% 
54.17% 50.84% 26.67% 24.17% 23.34% 15.83% 17.50% 15.83% 

	

	

Figure 3. Comparing the performance of baseline and end-to-end deep CNN methods in attention detection. Classification framework based on deep 
CNN (both strategies; LOO and subject adaptation) significantly outperforms the baseline methods. Note that there is no statistically significant 

difference between methods in each group (baseline, Deep CNN with LOO, and Deep CNN with subject sdaptation). P_values are calculated using 
Wilcoxon test. The circles are the outliers; subjects with smaller accuracy than the lower extreme. 
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adaptation technique achieves the best performance. Although 
there is a statistically significant difference between CNN 
methods (LOO and subject adaptation), there is no significant 
difference between data representations within each method.  

3.4	Results	on	a	multi-channel	public	dataset	

In order to investigate the generalizability of the proposed 
framework, we applied the network on a multi-channel 
dataset. The data has been collected for a study on covert 
attention [47]. A total number of 8 healthy subjects (18-27 
years old) participated in the experiment and their EEG was 
recorded using a 64-channel cap with the electrodes placed 
based on international 10-10 system. The sampling frequency 
during recording was set at 1000Hz which later it was down-
sampled to 200Hz. The experiment includes the sequences of 
attention, response, and rest. We have segmented the EEG 
during attention and rest parts for classification task. Based on 
the original study on this dataset [47], a subset of 9 electrodes 
including PO3, 4, 7-10, Oz, O1, and O2 are the optimal 
electrodes for studying attention. We have also used these 9 
recommended electrodes in our study. 

As the first baseline for multi-electrode dataset, we 
implemented the popular method of Filter Bank Common 
Spatial Pattern (FBCSP) [48]. The methods of Mutual 
Information-based Best Individual Feature (MIBIF) and 
Naïve Bayesian Parzen Window (NBPW) have been used for 
feature selection and classification respectively, the same as in 
[48]. Beside classification with LOO, which provides the 
results for fair comparison with end-to-end framework, we 
also performed intra-subject classification with 10-fold cross 
validation. 

The second baseline we used is the method of shallow CNN 
as introduced in [7]. This network, which they call it shallow 
ConvNet, is inspired by the method of FBCSP. Briefly, it has 
two hidden layers that perform temporal convolution and 
spatial filtering for band power feature decoding. They report 
that, unlike FBCSP, this method jointly optimizes all the 
computational steps through a single network [7].  

Table 2 presents the results. Overall, shallow ConvNet, 
which is built based on FBCSP, beats the method of FBCSP 
and end-to-end deep CNN outperforms both baseline 
methods. Comparing LOO results, the performance of the 

proposed method is significantly better than FBCSP 
(+18.31%, P_value<0.001) and shallow ConvNet (+6.28%, 
P_value<0.001). In fact, the results of LOO classification with 
end-to-end framework are as good as the results of intra-
subject classification with FBCSP. This shows although 
FBCSP has a good performance in intra-subject classification, 
it fails to produce acceptable results when it comes to inter-
subject classification (19.21% decrease). The observations 
suggest that CNN-based methods can be potentially used to 
address this problem. The proposed end-to-end deep CNN 
decodes more than 70% of the EEG trials correctly for all the 
8 subjects.	

4.	Discussion	

4.1	End-to-end	CNN	by	learning	from	raw	EEG	data	
preserves	the	information	and	boosts	the	classification	
accuracy	

EEG classification with minimal pre-processing and 
feature extraction is always a worthy goal. For this reason, we 
conducted an exploratory evaluation of several data 
representations without pre-extracted features as input to 
CNN. The objective was to learn from raw EEG; end-to-end 
study. The first representation (DR1) is raw EEG with the least 
amount of pre-processing (to remove artefacts). CNN with this 
representation as input outperforms the baseline (p<0.0001) 
with 8.14% (LOO) and 11.20% (Adaptive) improvement in 
average accuracy. Going one step further in data preparation, 
we band-pass filtered the data at 0.5-40Hz (DR2) and fed it 
into CNN for classification. Interestingly, the average 
classification accuracy dropped by 1.13% in LOO (p>0.1) and 
by 1.14% in adaptive (p>0.1). Given the knowledge that the 
most used EEG frequency bands are δ, θ, α, β and low γ, we 
extracted these bands from EEG to obtain the third 
representation (DR3). Using DR3 as input produces slightly 
better results than DR1 (+0.48% in LOO and +0.60% in 
adaptive) which are not statistically significant (p>0.1). Based 
on the impact of data representations in classification 
performance, we can infer that deep CNN classification 
framework is capable to efficiently differentiate between 
attentive mental classes by learning from raw EEG data. It 
meaningfully removes the data preparation burden and sheds 

