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1.  Introduction

Brain–computer interfaces (BCI) have been used for several 
decades to study movement execution and imagination (motor 
imagery) [1–5]. It is an important area of neuroscience research 
whose applications include rehabilitation of patients afflicted 
with neural or spinal cord diseases, partial or full paralysis 
and stroke [1, 6–8]. Thus, one can find immense motivation to 
study and develop BCI systems because of its large scope in 
real world applications and humanitarian technology.

During movement execution and motor imagery, dis-
criminative neurophysiological patterns can be extracted 
from the recorded brain signals in order to analyse or clas-
sify them. The brain coordinates amongst its different spe-
cialised regions to achieve a functionally meaningful task 
[9–11]. This makes it possible to observe different types 
of phenomena through the recorded brain signals such as 
local field potentials (LFP), sensorimotor rhythms (SMR), 
event related potentials (ERP) and visually evoked poten-
tials (VEP) [12].
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Abstract
Objective. Brain signals can be used to extract relevant features to decode various limb 
movement parameters such as the direction of upper limb movements. Amplitude based 
feature extraction techniques have been used to study such motor activity of upper limbs 
whereas phase synchrony, used to estimate functional relationship between signals, has rarely 
been used to study single hand movements in different directions. Approach. In this paper, 
a novel phase-locking-based feature extraction method, called wavelet phase-locking value 
(W-PLV) is proposed to analyse synchronous EEG channel-pairs and classify hand movement 
directions. EEG data collected from seven subjects performing right hand movements in 
four orthogonal directions in the horizontal plane is used for this analysis. Main results. Our 
proposed W-PLV based method achieves a mean binary classification accuracy of 76.85% 
over seven subjects using wavelet levels corresponding to �12 Hz EEG. The results also 
show direction-dependent information in various wavelet levels and indicate the presence 
of relevant information in slow cortical potentials (<1 Hz) as well as higher wavelet levels 
(⩽12 Hz). Significance. This study presents a thorough analysis of the phase-locking patterns 
extracted from EEG corresponding to hand movements in different directions using W-PLV 
across various wavelet levels and verifies their discriminative ability in the single trial binary 
classification of hand movement directions.

Keywords: brain–computer interface, phase-locking value, wavelets, electroencephalography, 
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Amplitude and phase are two important properties of any 
signal. There are a number of amplitude based features that 
have been used in literature for decoding the parameters related 
to limb kinematics. For the purpose of studying arm move-
ments and motor imagery from EEG, the most frequently used 
methods rely on an amplitude-based spatial filtering technique 
called common spatial pattern (CSP) [13]. After CSPs were 
first used in EEG, many variants of CSP have been reported 
in literature [14–17]. For the purpose of classifying and ana-
lysing hand movements in four orthogonal directions in a 2D 
plane, spatially regularized wavelet common spatial patterns 
have been shown to perform well with a multi-class classifica-
tion accuracy of about 80% [18] and binary-class classifica-
tion accuracy of 71.25% [17].

Like their amplitude-based counterparts, a number of 
phase-based feature extraction methods have been reported 
in literature [9, 10, 19, 20]. These include phase lag index 
(PLI) [20], phase-locking value (PLV) [9, 10, 21], phase slope 
index (PSI) [22] and imaginary part of coherency (iCOH)  
[23, 24]. These phase-based features are typically used to 
study synchrony between different parts of the brain or func-
tional connectivity [9–11]. In other studies, they have been 
used as feature extraction methods to classify motor imagery 
of different limbs and actual movement of hands versus rest 
[21, 25, 26]. Moreover, some studies also show that a combi-
nation of amplitude and phase-based features perform better 
than either type of features leveraging on the fact that both 
methods essentially estimate different types of neural activity 
and their respective influence on the measured brain signals 
[21, 27, 28]. During actual movement execution, amplitude-
based CSPs and their numerous variants have been shown 
to estimate event-related desynchronization/synchroniza-
tion (ERD/ERS) very well in the mu and beta sensorimotor 
rhythms [13, 14, 18]. PLVs have been shown to provide 
important time-domain information for identifying different 
types of movements such as self-paced or cued movements 
and have been used to identify channel-pairs that seem to be 
in task-dependent synchrony [29]. PLVs have also been used 
to study sensorimotor rhythms during motor imagery and to 
control BCIs [30–32].

In this paper, we study right hand movements performed 
in a 2D horizontal plane in 4 orthogonal directions. Previous 
studies on this and similar data have used variants of CSPs, 
more specifically wavelet CSP (WCSP) to classify the move-
ment directions [16–18]. However, to the best of our knowl-
edge, a phase-locking based study has not yet been reported in 
literature to study movement directions. Therefore, this study 
provides an in-depth analysis of phase-locking based features 
extracted from the EEG sensor space during right-hand move-
ments in different directions. We also propose an algorithm 
for binary classification of different direction-pairs and dis-
cuss possible ideas for future work.

The remainder of this paper is as follows: section  2 
describes the dataset and preprocessing technique used for this 
study. It also describes the proposed algorithm for binary clas-
sification based on wavelet phase-locking values (W-PLV). 

Section 3 presents the results of binary classification of our 
proposed method and detailed analyses of the W-PLV fea-
tures. Section 4 presents discussions on the results, explores 
ideas for future work and concludes this study.

