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Abstract—Deep learning (DL) methods and architectures have
been the state-of-the-art classification algorithms for computer
vision and natural language processing problems. However,
the successful application of these methods in motor imagery (MI)
brain–computer interfaces (BCIs), in order to boost classifica-
tion performance, is still limited. In this paper, we propose
a classification framework for MI data by introducing a new
temporal representation of the data and also utilizing a convolu-
tional neural network (CNN) architecture for classification. The
new representation is generated from modifying the filter-bank
common spatial patterns method, and the CNN is designed and
optimized accordingly for the representation. Our framework
outperforms the best classification method in the literature on
the BCI competition IV-2a 4-class MI data set by 7% increase
in average subject accuracy. Furthermore, by studying the
convolutional weights of the trained networks, we gain an insight
into the temporal characteristics of EEG.

Index Terms—Brain–computer interface (BCI), convolutional
neural network (CNN), deep learning (DL), machine learning,
motor imagery (MI), signal processing.

I. INTRODUCTION

DEEP learning (DL), as a subcategory of machine learn-
ing, is currently the state-of-the-art method in computer

vision and natural language processing applications. This
phenomenon is loosely associated with the revolutionary paper
by Hinton and Salakhutdinov [1], which reignited the interest
in neural networks–the building block of modern deep archi-
tectures. In 2012, the convolutional neural network (CNN) won
the ImageNet competition [2] with better learning algorithms,
faster computational resources, and large annotated data sets.
This architecture renewed the interest of many computer vision
researchers in neural networks and deep architectures. The
concept of hierarchical convolutional data processing (used
in CNN) was initially introduced by Fukushima [3] in the
neocognition framework in 1980 and further developed by
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LeCun et al. [4] in the LeNet-5 architecture in 1998. Since
the 2012 success of CNN, convolutional architectures have
become an important tool in vision-related applications, and
have been rapidly modified and improved, including modifi-
cation in network architecture design (network in network [5],
inception [6], identity mapping [7]) or network activation func-
tions (ELU [8], PReLU [9]), and improvements in optimization
algorithms (ADAM [10]), or network regularization (batch
normalization [11], weight normalization [12]).
Besides computer vision tasks, DL and CNNs have also

been utilized in other fields such as speech recognition,
text understanding, and more recently, brain–computer inter-
faces (BCIs), which is the main focus of this paper.
Motor imagery (MI) BCI systems base their framework on

the fact that there will be a change of activation in certain
areas of the brain when a patient/subject imagines moving
any part of their body. For example, when a person imagines
moving his/her right arm, there will be a desynchronization
of neural activities in the primary motor cortex of the left
brain. This desynchronization, called event-related desynchro-
nization (ERD) in neuroscience literature, can be seen in the
EEG signal as a transition from a resting state energy level
to a lower energy level. The spatial location, temporal onset,
amount of decrease, and stability of the ERD are all subject-
dependent factors, which pose a challenge for designing a
single framework to detect the changes in the neural activities
that can be accurate and functional for a wide variety of users.
Inspired by MI-based ERD, computer scientists and BCI

researchers have proposed some classification methods based
on the common spatial patterns (CSPs) algorithm [13]. The
CSP algorithm finds a set of linear transformations (i.e., spatial
filters) that maximize the distance of multiple classes (i.e.,
right hand, left hand, and feet) of data recorded during an
MI-EEG task. After estimating the spatial filters, the relative
energy of the filtered channels is computed as the representa-
tion of the data. This representation of the high-dimensional
EEG data can be easily fed into a linear classifier, such as sup-
port vector machine (SVM), leading to good performance [14].
However, in this representation, since the signal is reduced
from a series to a single value, the temporal information is
destroyed and the dynamics of the signals are neglected, which
may contain valuable information regarding EEG.
The filter-bank CSP (FBCSP) algorithm [15], [16] extends

the CSP algorithm by considering that not all frequency bands
contain discriminative information, and therefore, by passing
the signal through a filter bank, it computes the CSP energy
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features for each of the temporally filtered signal outputs. The
features are then selected and classified. The extra step of
performing CSP on each filtered input helps boost the classifier
performance and shows the benefits of signal decomposition
before spatial filter estimation.
There have also been some other successful attempts to

improve the CSP algorithm. To name a few, Sparse CSP [17]
adds a regularization factor on the spatial filter estima-
tion, imposing sparsity on the weights; stationary CSP [18],
divergence-CSP [19], and probabilistic CSP [20], each try
to solve the CSP problem either by changing the objective
function or by defining a more generalized computational
framework around the problem. Some algorithms simultane-
ously try to optimize frequency and spatial filters such as [21]
and [22]. Although these methods improve the CSP algorithm
and increase the classification accuracy, they still suffer from
the same caveat of the original CSP method: the negation of
temporal dynamics.
The utilization of DL methods in EEG-based BCI has been