Table 2. Results on multi-channel dataset. Std Refers to Standard Deviation. 

 
FBCSP [48] SHALLOW 

CONVNET [7] END-TO-END DEEP CNN 

INTRA SUBJECT LOO LOO LOO ADAPTIVE 

ACCURACY (STD) 80.01(6.43) 60.79(6.74) 72.82(6.54) 79.10(7.60) 89.32(4.47) 
RANGE (MIN-

MAX) 18.83(72.83-91.67) 19.42(55.25-74.67) 16.27(65.33-81.60) 18.30(72.67-90.97) 11.69(82.66-94.35) 

POPULATION WITH 
ACCURACY<70% 0% 87.50% 50% 0% 0% 
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light on the utility of raw EEG time-series for classification 
tasks. 

4.2	Inter-subject	Transfer	Learning		

Transferring knowledge from one subject to another 
deteriorates the classification accuracy. For this reason, most 
of the studies usually perform intra-subject classification. 
However due to time-consuming calibration and re-training 
sessions, it’s been always a priority for BCI systems to transfer 
the knowledge learned from multiple subjects to the new 
target subject. In this study, we put forward a framework with 
inter-subject transfer learning techniques. It achieved an 
accuracy above 70% for 84.17% of the subjects, while the 
baseline methods with inter-subject transfer learning could 
hardly reach 70% (see table 1). Table 3 represents the 
confusion matrix in which class1 and class2 respectively refer 
to the attentive and non-attentive mental states. For all data 
representations, CNN with subject adaptation demonstrated 
less confusion between non-attentive and attentive mental 
states than LOO. This is indeed important when it comes to 
the application of EEG in diagnosis. Based on the average 
classification accuracy and confusion matrix, it can be seen 
that adaptive technique has better performance. It indicates 
that unlike LOO with naive knowledge transfer that faces the 
problem of information shift/change, the adaptive method 
efficiently conquers this problem without losing the time 
optimality.  

To evaluate the performance of proposed framework in the 
case of subjects with poor performance at baseline, we 
consider a threshold accuracy at 70% [44, 45].  A total number 
of 61 subjects out of 120 had accuracy below threshold at 
baseline 2 (the better baseline). The proposed end-to-end 
framework makes a dramatic increase of 10.84% and 15.09% 
in average classification accuracy of this group by LOO and 
adaptive method, respectively. Also, CNN with LOO and 
adaptive method decreases the size of this population from 
50.84% to only 26.67% and 15.83% respectively (see table 1). 
Notice that only the results of DR1 (raw EEG) are mentioned 
here. Figure 4 shows how end-to-end deep CNN method 
enhances the detection accuracy for those 61 subjects with 
accuracy below 70% at baseline. As it can be seen, the 
classification accuracy for 58 subjects out of 61 has been 
boosted which means 95.08% improvement. 

4.3	The	learned	patterns	are	interpretable	

Beside quantitative analysis, it is important to obtain an 
understanding of what the network has learned from the input 
EEG data. Inspired by the visualization techniques in image 
processing, we used a back-propagation-based method to gain 
an insight into the network learning. To do so, we performed 
activation maximization technique to visualize the perceived 
input from the network [49]. In this method, we look for an 
input pattern that maximizes the activation of class 𝑐. In other 

words, we solve the below optimization problem by means of 
back-propagation technique: 
𝑥∗ = 𝑎𝑟𝑔𝑚𝑎𝑥)(𝑎+ 𝑥, 𝜑 − 𝑅q 𝑥 ) (1) 

Where 𝑎+ is the activation of the input signal 𝑥 with the 
network parameters 𝜑, 𝑅q 𝑥  is the regularization term with 
parameters q, and 𝑥∗ is the desired input pattern. In fact, 𝑥∗ is 
an input that when fed to the network results in class 𝑐. That 
is to say, this perceived input is what the network recognizes 
as class 𝑐. We used LP-norm (in our case, p=6) as 
regularization function. 