2.  Materials and methods

The purpose of our study is to identify discriminative patterns 
using phase-locking based features in the EEG sensor space 
in order to carry out binary classification of hand movement 
directions using a wavelet filter-bank. Various visualization 
schemes help us to investigate the wavelet levels and tem-
poral variation in synchrony between channels. We analyse 
the results of each stage in our proposed algorithm and try 
to interpret them for possible neurophysiological significance.

2.1.  Data acquisition

The experiments were performed at the Neural Signal 
Processing Lab of Institute of Infocomm Research, Agency 
for Science, Technology and Research, Singapore. EEG was 
recorded using a Neuroscan SynAmps 128 channel ampli-
fier of which the 118 EEG channels were used to record the 
data sampled at 250 Hz. Out of the remaining ten auxiliary 
channels, two channels were used to record electrooculogram 
(EOG). Data was collected from seven subjects (ages 25–36 
years, mean age 31 years  ±  4.4 [SD], right-handed, all male) 
performing right hand centre-out movements in the horizontal 
plane in four orthogonal directions, namely ‘north’, ‘east’, 
‘south’ and ‘west’ denoted by d1, d2, d3 and d4, respectively. 
Each subject was seated on a chair with his right forearm 
attached to the MIT Manus robot which recorded kinematic 
parameters such as direction and trajectory of movements 
[33]. A computer screen displayed distinct cues for movement 
direction and onset of movement. The experimental timeline 
has been illustrated in figure 1. The trial began at the home 
screen which lasted for about 2 s followed by a rest period of 3 
s during which the subjects held the MIT MANUS robot in the 
centre position. The cue for getting ready for hand movement 
was displayed at the end of the rest period followed by the 
cue for the direction in which movement is to be performed 
which signalled the start of the preparation interval. As it was 
a randomized controlled experiment, in each trial the direc-
tion prompted was chosen randomly by a computer. The prep
aration interval which lasted for 2 s was followed by a cue for 
onset of movement. This cue for movement onset was iden-
tical for all directions. Subjects were instructed to carry out 
the movement as soon as they received the cue for onset of 
movement and to complete the movement within 0.5 s. At the 
end of the task, the subject was informed that the trial was 
complete. A total of 160 trials per subject were conducted (40 
trials per direction) for six subjects, S1–S6 and 140 trials (35 
trials per direction) for subject S7. The total time for each trial 
took around 10 s. For this study, a subset of 35 EEG electrodes 
spanning the sensorimotor cortex, as shown in figure 1, and 
two EOG electrodes are used.

J. Neural Eng. 15 (2018) 066008
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2.2.  Preprocessing of EEG data

The acquired signals have to be preprocessed to enhance their 
quality and remove artefacts due to eye movements (EOG) 
and muscle activity known as electromyogram (EMG). In our 
study, 2 s of data are considered for each trial, which cor-
respond to the interval between 1 s prior to movement onset 
cue to 1 s after it, as shown in figure 1. Thus, there are 500 
samples of EEG data corresponding to 2 s per trial. All data 
processing is done in MATLAB. Firstly, the acquired signals 
are low pass filtered at 96 Hz using a zero phase Chebyshev 
Type II filter. The filter order is determined from the data 
using MATLAB’s cheby2ord(·) function which calculates the 
minimum order required to meet the filter design specifica-
tions. The cut off frequency is 96 Hz with less than 3 dB of 
passband ripple and 40 dB of stopband attenuation. Notch fil-
tering is performed to remove line frequency at 50 Hz using a 
second order IIR notch filter (iirnotch(·) in MATLAB). Since 
the data acquisition hardware had a lower cut-off frequency 
of 0.05 Hz, the spectrum of EEG signals used in this study is 
between 0.05–96 Hz. Independent component analysis (ICA) 
is then carried out on the signals for EOG artefact removal 
based on correlation with the EOG signals [34]. The comp
onents with highest correlation with the EOG signals are nul-
lified. The conditioned EEG signals are then back-projected to 
the sensor space. Surface Laplacian is then used to remove the 
higher frequency artefacts due to EMG [35]. Apart from EOG 
and EMG artefacts, we did not find any evidence of electro
magnetic field interference in the EEG data. More details of 
the above pre-processing techniques can be found in [18].

2.3.  Proposed methodology for binary classification

The method used for single-trial binary classification of hand 
movement directions in this paper is similar to our earlier 

work [36] wherein we use Symlets5 wavelet to successively 
decompose and reconstruct the preprocessed EEG signals at 
various frequency bands. These narrowband signals are then 
used for extracting wavelet phase-locking values (W-PLV) 
as features for single-trial binary classification. However, 
unlike our previous work, we use a simplified version of the 
correlation-based channel-pair selection technique (feature 
selection) and include higher wavelet levels corresponding to 
frequency �12 Hz which includes the mu band that is typi-
cally used to study movement and motor imagery parameters, 
besides the slow cortical potentials (SCPs) [37, 38]. We use 
5 × 5 nested cross-validation to assess the performance of 
our binary classification algorithm. Feature selection is only 
done on the training set which is then applied to the test set. 
The results of the classification performance reported are 
then the average accuracy on the test set over all five runs of 
5-fold cross-validation. We also investigate the contribution 
of different wavelet levels to the classification performance 
achieved and attempt to find evidence of information through 
various trial-averaged methods.