relatively scarce. The high dimensionality (multichannel and
sampling rate) of EEG data, channel correlation and presence
of artifacts (i.e., movement), and noise make it challenging to
design an ideal framework for EEG classification using DL.
Such a framework must first include a data preparation stage,
in which the signal is reduced to lower dimensionality and
transformed into a new representation without any significant
loss in information. Based on this representation, the next
stage of the framework (i.e., the network architecture) must be
designed to extract meaningful features from the input. With
the challenges in mind, DL methods have been successfully
implemented for EEG classification.
Cecotti and Graser [23] introduced a CNN classifier for

classification of a P300 (a positive peak seen in the EEG
signal 300 ms after presenting a stimulus to the subject) speller
task [23]. The CNN in this paper is used in both temporal
and spatial manner: a convolution is first performed on the
spatial EEG channels, thus mixing them, and in the next layer,
a convolution is performed in time along the temporal samples
of the EEG signal. Filtered EEG signals are used as inputs.
The authors also used a similar architecture in another paper
for steady-state visual evoked potentials [24] and rapid serial
visual presentation task [25].
In another work, Stober et al. [26] used two representa-

tions (raw signal and spectral features) for classifying music
imagery EEG signals using CNNs. The results verify the
capacity of CNNs in classifying imagery-based EEG. In a
follow-up paper, Stober et al. [27] used a convolutional
autoencoder to pretrain a CNN on the same data set in
a unique fashion using cross-trial encoding and similarity-
constraint encoding. These two techniques increase the number
of samples for the network to learn from and can be used as
a solution in problems with a low number of data samples in
the future studies.
In a more recent paper, Bashivan et al. [28] introduced

a novel representation for EEG Signals by using an image
of the topological map of the EEG signal’s fast Fourier
transform (FFT) on the scalp, in a specific time interval. In this
way, a sequence of images is generated for the whole EEG

trial and then fed into a combined CNN and long short-term
memory for classification.
Hajinoroozi et al. [29] and [30] applied DL techniques

for driver cognitive performance with deep belief net-
works (DBNs) and restricted Boltzmann machine on raw
representations of the EEG
Literature on application of DL in MI EEG (MI-EEG) is

also limited. An et al. [31] proposed to use manually extracted
features from the channels based on FFT and then feed them
into a DBN. Although it can be considered as a demonstration
of DL, it only uses a DBN as a classifier and does not interpret
the network as a feature learning algorithm.
In the paper by Yang et al. [32], building upon the success

of FBCSP, an augmented-CSP algorithm was proposed by
using overlapping frequency bands. The log-energy features
are extracted for each frequency band and arranged on a
2-D matrix. By training a convolutional network on the
frequency-energy matrix, the network learns to discriminate
the features. Furthermore, a map selection algorithm is used
to select specific feature maps after the convolution operation.
The interpretation of the weights in the network is unknown
and the features selected neglect the time dynamics.
Sakhavi et al. [33] proposed a parallel MLP and CNN

architecture from which the predictions of the networks are
joined via averaging. The MLP architecture receives the log-
energy features of the FBCSP algorithm and the CNN receives
a temporal representation of the selected EEG channels and
frequencies from the FBCSP algorithm. The temporal rep-
resentation is the channel-relative instantaneous energy of
the envelope of the EEG signal, extracted using the Hilbert
transform. In other words, instead of compressing the signal
into a single value, a new temporal representation of the signal
is utilized in which the temporal dynamics are intact. The CNN
network is then applied in a channel-wise fashion on each
class independently and combined before the fully connected
layer, yielding a significant, but small, increase in classification
accuracy.
In this paper, we propose a new architecture built upon

the idea of our previous paper [33]. By using the FBCSP
algorithm as our data preparation method, we propose a novel
envelope representation for the MI-EEG. This representation
of the data is important in several ways. First, it is a temporal
representation of the EEG, preserving the information relative
to the dynamics of the EEG signal throughout recording, and
thus is more valuable than a single value energy representation.
Second, in terms of information content, it lowers the dimen-
sion without distorting the signal, as shown in Section III-B.
Third, by combining this envelope representation with a CNN,
the kernels learned in the network give an insight into the
morphology and pattern in the input, which gives rise to
class discrimination. This representation and the proposed
architecture have achieved state-of-the-art performance on the
BCI competition IV-2a data set, significantly increasing the
average accuracy.