The perception of the network from each class is plotted in 
figure 5. The interest is to understand what the network learns 
from neural data (EEG) and whether the learned information 
is meaningful. Interestingly, we observed that the network 
constructed a perceived input which has similar manifold to 
the original data. The patterns the network has learned from 
raw data (DR1) for attentive and non-attentive states are easy 
to distinguish. The attention class encompasses high-
frequency components while the non-attention class shows 

	
 Figure 4 Classification accuracy for subjects with poor performance 
(<70%) at baseline. For simplicity in comparison only baseline2 and 
Deep CNN with LOO on DR1 are plotted. The end-to-end deep CNN 

framework dramatically increases the performance of these subjects by 
10.84% increase in the average accuracy and 50.82% decrease in the 

number of these subjects (61 reduced to 30). 

Table 3. Confusion Matrix of the Deep CNN Classification Results. 
CNN with LOO 

 Class 1 Class 2 
 DR1 DR2 DR3 DR1 DR2 DR3 

Class 1 81.32 77.45 82.02 18.67 22.54 17.97 
Class 2 28.92 27.25 28.59 71.07 72.74 71.40 

	
CNN with subject adaptation 

 Class 1 Class 2 
 DR1 DR2 DR3 DR1 DR2 DR3 

Class 1 78.77 77.81 79.26 21.22 22.18 20.73 
Class 2 21.17 22.55 20.40 78.82 77.44 79.59 
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low-frequency oscillations in its pattern. For further 
investigation, power spectral density (PSD) of these perceived 
inputs are computed using burg algorithm. Figure 5 (c and d) 
demonstrates the PSD over the most common frequency bands 
namely theta (4-8Hz), alpha (8-12Hz), beta1 (12-16Hz), beta2 
(16-20Hz), high beta (20-30Hz), and low gamma (30-40Hz).  
Interestingly, we observed that with change in mental state 
from non-attentive (class2) to attentive (class1): 

1) Beta activity increases.  
2) This excess in beta band is bolder in beta2.  
3) Theta activity diminishes.  
4) Theta beta ratio (TBR), which has been known as an 

attention indicator, decreases. This can be inferred from 
observations 1 to 3.  

These observations are consistent with the results of studies 
on attention-induced frequency oscillations [17, 21]. In our 
previous study (on a different dataset), we applied mutual 
information (MI)-based feature selection to discover the most 
discriminative attention-representative features [24]. 
Eventually, we found out that beta power and theta beta ratio 
are the most informative attributes for attention detection 
while theta power is not discriminative by itself [24]. Here, as 
a result of visualization, we ended up with similar 
observations but without any effort for feature extraction and 
selection. These findings suggest that the proposed network 
can successfully learn meaningful information from raw EEG 
data. It should be mentioned that EEG decomposition into 
frequency bands might affect the morphology of signal, cause 
loss of information, and form misleading information. By 
learning directly from raw EEG, the end-to-end CNN is 
capable to automatically detect the important frequency bands 
in attention detection without encountering the problems 
associated with EEG decomposition and feature extraction. 

To further investigate whether the learned signals lie on the 
manifold of real EEG signals, we applied the method of 
generative adversarial networks (GAN) to generate EEG from 
these learned signals instead of noise. The overall framework 
is presented in figure 6.  

After successful application of GANs in image generation 
[50], it has recently been used in a few studies on time-series 
data as well [51]. An interesting direction for the use case of 
GANs in EEG is to generate naturalistic EEG signals. This 
EEG generation has potential to be used in a range of 
generative applications such as restoration of corrupted EEG 
segments and EEG augmentation for BCI tasks. Here, we used 
GAN to further analyse the learned signals obtained from the 
activation maximization technique. We hypothesized that if 
the discriminator fails in recognizing the fake EEG, this would 
be a further evidence for the similarity between learned 
signals’ manifold and the manifold of EEG.  