2.3.1.  Discrete wavelet transform and wavelet reconstruc-
tion.  Wavelets offer an effective way of analysing EEG 
signals since they offer excellent frequency resolution in 
the lower frequencies [39, 40]. The prototype functions are 
dilated and scaled to shift across time and frequency which are 
then used as basis functions for analysing and reconstructing 
the EEG signals [39, 41]. For digital signal processing, instead 
of performing continuous wavelet transform, we perform dis-
crete wavelet transform by discretizing the translation and 
dilation parameters as this helps to remove redundancy caused 
by continuous parameters. This discretization is done on a 
dyadic grid to get the resultant spectrum division as illustrated 
in [41]. In this study, 500 samples of data are divided into nine 

Figure 1.  Experimental timeline of each task and the set of 35 EEG electrodes that have been used for this study which include F5, F3, F1, 
Fz, F2, F4, F6, FC5, FC3, FC1, FCz, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, P5, P3, P1, Pz, 
P2, P4 and P6. The symbols above the timeline show the various cues, relative positions on the screen and the time instants at which they 
were displayed to the subjects during each trial.
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wavelet levels. The frequency bands corresponding to the nine 
wavelet levels are: 0.05–0.375, 0.375–0.75, 0.75–1.5, 1.5–3, 
3–6, 6–12, 12–24, 24–48 and 48–96 Hz. We consider wavelet 
levels from 1 to 6 (1 being the wavelet level corresponding 
to the lowest frequency band) and ignore wavelet levels 7–9. 
This is because the higher wavelet levels (7–9) are broadband 
EEG frequency bands and phase-locking values are usually 
computed for narrow EEG frequency bands. Moreover, wave-
lets 1–6 already include SCPs and the mu band which are typi-
cally used to study motor activity.

2.3.2.  Wavelet-phase locking value.  PLV is a measure of 
phase synchronization between a pair of signals and is com-
puted using the phase-difference between the pair of signals 
[11]. A constant phase-difference would imply perfectly syn-
chronized signals and would result in a high PLV of 1. If the 
signals vary randomly with respect to each other then the PLV 
is 0. We use PLV to identify pairs of EEG channels that show 
synchronous relationships for different hand movement direc-
tions. PLVs can be computed from the phase of a narrowband 
signal computed using the Hilbert transform as defined in 
equations (1) and (2) [19].

xh(t) =
1
π

∫ ∞

−∞

x(t)
t − τ

dτ� (1)

φx(t) = arg(x(t) + jxh(t))� (2)

where xh(t) is the result of the Hilbert transform of the nar-
rowband signal x(t) that is obtained by computing the integral 
taken in the sense of Cauchy principal value, arg(·) is the 
argument function that computes the instantaneous phase of 
the signal, denoted by φx(t).

Once we compute the instantaneous phase of the signal, 
the trial-averaged PLV between two channels x and y are com-
puted using equations (3) and (4).

ε(x, y, t) = exp j(|φx(t)− φy(t)|)� (3)

Vd,l(x, y, t) =
∣∣∣∣

1
Td

∑
trials∈d

ε(x, y, t)
∣∣∣∣� (4)

where x(t) and y(t) are the EEG signals from channels x and 
y at wavelet level l, t ∈ [1, N] where N is the number of time 
samples (500) in each trial, d ∈ D where D is the set of all 
directions  =  {d1, d2, d3, d4} as shown in figure  1. Td is the 
number of trials corresponding to direction d. ε(x, y, t) is a 
measure of the single trial phase-locking between the two 
channels at time t and Vd,l(x, y, t) is the PLV calculated as the 
average over all the trials belonging to that direction. Since we 
compute the PLV values after performing wavelet reconstruc-
tion of the signals, we call them Wavelet-PLV or W-PLV.

W-PLV values computed above are then used to compute 
W-PLS values, with the help of a statistical randomization 
test as follows. At every reconstructed wavelet level and for 
a given pair of electrodes, a surrogate W-PLV distribution is 
generated for every time instant. This is done by randomly 
labelling and shuffling the data for one of the channels in 
every channel pair and re-computing the W-PLV values. This 

process is repeated ten times the sample size, Td for each sub-
ject to generate the surrogate distribution. Then the original 
W-PLV values are compared against this surrogate distribution 
using the Student’s t-test to calculate W-PLS, using a similar 
technique as in [9]. As shown in equation (5), we check for a 
significance level of α = 0.001 and accept the W-PLV values 
if they are found to be significant, else the corresponding 
W-PLS values are taken as 0. For 5-fold cross validation, the 
sample size Td includes the training data wherein there are 32 
trials per direction for subjects S1–S6 and 28 trials per direc-
tion for S7.

Sd,l(x, y, t) =
{

Vd,l(x, y, t) if p-Value � α

0 otherwise� (5)

where Sd,l(x, y, t) is the W-PLS value for direction class d and 
wavelet level l. In order to carry out single trial classification, 
we use single trial W-PLVs as features from all combinations 
of channel-pairs. Thus, given a channel pair (x, y), we calcu-
late the single trial PLV by using equation (6).

εk,l(x, y) =
∣∣∣∣

1
N

N∑
t=1

εk(x, y, t)
∣∣∣∣� (6)

where εk,l(x, y) is the single trial W-PLV for the kth trial at 
wavelet level l.