II. DATA

In this paper, we focus on the 2008 BCI competition IV-2a
EEG data set [34], which is a four-class MI (left, right,
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feet, and tongue) data set recorded from 22 Ag/AgCl elec-
trodes with a 250-Hz sampling rate in two sessions from
nine subjects. Each session has 72 trials per class resulting
in 288 samples per session. The timing scheme consists of a
fixation of 2 s, cue time of 1.25 s, followed by a period of a MI
of 4 s. Previous attempts on classification of the data show the
data set consists of various types of subjects, measured based
on their performance in terms of accuracy score and Cohen’s
kappa.

III. METHODS

The main process of feature extraction is based on FBCSP.
In Section III-A, we will review the algorithm and then in
Section III-B discuss on extracting temporal features from
EEG based on FBCSP. Note that our temporal feature extrac-
tion method modifies and borrows the results from the original
FBCSP algorithm.

A. Filter-Bank Common Spatial Patterns
FBCSP was first introduced as an extension of the original

CSP algorithm and gained attention by winning the 2008 BCI
Competition IV-2a [15], [16]. CSP is viewed as a data-driven
spatial filtering algorithm. Spatial filtering algorithms aim to
decorrelate EEG channels individually or find a combination
of the channels that have valuable information regarding the
task at hand. CSP and FBCSP try to find a linear combination
of channels (i.e., spatial filter) that discriminates two classes
of data. The procedure for FBCSP is as follows.
1) The EEG signals from all recorded channels are filtered

using a filter bank with nine subsequent bandpass filters,
starting at 4 Hz and with a bandwidth of 4 Hz (4–8 Hz,
8–12 Hz, . . .). All filters are type II Chebyshev filters.

2) Spatial filters for each output of the filter bank are
computed using CSP. This is done by maximizing the
following objective function:

w∗ = argmax
w

wT�c1w

wT (�c1 + �c2)w
(1)

where �c1 and �c2 correspond to the channel covariance
matrix for classes c1 and c2, respectively, in a specified
time segment and w is the spatial filter. This objective
function, also called the Rayleigh Quotient, has an
analytical solution, which is equivalent to solving a
generalized eigenvalue decomposition problem.

3) Spatial filters corresponding to the 2 × NW extreme
eigenvalues (NW largest and NW smallest eigenvalues)
are selected. Each of the extreme spatial filters is then
paired with each other correspondingly (spatially filtered
channel pairs).

4) Energy (variance) of the spatially filtered channels is
calculated (EC ) and normalized to the total energy
of the channels in a given frequency band (ẼC =
(EC/(�

2×NW
i=1 EC))). The logarithm of energy is com-

puted as the final feature.
5) Features coming from all nine filter bands are concate-

nated and a mutual information-based feature selection
is performed on 2× NW × 9 spatially filtered channels,
where NS filtered channels and their pairs are chosen.

Depending on whether the selected features are already
pairs with each other or not, a maximum of 2 × NS
features may be selected.

6) Because CSP is designed for a two-class problem, in the
case of multiclass tasks, a one-versus-rest or one-versus-
one strategy must be appointed. In FBCSP, the former is
chosen and it will lead to a maximum of classNumber×
2× NS features.

The values NW = 2 and NS = 4 are selected using cross
validation. With the competition data containing four classes,
the maximum number of features used for classification will
be 32. It should be noted that the features can be handled
in two ways: concatenation of all features into one large vec-
tor, or using features extracted by class-specific spatial features
individually. In [16], the latter has been used. Because of the
success of FBCSP in classification frameworks, we decide
to build a feature extraction procedure for temporal features
utilizing a modified version of the FBCSP algorithm, which
will be described in Section III-B.

B. Extracting Temporal Features
After performing the FBCSP process as described in III-A,

we extract the temporal features as the following procedure.
1) After FBCSP, we have indices of the selected filtered

channels for each frequency band and each class. We use
these indices to extract the corresponding EEG signals.
Note that, in contrast with FBCSP, which has a vari-
able feature dimension output, we force the selection
algorithm to select 2 × NS spatially filtered channel
pairs. This ensures that the dimension of the input,
and therefore, the structure of the designed network
are consistent between subjects. Furthermore, we use
the whole period of MI (0 to 4 s) as the time seg-
ment to estimate the covariance matrices for the CSP
algorithm.

2) The signal envelope of each signal is extracted using the
Hilbert transform [35], which gives the analytic form
of a signal that is complex-valued and interpreted as
the one-sided version of the original signal’s frequency
spectrum. Taking the amplitude of the analytic form
gives an estimate of the envelope.