The generator network consisted of 3 transposed 
convolution layers, each followed by batch-normalization. 
The discriminator network has 2 convolution layers, similarly 
each layer followed by batch-normalization. We used Leaky 
ReLU activation and Adam optimizer methods in both 
generator and discriminator networks. Figure 7 shows the 
preliminary results; (a) the generator and discriminator losses 
over iterations, and (b) a few samples of generated and real 
EEG. The outputs suggest that it is feasible to generate EEG 
from the learned signals by training a GAN. 

 
Figure 5. The visualization results. The plot in (a) is the network perception of class 1 (attention) and the plot in (b) is the network perception of class 2 

(non-attention). Attention class shows high-frequency oscillations while these components are disappeared in non-attention pattern. Power spectral density 
of signals in (a) and (b), over several frequency bands including alpha, beta1, beta2, high beta, and low gamma, is demonstrated in (c) and (d) respectively. 

As can be seen, beta, especially beta 2, has higher activity and theta has lower activity in attention class than non-attention class. These observations 
validate that the attentional information the network has learned is meaningful. 

	
 Figure 6 Training GAN to generate EEG from the signals learned by 

Deep CNN.   
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5.	Conclusion	

The emergence of deep learning techniques has highly 
enhanced the classification tasks in several areas such as 
speech and vision. In recent years, these networks have found 
meaningful applications in BCI systems as well. Huge amount 
of EEG time series can be fed into deep neural networks for 
classification tasks. EEG classification methods are prone to a 
notable drop in classification accuracy due to 1) loss of 
information and   2) transferring the knowledge inter subjects. 
When it comes to deep learning frameworks, another 
challenge arises; 3) the interpretation of what the network 
learns. To address the three challenges listed, we proposed a 
deep CNN framework for the classification of EEG into 
attentive/non-attentive mental states with the applications in 
cognitive BCI, game-based BCI, and neuro-rehabilitation. 

This technique avoids the loss of information by learning 
from raw EEG (addressing problem 1). The combination of 
convolutional, max-pooling, and dropout layers builds a 
network that outputs the significantly higher accuracy than 
conventional feature extraction and classification techniques. 
Furthermore, this framework majorly lessened the percentage 
of subjects with accuracy less than 70% (as a threshold for 
BCI). We investigated the performance of the network by 
importing two other EEG representations into the deep CNN 
and comparing the results with the ones from raw EEG. No 
statistically significant improvement was found in the average 
accuracies. This means that the proposed classification 
framework does not benefit from the processed EEG 
representations and except for artefact removal, any further 
processing is redundant. 

Unlike baseline methods, the end-to-end deep CNN 
framework does not suffer from transferring the learned 
knowledge to a new subject (addressing problem 2). We 
implemented inter-subject transfer learning methodologies 
(leave-one subject-out and subject adaptation) by training a 
generalized model for a pool of subjects and transferring the 
knowledge to the new subject or adapt the trained model based 

on the small amount of new subject’s data. This strategy is 
beneficial in implementation of real time BCI systems. The 
results also showed that the adaptive technique outperforms 
the LOO technique. Especially in case of subjects with 
relatively lower accuracy, adaptation helps the network to 
learn more optimal pattern for the attention detection.    

The visualizations verify that the learned attentive/non-
attentive patterns from raw EEG data are discriminative and 
meaningful; the presence of high-frequency elements can be 
seen in the attention class but not in the non-attention class 
(addressing problem 3). When brain is involved in attentional 
task, EEG has higher activity in beta band, especially in beta2, 
and lower activity in theta band. In other words, the network, 
without being directly trained on these features, will recognize 
that decreased theta power, increased beta power, and 
decreased theta beta ratio are the indicators of attentive mental 
state.  

Furthermore, the sufficient number of samples and 
regularization techniques such as dropout guarantee that our 
network does not face the over-fitting problem. Another 
advantage of this work is that unlike many other methods in 
which the input preparation stage is independent from the 
classification network, the proposed algorithm is an end-to-
end unified framework. 