2.3.3.  Pearson’s correlation coefficient based channel-pair 
selection.  As mentioned earlier, in this study we use 35 
channels which are directly above the motor cortex. There are 
595 combinations of channel-pairs for which we can compute 
W-PLV at every wavelet level. For six wavelet levels, there are 
a total of 3570 features that can be computed using W-PLV 
which would lead to a high dimensional feature matrix for 
single trial classification. Therefore, we use Pearson’s corre-
lation coefficient (PCC) to select the best channel-pairs from 
each wavelet level that show most discriminative information 
for a given pair of directions (for binary classification). PCC 
is often used in statistics to test both, the qualitative as well 
as the quantitative nature of the correlation between two vari-
ables [42]. The correlation coefficient ‘r’ varies between  −1 
and 1 such that when r  =  1 the variables have perfect positive 
correlation, i.e. they increase and decrease together perfectly; 
and when r  =  −1 the variables have perfect negative correla-
tion, i.e. they have perfectly opposite trends.

We use PCC in our method to select channel-pairs which 
have the highest PCC values with the class labels, as shown in 
equations (7) and (8).

Z1 = [Vdi,l(x, y, t), Vdj,l(x, y, t)]∀t ∈ [1, N]� (7)

Z2 = [L1, L−1]� (8)
where the vector Z1 of length 2N contains the appended trial-
averaged W-PLV values for binary-classes (di, dj) where 
(di, dj) ∈ D and di �= dj, for a channel-pair (x, y) at wavelet 
level l, Z2 is a vector of length 2N, whose elements, vectors 
L1 and L−1, are each of length N and contain labels 1 and  −1 
respectively. We compute PCC for all combinations of channel-
pairs, at every wavelet level and sort them in descending order 
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from which we select the channel-pairs corresponding to the 
highest positive and negative PCC values. In this study, we 
select 10 channel-pairs each corresponding to the correlation 
values from both ends of the sorted PCC values resulting in 
20 channel-pairs at every wavelet level. τdi,dj,l contains this set 
of channel-pairs selected for a set of binary-classes (di, dj) at 
every wavelet level l. The corresponding values of single trial 
WPLV calculated using (6) are stored in F. This is then the 
feature matrix that is used for single-trial classification.

2.3.4.  Naive Bayesian Parzen window classifier (NBPW).  A 
Naive Bayesian Parzen window classifier is used for binary 
classification, which employs Bayes rule to predict the class 
which has maximum posterior probability p(d|f ) as computed 
in equation (9) [15].

p(d|f ) = p( f |d) p(d)
p( f )� (9)

where p(d|f ) is the posterior probability for direction d and 
feature f wherein f is a feature vector ∈ F that corresponds 
to the W-PLV values computed for a channel-pair selected 
in τd1,d2,l. For 2 classes, the probability p( f ) is calculated as 
follows.

p( f ) =
2∑

d=1

p( f |d) p(d).� (10)

Since it is a naive classifier, it assumes that all the features are 
independent. On the basis of this assumption, the conditional 
probabilities are calculated as follows.

p( f |d) =
d∏

j=1

p( fj|d)� (11)

p̂( fj|d) =
1
nd

∑
i∈Id

φ( fj − f̄i,j, h)� (12)

where p̂( fj|d) is the Parzen Window estimator of the condi-
tional probability p(fj|d), nd is the number of data samples 
belonging to class d, Id is the set of indices of training data 
trials ∈ d, φ is a smoothing kernel function with a smoothing 
parameter as defined in [15].

2.3.5.  Algorithm.  The steps in the binary classification algo-
rithm, illustrated in figure  2, are summarized in this sec-
tion as follows. The dataset is pre-processed and segregated 
into training and test sets for 5 × 5 nested cross-validation. 
For a pair of binary classes, di and dj ∈ {d1, d2, d3, d4} and 
di �= dj, the training data is used to compute the trial aver-
aged W-PLV values. As mentioned earlier, we use only the 
lower 6 wavelet levels corresponding to the frequency bands 
0.05–0.375, 0.375–0.75, 0.75–1.5, 1.5–3, 3–6 and 6–12 Hz 
respectively. Like the methodology proposed in [36], we 
select channel-pairs using Pearson’s correlation coefficient. 
However, instead of trial-averaged W-PLS values as used in 
[36], we use the trial averaged W-PLV values for channel-pair 
selection. This is because computation of W-PLS is extremely 
complex and time-consuming as it is heavily iterative. For this 
study, we use W-PLS values only to visually inspect the data. 
Since we are using PCC to select the best channel-pairs at 
every wavelet level, it is expected that the channel-pairs with 
significant W-PLV values would be picked automatically.

Feature selection is only done using the training data. As we 
select 20 channel-pairs per wavelet level, there are a total of 
120 features selected over all six wavelet levels. These selected 
channel-pairs are then used to compute the single-trial W-PLV 

Figure 2.  Proposed methodology for binary classification using W-PLV.
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values from the training set to train the NBPW classifier. After 
five runs of 5-fold cross-validation, we report the average clas-
sification accuracy over the test set. The steps have been sum-
marized in algorithm 1 and illustrated in figure 2.

Algorithm 1.  Wavelet-PLV based binary classification.