3) After extracting the envelope, we consider three pos-
sible representations for the EEG (details regarding
how to choose the representations will be given in
Section IV-B):
a) using the raw (or a smoothed version of) EEG

envelope (R1);
b) taking the power of the envelope, which can be

interpreted as instantaneous energy (R2);
c) dividing the envelope power by the total energy of

each of the channels in each trial, similar to Step 4
in the FBCSP algorithm described in III-A (R3).

4) Since the spectral nature of the envelope is low
frequency, we can down-sample the signal without
information loss. This comes in handy to lower the
dimension of the data, especially when the number of
samples is limited. This is a natural benefit of using the
FBCSP algorithm: the filter bank intrinsically reduces
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the number of samples needed to represent the original
data.

5) After extracting the envelope signals for each class,
instead of taking a one-vs-rest strategy for classification,
we concatenate all four classes forming a single matrix
of signals.

With the same values of NW = 2, NS = 4 and with
four classes, the number of channels will be 32. As for
the dimension of the features in time, the original sampling
frequency of the data is 250 Hz and by choosing 4 s interval
of data, we will have 1000 samples. Note that the envelope
will have a cutoff frequency of 4 Hz, which means a sampling
frequency of 8 Hz is sufficient for the signal (Nyquist rate),
but we choose to reduce the frequency to 10 Hz, yielding
40 time points for the 4 s interval. Overall, the dimension
of the data fed into the network will be 32 × 40. From
here on we will refer to the channel dimension as feature
channels.

C. Designing the CNN Architecture
When the CNN LeNet5 was first introduced by

LeCun et al. [4], it consisted of a sequence of convolutions
and subsampling layers mainly containing max pooling. Since
then, most architectures follow such a procedure with some
additions such as dropout [36], batch normalization [11],
inception [6], and/or identity mapping [7]. These additions,
based on their natures, can lead to faster training of the
network, better conservation of information throughout the
hierarchical process, and/or avoid overfitting of the network.
For designing the network, the nature of the input (in our

case the envelope representation), should be taken into con-
sideration. Each of the 32 feature channels may be from
different frequency bands (based on the feature selection
algorithm). In terms of spatial filters, each feature channel
has a unique spatial filter (based on the selected eigenvalues
in the CSP algorithm), which is designed for discriminating
one class against the other classes. Furthermore, it is possible
for the spatial filters to be correlated since a spatial pattern
can be discriminative for two classes or more. Therefore,
we will consider different scenarios and their interpretations
of utilizing convolution for our EEG representation.
Scenario 1 :Convolution Only Across Time With a Common

Kernel Shape for All Feature Channels: In this type of
convolution, the assumption is that feature channels selected
for classification, although intrinsically different and indepen-
dent, share a common morphology. This morphology can be
captured from each channel using a common kernel, which
learns the morphology leading to the discrimination of classes.
The choice of such a convolutional kernel will result in
preserving the channels during the convolutional layers of
a network (channel-wise convolution) and reduction of the
temporal dimension. After convolution, the fully-connected
layers will mix all the channels and temporal values and then
classify them. We will call the network architecture utilizing
this convolution “Channel-wise CNN” (CW-CNN).
Scenario 2: Convolution Only Across Channels: This opera-

tion can be interpreted as mixing the channel signals with each
other. For example, if the size of the convolutional kernel for

Fig. 1. Three types of convolution possible to be implemented on any
feature map (from left to right): convolution in time, convolution in channel,
and 2-D convolution. A mapping from multiple squares to one square is a
linear combination of the multiple squares into a single value. The number of
squares in the output of each convolution corresponds with the actual effect
of convolution. Color shows an independent time series. The gray values in
the output means the channels values are mixed.

this layer is the same as the number of channels, the output
of the convolution operation is a new signal, which is the
linear combination of all the given channels. A kernel size
smaller than the number of channels is not ideal because
it implies that a common linear combination can be shared
amongst the channels, but usually the EEG channels in this
stage are independent and their order in the input matrix is
not important. We call this scenario “Channel mixing CNN”
(CM-CNN). This type of convolutional layer is better used
with CW-CNN because the FBCSP input is already a linear
mixture of the original EEG channels and an extra channel
mixing is redundant. Only after some processing can a new
mixture of the channels make sense.
Scenario 3: Convolution Across Both Time and Channels