One limitation of this study is that for the adaptive method 
we used a part of new subject’s samples to adapt the trained 
model. This means that compared to LOO, the size of training 
set is slightly larger (i.e. 0.4% larger, if we suppose all subjects 
have equal number of samples). This might be a possible 
reason for the improved performance. Implementation of 
adaptive method in a semi-supervised manner would 
effectively address this problem and is worth further 
investigation. Another caveat is the lack of automatic optimal 
parameter selection. This can be potentially addressed by 
using hyper-parameter optimization algorithms. 

Overall, this study indicates that deep learning by means of 
CNN is a promising classification technique for EEG which 
outperforms other techniques like LDA, SVM, and FBCSP. 
The observations suggest that by employing deep CNN, it is 

	
                                                      (a)                                                                                                   (b) 

Figure 7 Results of GAN training; (a) the generator and discriminator losses over iterations, and (b) a few samples of generated and real EEG.   
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possible to learn from raw EEG and successfully transfer the 
learned knowledge to a new target subject. The presented 
work can be applied for attention-based BCI systems and 
extended to other types of EEG-based BCIs.  

Acknowledgements	

The authors would like to thank the cooperation of I2R-
ASTAR and Duke-NUS members for data acquisition. Also, 
the participation of elderly subjects and their caregivers are 
greatly appreciated. 

References	

[1] Hebb D O 1949 The organization of behavior: A 
neuropsychological theory Psychology press  

[2] Hinton G E, Osindero S and Teh Y W 2006 A fast learning 
algorithm for deep belief nets Neural computation 18 1527-54 

[3] Lipton Z C, Berkowitz J and Elkan C 2015 A Critical Review 
of Recurrent Neural Networks for Sequence Learning 
arXiv:1506.00019  

[4] Krizhevsky A, Sutskever I and Hinton G E 2012 ImageNet 
classification with deep convolutional neural networks. In: 
Proceedings of the 25th International Conference on Neural 
Information Processing Systems (Lake Tahoe, Nevada: Curran 
Associates Inc.) pp 1097-105 

[5] Deng J, Dong W, Socher R, Li L J, Kai L and Li F-F 2009 
ImageNet: A large-scale hierarchical image database. In: 2009 
IEEE Conference on Computer Vision and Pattern Recognition, 
pp 248-55 

[6] LeCun Y, Bengio Y and Hinton G 2015 Deep learning Nature 
521 436 

[7] Schirrmeister R T, Springenberg J T, Fiederer L D J, Glasstetter 
M, Eggensperger K, Tangermann M, Hutter F, Burgard W and 
Ball T 2017 Deep learning with convolutional neural networks 
for EEG decoding and visualization Human brain mapping 38 
5391-420 

[8] Lu N, Li T, Ren X and Miao H 2017 A Deep Learning Scheme 
for Motor Imagery Classification based on Restricted 
Boltzmann Machines IEEE Transactions on Neural Systems 
and Rehabilitation Engineering 25 566-76 

[9] Wolpaw J and Wolpaw E W 2012 Brain-Computer Interfaces: 
Principles and Practice: Oxford University Press) 

[10] Nicolas-Alonso L F and Gomez-Gil J 2012 Brain computer 
interfaces, a review Sensors 12 1211-79 

[11] Lee T-S, Goh S J A, Quek S Y, Phillips R, Guan C, Cheung Y 
B, Feng L, Teng S S W, Wang C C, Chin Z Y, Zhang H, Ng T 
P, Lee J, Keefe R and Krishnan K R R 2013 A Brain-Computer 
Interface Based Cognitive Training System for Healthy Elderly: 
A Randomized Control Pilot Study for Usability and 
Preliminary Efficacy PLOS ONE 8 e79419 

[12] Perego P, Turconi A C, Andreoni G, Maggi L, Beretta E, Parini 
S and Gagliardi C 2011 Cognitive ability assessment by Brain–
Computer Interface: Validation of a new assessment method for 
cognitive abilities Journal of neuroscience methods 201 239-50 