1: �Segregate trials into training and test sets for 5 × 5 cross-
validation

2: for each cross-validation fold do
3:   for trials ∈ training set and binary-class (di, dj) do
4:       �Compute Vd,l(x, y, t)∀t ∈ [1, N], d = {di, dj} for all 

combinations of (x, y)
5:       �Perform PCC at every wavelet level l and choose subset 

of channel-pairs τdi,dj,l

6:    end for
7:   Ftrain = vk,l(x, y)∀ trials ∈ training set ∀(x, y) ∈ τdi,dj,l .
8:   Train NBPW Classifier
9:   Ftest = vk,l(x, y)∀ trials ∈ test set ∀(x, y) ∈ τdi,dj,l .
10:    �Test the performance of the NBPW classifier on test set and 

calculate classification accuracy
11: end for
12: �Repeat above steps for remaining iterations of 5  ×  5  

cross-validation.
13: Calculate average classification accuracy over test set

3.  Analysis and results

This section presents the results of binary classification of hand 
movement directions with a detailed analysis of trial-averaged 
and single-trial W-PLV features. In doing so, we attempt to 
seek greater insight into the movement related spectro-tem-
poral information in the various wavelet levels. Thus, we first 
analyse the trial-averaged W-PLV features extracted from 
EEG corresponding to the different hand movement direc-
tions, as described in section 2. Next, we present the results 
of binary classification of all combinations of hand movement 
directions using single-trial W-PLV features. Lastly, we inves-
tigate the results of the different stages of the binary classifica-
tion algorithm to gain better understanding of the working of 
the algorithm. We also try to provide possible interpretations 
of the associated neurological phenomena, wherever possible.

3.1.  W-PLV plots

3.1.1. Temporal variation of windowed trial-averaged 
W-PLS.  We would like to visualize the temporal variation of 
trial-averaged W-PLS values over the 2 s of data per trial we 
use in this study. The motivation behind such inspection is to 
investigate the presence of any temporal markers that could 
give us some movement-related information. For this purpose, 
we divide the entire duration of 500 samples (2 s) into time-
windows of 100 samples each wherein each window would 
correspond to an interval of 0.4 s. Next, we compute the mean 
of the trial-averaged W-PLS values computed above over all 
the samples within that window as in equation (13).

S̄wd,l(x, y) =
1

100

∑
t∈w

Sd,l(x, y, t)� (13)

where S̄wd,l is the windowed-trial averaged W-PLS value for 
a channel pair (x, y) and direction d, at wavelet level l and 
time-window w. Thus, there are a total of five windows, each 
of duration 0.4 s.

Figure 3(a) shows the number of statistically significantly 
phase-locked channel-pairs in each time window (TW1–TW5) 
for each direction averaged over all subjects for wavelet level 
3. It can be seen that for all directions, TW3 and TW4 contain 
the maximum number of significantly phase-locked channel-
pairs than all other TWs. For all directions except direction 
d3, TW3 has maximum number of significantly phase-locked 
channel-pairs. For direction d3, TW4 has maximum number 
of significantly phase-locked channel-pairs. Figure  3(b) has 
been plotted similar to those in [30] as an example to visualize 
the temporal patterns of W-PLS values. For this, we use the 
imagesc function of MATLAB and plot the channel  ×  channel 
matrix for direction d2 of subject 1. As the channel  ×  channel 
matrices are symmetric, only the upper triangles have been 
plotted in figure 3 for better comprehension. We can observe 
the build-up of phase-locking patterns starting from TW1, 
peaking at TW3 and reducing again in TW5, following the 
temporal sequence observed for all subjects in figure  3(a). 
TW3 corresponds to  −0.2 to 0.2 s, that includes the cue for 
the onset of movement at time t  =  0. In this particular time 
window, it is observed that channels C6, CP5 and CP2 (corre
sponding to columns 21, 22 and 26) have maximum number 
of peaks in W-PLS values with other channels. A possible 
interpretation of this observation is that the activity in this 
time window as measured on the scalp through EEG might 
be centered around C6, CP5 and CP2. As this time window 
corresponds to the visual cue for onset of movement, the 
increased synchrony observed on these channels may indicate 
the increased interaction at the somatosensory cortex. This 
observation, though expected, will have to be verified using 
source-imaging techniques. The same channels also show 
huge temporal variation in the estimated synchrony and depict 
a build-up of synchrony starting with almost none in the first 
time window, peaking at the third time window and reducing 
to negligible synchrony again in the fifth time window. Thus, 
the number of peaks in the windowed, trial-averaged W-PLS 
values may help us in isolating period of onset of motor exe-
cution. Our future work will use this temporal information for 
identifying the above.

3.2.  Spatial contour maps

W-PLV values averaged and normalized over all subjects 
are next analysed in order to identify some common trends 
in phase-locking patterns for the different directions. For this 
purpose, figure  4 is plotted which presents the spatial con-
tour maps of the mean W-PLV values over all subjects, using 
EEGLAB in MATLAB [43]. These spatial contour maps are 
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plotted using W-PLV values computed for all channels with 
respect to the common ‘seed’ channel Cz. After calculating 
the mean W-PLV values over all the subjects for each direc-
tion and wavelet level, values are then normalized such that 
the minimum and maximum W-PLV values take 0 and 1 
respectively.