Using a Two-Dimensional Kernel: The evident result of this
type of convolution, in addition to convolution in time, is the
mixing of the feature channels after they are convoluted. This
scenario produces a new time series, which captures infor-
mation from all the channels simultaneously. The receptive
field of the kernel in the channel dimension determines which
channels should be mixed with each other. For example, if all
32 channels of the input are mixed, the output will be a single
channel feature, which is the summation of the convolution
of all the other feature channels with their own unique filter.
Or, in another case, if the feature channels related to the
class-specific spatial filters are mixed, the output is a channel
summing the information of a class. We will call this type of
architecture 2-D convolution scenario (2D-CNN), because of
its similarity to most 2-D CNN architectures.
Another way of performing 2-D convolution is by breaking

up the 2-D convolution into two 1-D convolutions in two sepa-
rate layers. This method of implementing the 2-D convolution
makes the convolution in time and space independent of each
other and increases the flexibility of the network but with
the cost of increasing the number of parameters due to the
introduction of a new computational layer. It can be viewed as
adding a channel mixing to the CW-CNN network. Therefore,
this architecture will be called “Channel-wise Convolution
with Channel Mixing” (C2CM).
Fig. 1 illustrates the convolution in time, convolution in

channel, and 2-D convolution in detail.
Amongst all the models, 2D-CNN has the smallest number

of parameters, followed by C2CM. The main contributor to the
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TABLE I
CROSS-VALIDATION PARAMETERS

number of parameters trained in a CNN is the connection of
the last convolutional layer to the fully connected layers. In all
CNN architectures, the last convolutional feature maps are
vectorized and stacked into one large vector and fed into fully
connected layers. The smaller the dimension of the feature
map of the last layer is, the lower the number of linear units
used will be. In the case of both 2D-CNN and C2CM, because
the feature map size is reduced due to convolution in both
dimensions, the number of parameters is significantly lower
compared to CW-CNN. A lower number of parameters is
desired especially when the number of training samples is
relatively low to avoid overfitting and allow for better training
of the network.
We will present the results for architectures C2CM and

CW-CNN in Section IV.

D. Parameter Selection via Cross Validation
For each of the scenarios in Section III-C, we need to

choose the network parameters; number of layers (convolu-
tional, fully connected), kernel size, number of hidden nodes,
convolution stride, pooling method, regularization methods
(batch normalization, dropout) and other network related
parameters are considered as hyperparameters and can be
optimized. These hyperparameters, in addition to different
representations for the EEG brought in Section III-B, must
be correctly chosen based on cross-validation. Practically, it is
not feasible to search through the parameter space due to
time and computation limitations. Instead, we use coordinate
descent as a suboptimal method to perform cross validation
for the network parameters [37]. In coordinate descent, a set
of parameters, � = [θ1, θ2, . . . , θN ], is initialized and then the
objective function or score function is optimized for each θi
(i = 1, . . . , N) independently, while updating the values of
the initial � with the newly optimized parameters. After N
optimizations, the � vector will be completely updated and
a new iteration of optimization can be initiated. For better
results, the algorithm can be repeated for several iterations.
For this paper, two values are selected via cross-validation:

size of the kernel and number of convolutional nodes. Table I
shows the values chosen for each of the two values plus
the other parameters’ initialization values. Multiple values in
curly brackets show the number of layers used during cross
validation. For convolution kernels, the values in the bracket
are as follows: kernel width, kernel height, stride in width,
and stride in height. For example, {{4, 1, 3, 1}, {3, 1, 2, 1}}
indicates that the convolution has two layers where the first
layer has a kernel size of 1×4 with a stride of 3 and the second
layer has a kernel size of 1×3 with a stride of 2. We perform
a ten-fold cross validation only once in order to select the
parameters. The convolutional layer parameters (convParams)

TABLE II
SAMPLE ARCHITECTURE

are first selected using cross-validation and then the selected
values are used for cross validation for selecting the number of
convolutional nodes (hidNodes). For C2CM structure, which
has an additional computational layer, every value is the
same as the CW-CNN structure. The channel mixing layer
is positioned after the channel-wise convolutions and has the
same number of hidden nodes as the previous convolutional
layers.
The kernel size and stride combination for the first and sec-

ond layer are chosen based on the input size and in a way
that the output of the CNN is an integer value. It should
be noted that in the conventional CNN architecture used in
computer vision, the kernel size is high for the first layer, but is
reduced in the subsequent layers. In order to find the rule of the
kernel, we give different values for the first layer from a size 4
corresponding to an interval of 400 ms to a size of 20, which
corresponds to an interval of 2 s. Furthermore, compared
with conventional architectures, we choose not to use any
subsampling method and instead, rely solely on changing the
stride.
The training of the networks is performed with the following

configurations.
1) ADAM [10] is used as the optimization method. The

parameters are set to default values as [10].
2) Negative log-likelihood is taken as the optimization

criterion.
3) In all layers, we insert a batch normalization [11] layer

before the activation layer and a dropout layer after the
activation with a probability of 50%.