[13] Jiang Y, Abiri R and Zhao X 2017 Tuning Up the Old Brain 
with New Tricks: Attention Training via Neurofeedback 
Frontiers in Aging Neuroscience 9 

[14] Lim C G, Lee T S, Guan C, Fung D S S, Zhao Y, Teng S S W, 
Zhang H and Krishnan K R R 2012 A Brain-Computer Interface 
Based Attention Training Program for Treating Attention 
Deficit Hyperactivity Disorder PLOS ONE 7 e46692 

[15] Fahimi F, Zhang Z, Lee T S and Guan C 2018 Deep 
Convolutional Neural Network for the Detection of Attentive 
Mental State in Elderly. In: The Seventh International BCI 
Meeting, (Alisomar, USA 

[16] MacLean M H, Arnell K M and Cote K A 2012 Resting EEG in 
alpha and beta bands predicts individual differences in 
attentional blink magnitude Brain and cognition 78 218-29 

[17] Kamiński J, Brzezicka A, Gola M and Wróbel A 2012 Beta band 
oscillations engagement in human alertness process 
International Journal of Psychophysiology 85 125-8 

[18] Klimesch W 2012 alpha-band oscillations, attention, and 
controlled access to stored information Trends in cognitive 
sciences 16 606-17 

[19] Hanslmayr S, Gross J, Klimesch W and Shapiro K L 2011 The 
role of alpha oscillations in temporal attention Brain Research 
Reviews 67 331-43 

[20] Klimesch W, Sauseng P and Hanslmayr S 2007 EEG alpha 
oscillations: the inhibition-timing hypothesis Brain Res Rev 53 
63-88 

[21] Martijn A, Conners C K and Helena C K 2012 A Decade of EEG 
Theta/Beta Ratio Research in ADHD: A Meta-Analysis Journal 
of Attention Disorders 17 374-83 

[22] Liu N-H, Chiang C-Y and Chu H-C 2013 Recognizing the 
Degree of Human Attention Using EEG Signals from Mobile 
Sensors Sensors (Basel, Switzerland) 13 10273-86 

[23] Hamadicharef B, Zhang H, Guan C, Chuanchu W, Phua K S, 
Tee K P and Ang K K 2009 Learning EEG-based spectral-
spatial patterns for attention level measurement. In: 2009 IEEE 
International Symposium on Circuits and Systems, pp 1465-8 

[24] F. Fahimi, C. Guan, K. K. Ang, W. B. Goh and T. S. Lee 2017 
Personalized features for attention detection in children with 
Attention Deficit Hyperactivity Disorder. In: IEEE Eng Med 
Biol Soc, (Jeju Island, South Korea pp 414-7 

[25] Shenoy P, Krauledat M, Blankertz B, Rao R P and Muller K R 
2006 Towards adaptive classification for BCI Journal of neural 
engineering 3 R13-23 

[26] Tabar Y R and Halici U 2017 A novel deep learning approach 
for classification of EEG motor imagery signals Journal of 
neural engineering 14 016003 

[27] Jirayucharoensak S, Pan-Ngum S and Israsena P 2014 EEG-
Based Emotion Recognition Using Deep Learning Network 
with Principal Component Based Covariate Shift Adaptation 
The Scientific World Journal 2014 10 

[28] Sakhavi S, Guan C and Yan S 2018 Learning Temporal 
Information for Brain-Computer Interface Using Convolutional 
Neural Networks IEEE Transactions on Neural Networks and 
Learning Systems PP 1-11 

[29] Zhang J and Li S 2017 A deep learning scheme for mental 
workload classification based on restricted Boltzmann machines 
Cognition, Technology & Work 19 607-31 

[30] Pouya Bashivan I R, Mohammed Yeasin, Noel Codella 2015 
Learning Representations from EEG with Deep Recurrent-
Convolutional Neural Networks arXiv:1511.06448  

[31] Ma T, Li H, Yang H, Lv X, Li P, Liu T, Yao D and Xu P 2017 
The extraction of motion-onset VEP BCI features based on deep 
learning and compressed sensing Journal of neuroscience 
methods 275 80-92 