From figure 4, it can be seen that the lowest wavelet levels 
have distinctly most variation in W-PLV patterns as compared 
to the higher levels. Peaks on these plots imply increased 
interaction between the respective channels and seed channel 
Cz. The high variation in the normalized W-PLV patterns seen 
could imply direction-dependent information extracted from 

EEG which would help our channel-pair selection technique 
select the most discriminative channel-pairs as will be seen in 
section 3.4. In wavelet level 1, denoted by l1, the plots for all 
the 4 directions show common peaks at C2 while the peaks 
on the channels on the left hemisphere (contralateral to the 
moving arm) show varying patterns. The opposite trend is 
observed for wavelet level 2 wherein peaks can be seen on 
C1 and FC1 (left hemisphere) but varying patterns are seen 
on the channels of the right hemisphere (ipsilateral to the 
moving arm). There are differences in the contours for the 
higher wavelet levels as well but the peaks are most distinctly 
different for the different directions in the lower wavelet 

Figure 3.  Analysis of the temporal variation of windowed W-PLS values. (a) Plot of the number of significantly phase-locked channel-pairs 
for each direction in each time window averaged over all subjects for wavelet level 3 (0.375–0.75 Hz). (b) Example of significantly phase-
locked channels plotted using direction d2, subject S1. The 35 channels in each channel  ×  channel subplot are arranged as F5, F3, F1, Fz, 
F2, F4, F6, FC5, FC3, FC1, FCz, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, P5, P3, P1, Pz, P2, 
P4 and P6 from top to bottom and from left to right (1 to 35, respectively). As each channel  ×  channel matrix is symmetric, only the upper 
triangle has been plotted for better comprehension. TW refers to the time window. The five time windows (from TW1 to TW5) correspond 
to time durations  −1 to  −0.6, −0.6 to  −0.2, −0.2 to 0.2, 0.2 to 0.6 and 0.6 to 1 s, respectively. Time window TW3 shows maximum 
interaction centred around channels C6, CP5 and CP2 which are directly over the somatosensory cortex.
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levels. For wavelet levels 5 and 6, as shown in figure 4, the 
peaks seem to be localised at channels around C1 and C2. 
On changing the seed channel, different phase-locking pat-
terns and contours are observed. However, irrespective of the 
choice of seed channel, the contrast in the visually discrimi-
native information in the lower and upper wavelet levels, as 
shown in figure 4 is consistent for all such figures.

3.3.  Binary classification results

Single-trial binary classification of hand movement directions 
is conducted for all six combinations of binary classes of the 
four hand movement directions. These results are tabulated for 
all seven subjects using our proposed method in table 1. The 
mean accuracy achieved after 5 × 5 nested cross-validation 
over all 7 subjects is 76.85%. The 95% confidence interval for 
the mean classification accuracy is (72.13%, 81.57%) which 

is statistically significantly above chance level, as computed 
using Student’s One-Sample t-test (p  <  0.00001). We see 
empirically that including more wavelet levels increases the 
performance of binary classification to 76.85% as compared 
to [36] where only the lowest two wavelet levels have been 
used and a mean classification accuracy of 65.7% is achieved, 
as shown in table 2. Moreover, in table 2, the classification 
performance of our W-PLV method is compared with the 

Figure 4.  Spatial contour maps plotted using W-PLV values, averaged over all trials and all subjects with seed channel at Cz. Wavelet 
levels l1, l2, l5 and l6 correspond to frequency bands 0.05–0.375 Hz, 0.375–0.75 Hz, 3–6 Hz and 6–12 Hz, respectively. The spatial maps 
in levels l1 and l2 seem to have most direction-dependent W-PLV patterns while those in l5 and l6 seem to have peaks localized around 
C1 and C2 and direction-dependent contours. The peaks on the left hemisphere (contralateral to the moving arm) in l1 and on the right 
hemisphere (ipsilateral to the moving arm) in level l2 seem to be distinctly direction-dependent. Identification of such peaks can help to 
increase the classification accuracy of the different hand movement directions.

Table 2.  Comparison of results of our proposed W-PLV method 
with other methods that have been used previously on the same 
dataset. Accuracies are reported below in percentages.

Methods Mean accuracy

Proposed W-PLV method 76.85
Modified W-CSP [17] 71.25
W-PLV [36] 65.78

Table 1.  Results of binary classification for subjects S1–S7 using our proposed W-PLV method with Nave Bayesian Parzen window 
classifier after 5 × 5 nested cross-validation. Mean accuracies reported below in percentages.

Subjects

Binary classes

Meand1–d2 d1–d3 d1–d4 d2–d3 d2–d4 d3–d4

S1 91.75 81.00 89.25 81.25 91.00 82.00 86.04
S2 71.25 68.00 69.00 67.75 78.50 78.25 72.12
S3 69.75 71.25 78.00 75.25 95.25 72.75 77.04
S4 79.00 69.75 79.25 77.75 74.75 89.75 78.37
S5 82.25 64.00 71.25 76.75 74.00 77.25 74.25
S6 76.00 84.25 80.25 76.25 78.75 79.50 79.71
S7 67.43 76.86 72.29 65.71 68.86 74.57 70.95
Mean 76.78 73.59 77.04 74.39 80.16 79.15 76.85
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state-of-the-art modified wavelet CSP method in [17] for 
binary classification and is seen to give better results. Next, 
we used Student’s paired t-test to compare the performance of 
our proposed method with the methods mentioned in table 2. 
We found that although the mean accuracy of our proposed 
method is higher than WCSP, this difference is not statisti-
cally significant (p  =  0.1891). The 95% confidence interval 
of WCSP in [17] is (61.11%, 81.37%). Thus, our proposed 
method results in a much narrower confidence interval indi-
cating its robustness. When compared to our earlier W-PLV 
based method in [36], our proposed method performed signifi-
cantly better (p  =  0.006).