As an example, considering the input size calculated in
Section III-B, Table II shows the input size at each layer for a
sample two-layer CW-CNN architecture, while Fig. 2 shows a
sample visualization of both CW-CNN and C2CM networks.

IV. RESULTS
A. Baseline Method
In our paper, we use both Cohen’s kappa and accuracy to

evaluate our method. The FBCSP feature extraction algorithm
in combination with a linear C-SVM classifier is used as
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Fig. 2. Visualization of sample architecture CW-CNN (top) and C2CM (bottom). After the convolution layer, the feature maps are flattened into a single
vector and fed to the fully connected network. It can be seen that the more the convolutional layers, the lower the dimension of the last convolution operation,
and therefore, less parameters needed to connect to the fully connected layers.

the baseline. Features are extracted from the 0.5 to 2.5 s
after the cue for both train and test data sets. Kappa values
are from the original FBCSP paper. We also include the
results from a paper of Bashashati et al. [38], which used
Bayesian optimization to find the best parameters for FBCSP
and achieved the best results to our knowledge on the BCI
competition IV-2a data set in terms of accuracy. In terms of
kappa, we use the values in [39], which is shown to be the
highest amongst many methods (accuracy was not reported in
this paper). The baseline results can be seen in Table VII.
In order to verify the significance for increase/decrease

of the accuracy, a one-sided Wilcoxin signed-rank test [40]
is used. This test is appropriate in conditions where the
number of paired samples to compare is relatively small and
non-Gaussian.

B. EEG Representation and Architecture Comparison
In order to select one of the three EEG representations

described in Section III-B, we use a simple architecture with
a set of chosen parameters and perform a ten-fold cross
validation over each of the representations. The architecture
is similar to that in Table II, with two convolutional layers

(32 nodes each) and without the fully connected layer. The
average cross-validation values are obtained by repeating the
measurements for 10 networks (10 networks× 10 folds). Our
assumption is that with a common architecture, the better
representation would have a higher cross-validation average.
The results can be seen in Table III. Table III shows that the
CNN architecture selects the R1 representation for all subjects
and the cross-validation average accuracy is higher than the
other two representations.
For classifier comparison, we perform cross validation of

the given representation on two additional classifiers: linear
SVM and MLP (two hidden layers with 32 hidden nodes,
10 networks). The cross-validation results are given
in Table IV. It can be seen that on average, most subjects have
a higher cross-validation accuracy for the CNN architecture,
thus CNN is selected.

C. Architecture Parameter Selection
With the chosen representation, we conduct cross validation

over the network parameters based on the values in Table I.
Parameters are selected by averaging over the results of each
fold and multiple network initializations. Here, a ten-fold
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TABLE III
CROSS-VALIDATION ACCURACY RESULTS FOR FEATURE REPRESENTATION GIVEN THE C2CNN ARCHITECTURE IN TABLE II

TABLE IV
CROSS VALIDATION ACCURACY RESULTS FOR CLASSIFIERS GIVEN THE R1 FEATURE

TABLE V
ACCURACIES USING THE SELECTED PARAMETERS FROM CROSS VALIDATION FOR CW-CNN

TABLE VI
ACCURACIES USING THE SELECTED PARAMETERS FROM CROSS-VALIDATION FOR C2CM

TABLE VII
TABLE OF ACCURACY AND KAPPA FOR BASELINE METHODS AND OUR METHOD. VALUES IN THE PARENTHESIS

ARE KAPPA VALUES AND THE NONPARENTHESIS ARE ACCURACY

cross validation is performed on 10 network initializa-
tions. The average accuracy of these 100 networks is used
for classification. The selected parameters for architectures
CW-CNN and C2CM can be seen in Tables V and VI,
respectively. The final test accuracy reported in both tables is
obtained by averaging and ensemble of 50 model initializations
trained on the training data using the selected parameters.
Tables VI and VII show interesting results. For the

CW-CNN architecture, most of the subjects select a larger
kernel size with a smaller number of hidden nodes, whereas
for the C2CM architecture, most subjects select lower kernel
sizes but with higher hidden nodes, with the channel mixing
layer being the only difference between the two architectures.