[32] Sturm I, Lapuschkin S, Samek W and Müller K-R 2016 
Interpretable deep neural networks for single-trial EEG 
classification Journal of neuroscience methods 274 141-5 

[33] MacLeod C M 1991 Half a century of research on the Stroop 
effect: an integrative review Psychological bulletin 109 163-203 

[34] MacLeod C M and MacDonald P A 2000 Interdimensional 
interference in the Stroop effect: uncovering the cognitive and 



Journal	XX	(XXXX)	XXXXXX	 Fahimi	et	al		

	 12	 	
	

neural anatomy of attention Trends in cognitive sciences 4 383-
91 

[35] Stroop J R 1935 Studies of interference in serial verbal reactions 
Journal of Experimental Psychology 18 643-62 

[36] Dyer F N 1973 The Stroop phenomenon and its use in the stlldy 
of perceptual, cognitive, and response processes Memory & 
Cognition 1 106-20 

[37] Marie T B 2009 Executive Function: The Search for an 
Integrated Account Current Directions in Psychological 
Science 18 89-94 

[38] Molina-Cantero A J, Guerrero-Cubero J, Gómez-González I M, 
Merino-Monge M and Silva-Silva J I 2017 Characterizing 
Computer Access Using a One-Channel EEG Wireless Sensor 
Sensors (Basel, Switzerland) 17 1525 

[39] Malmivuo J and Plonsey R 1995 Bioelectromagnetism. 13. 
Electroencephalography 

[40] Lecun Y, Bottou L, Bengio Y and Haffner P 1998 Gradient-
based learning applied to document recognition Proceedings of 
the IEEE 86 2278-324 

[41] Ioffe S and Szegedy C 2015 Batch Normalization: Accelerating 
Deep Network Training by Reducing Internal Covariate Shift. 
In: 32nd International Conference on Machine Learning, (Lille, 
France 

[42] Srivastava N, Hinton G, Krizhevsky A, Sutskever I and 
Salakhutdinov R 2014 Dropout: a simple way to prevent neural 
networks from overfitting J. Mach. Learn. Res. 15 1929-58 

[43] Diederik P. Kingma and Ba J 2015 Adam: A Method for 
Stochastic Optimization. In: 3rd International Conference for 
Learning Representations, (San Diego, USA 

[44] Kübler A, Neumann N, Wilhelm B, Hinterberger T and 
Birbaumer N 2004 Predictability of Brain-Computer 
Communication Journal of Psychophysiology 18 121-9 

[45] Vidaurre C and Blankertz B 2010 Towards a Cure for BCI 
Illiteracy Brain Topography 23 194-8 

[46] Molina-Cantero A, Guerrero-Cubero J, Gómez-González I, 
Merino-Monge M and Silva-Silva J 2017 Characterizing 
Computer Access Using a One-Channel EEG Wireless Sensor 
Sensors 17 1525 

[47] Treder M S, Bahramisharif A, Schmidt N M, van Gerven M A 
and Blankertz B 2011 Brain-computer interfacing using 
modulations of alpha activity induced by covert shifts of 
attention Journal of NeuroEngineering and Rehabilitation 8 24 

[48] Ang K K, Chin Z Y, Wang C, Guan C and Zhang H 2012 Filter 
Bank Common Spatial Pattern Algorithm on BCI Competition 
IV Datasets 2a and 2b Frontiers in Neuroscience 6 

[49] Erhan D, Bengio Y, Courville A and Vincent P 2009 Visualizing 
Higher-Layer Features of a Deep Network.  (Technical Report, 
University of Montreal 

[50] Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley 
D, Ozair S, Courville A and Bengio Y 2014 Generative 
Adversarial Nets. In: Proceedings of the 27th International 
Conference on Neural Information Processing Systems, 
(Montreal, Canada 

[51] Corley I A and Huang Y 2018 Deep EEG super-resolution: 
Upsampling EEG spatial resolution with Generative Adversarial 
Networks. In: 2018 IEEE EMBS International Conference on 
Biomedical & Health Informatics (BHI), pp 100-3 

 
 