The trend of classification performance over the seven sub-
jects is different in W-PLV and WCSP [17] methods which 
are based on phase-synchrony and amplitude of EEG signals, 
respectively. This could mean that there is complementary 
information in these different feature extraction methods. An 
effective combination of these features could help to further 
increase the classification accuracy.

3.4.  Channel-pair selection using Pearson’s correlation  
coefficient

We would like to analyse the working of our modified correla-
tion-based channel-pair selection technique. For this purpose 
we plot figure  5 for subject S1 for channel-pairs that show 
highest positive correlation and highest negative correlation 
for wavelet level 1 and directions d1 and d2. In this figure, 
the graph in (a) shows the correlation coefficients sorted in 
decreasing order for all the 595 channel-pairs with the respect 
to directions d1 and d2. The higher positive PCC values cor-
respond to those channel-pairs that show increased phase-
locking for direction d1 and low phase-locking for direction 
d2. Channel-pair C5-CP6 has the highest positive PCC value 
of 0.933 and the trial averaged W-PLV values for both the 
directions have been plotted in figure 5 showing consistently 
higher values for direction d1 as compared to direction d2. 
The opposite trend can be seen for channel-pair C1–C6 which 
have highest negative correlation with PCC value of  −0.9743 

Figure 5.  Example of PCC based channel-pair selection on trial-averaged W-PLV values with the correlation coefficients sorted in 
descending order in (a). This figure has been plotted for subject S1 and wavelet level 1 for the binary class of directions d1 and d2. The 
channel-pairs corresponding to the correlation values enclosed in the green boxes on either side of the sorted PCC values show most 
discriminative information between the two classes and are hence selected for feature selection for binary classification. The plots in (b) 
and (c) are two examples of the selected channel-pairs at each end of the sorted correlation values, with maximum positive correlation and 
maximum negative correlation respectively, which are selected for feature selection for binary classification. In these figures, the plots in 
black correspond to the trial-averaged W-PLV for direction d1 and blue to direction d2. PCC for each set of signals are mentioned in red for 
each figure.
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with the class labels as mentioned in (8). The channel-pairs 
corresponding to the PCC values in the region enclosed in the 
green boxes on either side of the sorted PCC values, which 
include the channel-pairs in (b) and (c) are selected for feature 
selection for binary classification.

3.5. Time-frequency contour plots of most frequently  
selected channel-pairs

It is seen that including higher wavelet levels has helped 
to increase the classification accuracy of our W-PLV based 
method significantly from 65.7% in [36] to 76.85%. We 
would now like to investigate the contribution of the higher 
wavelet levels included to the increase in binary classification 
accuracy. Our hypothesis is that single-trial features from the 
higher wavelet levels containing direction-dependent informa-
tion should contain consistent peaks in trial-averaged W-PLV 
values. We test this hypothesis by plotting time-frequency 
contour maps of frequently chosen features chosen across all 
wavelet levels. Presence and location of such peaks would 
provide relevant movement related information.

Figure 6 has been plotted using some features that are most 
often selected for binary classification for subject S1 as an 
example. From this figure we see that W-PLV peaks can be 
seen across all wavelet levels. In the lower levels (levels 1–3 
corresponding to EEG  <  1 Hz), there are peaks in C4-CP6, 
from time  −0.4 to 0.4 s in direction d1 and in Cz-P4 in direc-
tion d2 from time  −0.8 to  −0.4 s of figure 6(a). In figure 6(b), 
W-PLV peaks in levels 2–3 can be clearly seen in FC1–C2, 
direction d3. Due to the higher temporal resolution of the lower 

levels, these peaks appear to be very prominent. Due to the 
nature of the temporal resolution of wavelets, the peaks in the 
higher levels are much narrower as compared to those in the 
lower levels. However, we can still spot them clearly in levels 
5 and 6 (corresponding to EEG between 3–12 Hz) in Cz-P4 in 
figure 6(a) in time  −0.5 to  −0.2 s and 0 to 0.2 s. In C2-CPz 
in figure 6(b) W-PLV peaks in the levels 5–6 can be seen in 
time  −0.4 to  −0.2 s and 0 to 0.12 s; in FC1–C2 in time  −0.6 
to  −0.4 s and 0 to 0.2 s. The same observation can be made 
from similar figures plotted for other subjects and direction-
pairs. The presence of such direction-dependent peaks in 
higher wavelet levels explains why including more wavelet 
levels adds discriminative information to the feature matrix 
that is used by the classifier and results in higher classifica-
tion performance. Thus, they seem to have contributed to the 
increase in classification accuracy. Moreover, even though d1 
is common in (a) and (b), the features selected most often for 
d1 in both cases are different as they depend on the other class. 
This is because the feature selected should contain most dis-
criminative information that would help in single trial classifi-
cation. Hence, our proposed method is capable of intelligently 
identifying discriminative features for binary classification.