This means that the channel mixing makes the network wider,
and thereby increases the number of features in the output
of the convolution. In contrast, without the channel mixing,
the network gives more emphasis on the receptive field of the
network rather than widening the network.
Table VII shows the results for multiple classification meth-

ods including our proposed method using C2CM. The values
in parenthesis are Cohen’s kappa. As shown in Table VII, our
method has superior performance in both kappa and accuracy.
The first “FBCSP” uses the SVM classifier on the FBCSP
features and is reported from [16]. The second “FBCSP” is
based on the FBCSP algorithm results in [38] and “BO” is
the Bayesian optimization method proposed in the same paper.
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“SVM” means the use of SVM on the R1 envelope repre-
sentation features proposed in III-B. Based on the Wilcoxon
signed-rank test, the increase in the mean accuracy for C2CM
is significantly higher with a bound of p < 0.05 relative to BO,
SVM, and CW-CNN. In terms of average kappa, our method
is not significantly higher than the method in [39] based on the
Wilcoxon test due to the ranking of the differences between
the kappa values of subjects 4 and 6. But overall, there is
an increase in kappa for the other subjects. For other meth-
ods, the increase in mean kappa is significant with a bound
of p < 0.05.

V. ANALYSIS

To further interpret the learned network weights, and verify
whether the result obtained by the trained network is by
random or the network actually learns important patterns in
the data, we conduct some experiments.

A. Importance of the Kernel Morphology
As shown in the results of Section IV-C, each subject

chooses a specific kernel length and a certain number of hidden
nodes for the first two layers. Note that the selected parameter
values for each subject are based on cross validation and
ensembles. Therefore, the kernel sizes are dependent on each
fold of the data used in cross validation and the initializations
of the network for each model in the ensemble. This, in turn,
makes it difficult to determine whether or not the kernel sizes
have meaning from a neuroscientific perspective. Nevertheless,
in this section, we seek to verify whether the convolutional
kernels learned in the first two layers are truly important, or the
shapes are random and do not contribute to the classification
performance.
We modify the convolutional kernels such that each convo-

lutional kernel is replaced by its mean value. We adopt the
kernel mean mainly because we do not want to abrupt the
scale of the network by changing the values of the kernel to
nonrelated values. After changing the values, we perform sta-
tistical analysis on the accuracy with the following hypothesis:
the mean accuracy obtained by the modified network is lower
than the original accuracy. It is expected that the classification
results will drop, but our hypothesis emphasizes whether this
drop is significant or not.
While performing this analysis, we first modify the kernel

values of each of the layers independently and eventually
change the values for both layers simultaneously. Table VIII
shows the accuracy values for each individual subject after
the network modification from an ensemble of 50 networks,
the same 50 networks used to derive the test accuracy. The
W-score calculated between the original network and
the change of the first layer parameters is 6, and based on
the hypothesis, the maximum value at which the hypothesis
is significant with a p-value of 0.05 is 8, showing that the
network with the first layer modified performs worse than the
original network. Modification of both layers simultaneously
shows an even larger decrease relative to the original network,
demonstrating that the morphology captured by the kernels of
the first two layers is important.

TABLE VIII
MODIFICATION OF KERNELS. L1 AND L2 REFER TO THE KERNELS OF

LAYER 1 AND 2. EACH COLUMN SHOWS THE TEST ACCURACY
WHEN THE KERNEL OF THOSE LAYERS(S) IS MODIFIED

TO BE THE MEAN VALUE OF THE KERNEL

B. Qualitative Analysis of Kernel Shapes

After training the network, we also want to gain an
understanding about what the network has learned and
if possible, obtain a visualization of the learned kernels.
In image processing, methods such as deconvolution [41],
back-propagation-based visualization [42], [43], and layer-
wise relevance propagation (LRP) [44] have been used to
interpret trained networks with LRP recently being used for
EEG analysis as well [45].
Here, we choose the back-propagation methods proposed

in [42]. In this group of methods, an initial image is fed to
the network and based on the desired activation of any specific
node in the network, the initial image is recursively changed
in order to match the activation at that node. This recursive
algorithm can be accompanied by a smoothing function to
remove high frequency noise during the recursion.
In our case, we initialize the input with the average of all

training examples and then, recursively change the input in
a way that its classification label vector (i.e., network output
layer) corresponds to class C . The result of the recursion is an
input that when fed to the network, results in class C . In other
words, this perceived input is what the network recognizes as
class C .
Fig. 3 shows a sample of the average signals for class 1

of subject 9 (solid blue line) and the perceived signals for
class 1 for a number of channels that have high significant
correlation. (The correlation r and p-values p have been
provided.) This reconstruction is made based on the network
that has the highest classification accuracy on the test data.
By visually inspecting the graphs, in most cases, the perceived
input signal follows the average signal. It should be noted that
the algorithm converges and the perceived input correlates with
each of the classes.
Fig. 4 shows the high positive correlation coefficient val-