4.  Discussion

This paper began with a literature review on the various 
methods that have been used to extract hand movement-related 
information. After that, a novel W-PLV-based feature extrac-
tion method was proposed to analyse right hand movement in 

Figure 6.  Time-frequency plot of some of the most often selected channel-pairs whose W-PLV values are used for binary classification 
for subject S1, showing the presence of direction-dependent W-PLV peaks across various wavelet levels. (a) and (b) Have been plotted for 
features selected most often for binary-classes d1 versus d2 and d1 versus d3, respectively. In (a), channel-pair C4-CP6 is chosen most 
often for d1 and Cz-P4 is chosen most often for d2 across all wavelet levels. In (b), channel-pair C2-CPz is chosen most often for d1 and 
FC1–C2 is chosen most often for d3. Peaks in both (a) and (b) can be seen spread out across all the wavelet levels from 1 to 6. Lower 
wavelet levels correspond to lower frequency bands.
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4 orthogonal directions in a horizontal 2-dimensional plane. 
The analyses on the proposed feature extraction method uti-
lizing wavelet phase-locking values from EEG demonstrate 
the ability of the proposed method in identifying task-depen-
dent synchronous channel-pairs. The discriminative ability of 
our proposed method is verified in the binary classification of 
hand movement directions which yields higher classification 
performance than other methods reported in literature.

4.1.  Discriminative patterns of hand movement directions  
in W-PLV

The wavelet phase-locking patterns extracted have the advan-
tage of being visualized effectively which helps reveal dis-
criminative patterns. Spatial contour maps plotted from 
trial-averaged W-PLV values show that the lowest two wavelet 
levels (<1 Hz) contain the most movement-related informa-
tion. However, there are also visible differences in contours in 
higher wavelet levels as seen in figure 4. Figure 3 depicts the 
temporal variation of statistically significant phase-locking 
in various channel-pairs. Inspection of this figure shows the 
presence of relevant movement related information such as 
the markedly increased phase-locking in channel-pairs cen-
tred over the somatosensory cortex during the period of onset 
of movement. Thus, it may be possible to use such timing 
information to enhance the efficiency of a movement detector 
which can then be used for asynchronous classification using 
EEG. Studies have shown the ability of using PLV-based 
techniques to identify actual movement and motor imagery 
from rest [29, 44]. Moreover, it might be possible to develop a 
strategy to use such information to fine-tune a detector which 
identifies the best time-period for classification. It is impor-
tant to note that identical cues were used for movement onset 
for all directions and therefore contained no discriminative 
information.

We have conducted a thorough analysis on the results 
of various steps used in the proposed W-PLV based binary 
classification method and empirical evidence is presented to 
corroborate the improvement in classification performance. 
Even though the trial-averaged W-PLV patterns in figure 4 are 
distinctly more discriminative for the lowest wavelet levels 
than the higher ones, figure 6 shows the presence of move-
ment related peaks in W-PLV values in higher wavelet levels 
as well. Thus, inclusion of single-trial features extracted from 
higher wavelet levels adds discriminative information that can 
be used by the classifier.

4.2.  Limitations

The primary limitation of the current work is that the fea-
ture extraction method and binary classification algorithm is 
computationally intensive. Since all possible combinations of 
channel-pairs are considered, there are a total of 595 channel-
pairs between the 35 channels used for this study. Increasing 
the number of channels used for this study would increase the 
number of combinations of channel-pairs which would drasti-
cally increase the computational complexity of the algorithm. 
A possible way to mitigate this limitation would be to use a 

channel selection algorithm to choose a smaller subset of the 
most relevant channels before computing the W-PLVs between 
the channel-pairs. Alternatively, the number of wavelet levels 
used for classification can be fine-tuned according to each 
subject.

The current method would have to be modified when 
extended to multi-class classification of hand movement 
directions. Commonly used methods for multi-class classifi-
cation such as one-versus rest (OVR) when directly applied 
to the current method might lead to poorer accuracies due 
to the small size of the current dataset (40 trials per class 
per subject for six subjects and 35 trials per class for the 
seventh subject) and would instead lead to the problem of 
imbalanced training data, biasing the classification towards 
the ‘rest’ class. One would then have to use more sophisti-
cated techniques to treat imbalanced data such as cost-sen-
sitive boosting [45, 46] and resampling [46, 47]. Secondly, 
the current correlation-based feature selection method is 
appropriate for binary classes only as it selects features with 
the highest correlation coefficients with the class labels in 
positive and negative extremities. Thus, the present method 
would have to undergo relevant modifications to address the 
above issues before extending it to multi-class classifica-
tion. Once this is achieved, we can compare the performance 
of our modified W-PLV based method against established 
amplitude-based multi-class classification strategies like the 
one reported in [18].

4.3.  Future work

The amplitude and phase of a signal extract different kinds 
of information about the recorded activity. Therefore, future 
efforts in this line of work will be made to explore machine 
learning methods that effectively combine the different kinds of 
information from amplitude and phase-based feature extraction 
techniques. Also, as observed earlier, the difference in trend of 
classification accuracies of the subjects in W-PLV and WCSP 
methods imply complementary information in these methods 
that could be used to further enhance the classification perfor-
mance. A possible strategy is to use ensemble classifiers that 
would use different types of features to classify hand-movement 
directions and then strategically combine the predicted labels of 
the individual classifiers to make a collective decision.
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