ues (r > 0.5) with a p-value of lower than 0.05 for all
feature channels of subject 9 in each of the four classes. The
dashed vertical lines correspond to each of the one-versus-rest
classes in the CSP algorithm. Fig. 4 illustrates high significant
correlation only in certain channels for each individual class,
implying that the perceived signals and average signals are
only similar in these channels for these classes. Fig. 5 shows
the signals sorted based on the p-value for the original average
channel (left) and perceived input (right) based on the p-value
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Fig. 3. Sample signal visualization for network perceived input for significantly correlated channels from Subject 9 and class 1. The blue (solid line) signal is
the average signal and the red (dashed line) signal is the perceived signal from the network. Only signals with significant high positive correlation (p < 0.05,
r > 0.5) have been shown. The correlation and p-value have been written in the image. The x-axis represents time and y-axis represents amplitude. The
y-axis has been adjusted for each subplot for better visualization.

Fig. 4. Correlation between perceived signal and average signal in class 1
for subject 9. The vertical dashed lines show the channels belonging to
the one-versus-rest CSP channels for each class. Only high positive corre-
lations (r > 0.5) and significant correlations (p < 0.05) have been shown.

arranged vertically from class 1 to class 4, validating the
similarity between the original data and the perceived input in
some, but not all, channels. Further analysis must be conducted
in order to verify whether the similarity between the perceived
and average inputs in specific feature channels imply the
importance of the channels or not.

VI. DISCUSSION AND FUTURE WORK

Deep neural networks and DL algorithms have opened a
door to many applications, which were not possible before
due to their compositional structure [46], expressivity [47],
and their ability to be parallelized for speeding up the learning
process. The results in this paper have identified two important
facts regarding the application of DL in EEG. First, the

Fig. 5. Sample visualization for average class signals, and network perceived
input for all channels sorted based on p-value for subject 9. Average input
for each class (left column). Perceived input for each class (middle column).
Correlation p-value between average and perceived classes (right column).

representation of the signal fed into the DL framework is
important: previous methods based solely on energy values
neglect valuable temporal information. When considering the
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new representation, the way the information is processed must
be updated as well because new representations need new
processing methods. This demand for new processing and clas-
sification tools leads to the second important fact: DL methods
can be used in the context of EEG signal classification and
can yield superior results relative to other methods such as
SVM and MLP. Our analysis shows that our results are not
from random matrix multiplications, and the network is indeed
learning something from the input EEG data, proving that
the network’s architecture is meaningful for EEG. Visualizing
the architecture further verifies that the network has learned
important relationships from the data and is able to construct
a perceived input, which is similar to the original data.
One of the caveats of the current framework is the indepen-

dence of the data representation algorithm from the classifica-
tion network. In particular, the FBCSP method is not affected
by the network optimization and in turn, the network is forced
to work with an input it has no control over. We believe the
combination of the two stages will yield a unified, end-to-end
classification framework.
Furthermore, the training of the networks is time consum-

ing. In BCI systems, it is desired to reduce the calibration
time, i.e., the time necessary to record sufficient data and train
a model. In the models that we have trained for this paper,
training time can vary from 30 to 150 s per network for the
C2CM model and 9 to 12 s per network for the CW-CNN.
These values are multiplied when we consider training an
ensemble and/or use cross validation for parameter selection.
Note that using CW-CNN is much faster compared with
C2CM because it has one less layer but a much larger number
of parameters due to the fully connected layers. This problem
of time consumption can potentially be solved by learning
a generalized network from a large pool of subjects and
transferring the knowledge to a new subject (transfer learning).
By defining the correct representation for all subjects and
choosing the parameters of the network carefully, a deep neural
network will be able to learn from all subjects and use the
learned information for new subjects without the requirement
of being retrained (zero-shot learning) or by training on a small
sample size from the new data (domain adaptation).
Also, we have not addressed the problem of how a small

number of samples per class can be used to train high
capacity networks without suffering from the overfitting issue.
Although regularization methods such as dropout and batch
normalization can help avoid overfitting, the small number of
samples has pushed us to use ensemble methods. Pretraining
the network via generative strategies (e.g., autoencoders) can
lead to better kernel learning and lower ensemble sizes.

VII. CONCLUSION

Overall, the application of DL methods in EEG processing
is promising and the method proposed above can be gener-
alized to medical applications and/or different types of EEG
recordings in the future.
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