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I
n this article, we provide an overview of electroen-
cephalography (EEG) source imaging (ESI) of move-
ment decoding for brain–computer interface (BCI) 
applications. The current state-of-the-art neuroim-
aging modality—functional magnetic resonance 

imaging (fMRI)—is expensive and nonportable and has 
poor temporal resolution. EEG, however, offers an attrac-
tive choice as a portable and cost-effective neuroimaging 

technique that delivers excellent temporal resolution, 
especially in reading dynamic human motor behavior. 

This article introduces the basics of ESI, followed by a 
critique of state-of-the-art ESI methods concerning various 
facets of motor tasks, such as directional decoding, move-
ment kinematics, and localized arm movement decoding in 
BCI paradigms. We also examine the clinical applications 
of EEG-based neuroimaging in prognoses of neuromotor 
diseases. Furthermore, we discuss some of the common 
pitfalls related to EEG source localization and the neces-
sary measures to circumvent these challenges.
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Developments in ESI
With the rapid strides that have been made in machine 
learning and signal processing techniques, BCI is becom-
ing quite popular, as it allows the translation of human 
intentions into control commands. While the applications 
of EEG-based BCI span several domains, the most impor-
tant are in the field of neuroprosthetics to assist locked-in 
patients. Nevertheless, even the current state-of-the-art 
technology in noninvasive BCI systems allows for only a 
limited degree of control in neuroprosthetics. Since motor 
functions are somatotopically organized in the human 
brain and motor control is highly dynamic in nature, it is 
indispensable to understand the spatiotemporal dynamics 
of brain activity to produce a greater number of control 
commands with higher degrees of freedom (DoF) [1], [2]. 

Although EEG has the advantage of high temporal res-
olution, its innate limitation of poor spatial resolution 
makes gathering information from the cortical source 
arduous. Unfortunately, traditional approaches focusing 
on increasing the number of scalp electrodes to improve 
scalp spatial resolution do not address the problem of 
volume conduction effects. Because ESI addresses this 
issue to some extent, there is increasing attention toward 
using this approach. ESI is essentially a model-based 
neuroimaging technique that uses anatomical constraints 
to solve the ill-posed problem of identifying the cortical 
sources that generate electrical potentials recorded from 
the scalp. 

Although there have been several multimodal neuroim-
aging methods in the literature [3] that incorporate EEG’s 
high temporal resolution and fMRI’s high spatial resolu-
tion to complement each other’s limitations, there are 
severe practical hindrances concerning the monetary cost 
and the limited portability of MRI. Discussing the advan-
tages and drawbacks of multimodal neuroimaging is out 
of the scope of this article, and therefore, we suggest that 
readers refer to recent review articles on this topic [4], [5]. 
Another such article gives an excellent overview of ESI in 
the context of BCI paradigms [6]. 

In our current work, we aim to equip readers by sup-
plying a nonexhaustive topical review of EEG source-
place analysis of motor tasks, thereby complementing 
the thorough literature survey in [6] and [7] on the chal-
lenges and opportunities of ESI. Although the funda-
mental concept of EEG source localization has been 
known for some time, its application to the motor imag-
ery (MI) classification of left- versus right-hand move-
ment was pioneered by Qin et. al. [8], which paved the 
way for later studies on source-space EEG for motor 
decoding. Since then, there have been several studies 
that use various approaches of inverse modeling to 
localize and identify the sources involved in movement 
execution (ME) and/or movement imagination. As dif-
ferent tool boxes to implement ESI—such as BrainStorm 
[9], FieldTrip [10], minimum-norm estimation (MNE) [11], 
and statistical parametric mapping [12]—were made open 

source for reproducible research, ESI has become pro-
gressively well known.

ESI Basics
ESI transforms the sensor domain into the cortical source 
domain. It is an ill-posed problem, because the number of 
cortical sources vastly outnumbers the number of scalp 
electrodes. Therefore, several physical constraints, such 
as the head shape, skull thickness, number of layers in a 
head model, conductivity values in different layers, and a 
priori information about the brain atlas, are used to create 
a forward model, followed by solving an inverse problem 
to convert EEG data from the sensor domain to the 
source domain.

Forward Modeling
Forward modeling is a decisive stage in source imaging, 
as it substantially inf luences the accuracy of EEG 
source localization results. Solving a forward problem 
relates the cortical sources to the sensor-space EEG 
recordings by a simple transformation using a lead-field 
matrix. As the electromagnetic signals propagate from 
cortical sources through a head volume conductor, it is 
crucial to use effective computational techniques to 
accurately represent the volume shape and conductivi-
ties. Although the spherical head model was popular in 
earlier days because of its simplicity, it is an inaccurate 
model compared to state-of-the-art approaches, such as 
the boundary element method (BEM) [13] and finite ele-
ment method (FEM) [14]. 

Although FEM results in a more accurate head model, 
as it handles the tissue anisotropies and inhomogeneous 
conductivities within the brain, it is computationally 
intractable and increases the model complexity. BEM, 
however, assumes piecewise homogeneous conductivity 
within different layers (e.g., skull, scalp, and cortex), and 
thus results in a reasonably accurate head model, in addi-
tion to being computationally more efficient than FEM [7]. 
Irrespective of the type of modeling (BEM or FEM) used, 
the head model needs an anatomical prior that is obtained 
by using either
1) multimodal EEG–fMRI, where an individual MRI pro-

vides the subject-specific head shape to which EEG can 
be coregistered

2) the template anatomy, such as Colin 27 (single-subject, 
multiple MRI scans [15]) or ICBM-152 (a nonlinear aver-
age of MRIs obtained from 152 subjects) [16] when there 
is no subject-specific MRI available.

Inverse Modeling
As ESI is an ill-posed problem, several morphological 
and anatomical constraints are used to reduce the num-
ber of unknown parameters. In that respect, there are 
different techniques to solve the opposite problem: para-
metric methods like equivalent current dipole, and non-
parametric methods (distributed solutions), such as 
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current-density techniques—e.g., MNE, standardized 
low-resolution brain electromagnetic tomography 
(sLORETA), and local autoregressive average (LAURA)—
and beamformer approaches (linear constrained mini-
mum variance and dynamic imaging of coherent sources). 
Readers can access a detailed literature review of vari-
ous methods to solve the inverse modeling in [17] and 
can find a more recent review of ESI’s challenges and 
opportunities in [7]. Spyrou et al. [18] proposed another 
inverse modeling technique for cortical source localiza-
tion corresponding to the event-related potentials that is 
appropriate for many BCI paradigms. The authors of [19] 
report the consistency of various inverse methods using 
different tool boxes.

BCI for Movement Decoding
An ideal BCI-mediated control should be as close as possi-
ble to natural arm control in terms of motor function. With 
the advent of the robotic arm and 
higher-DoFs prosthetics, current 
assistive technologies (or effec-
tors) are capable of mimicking 
some basic arm movements, such 
as holding a bottle, grabbing an 
object and placing it at a target 
position, and so on [50]. Neverthe-
less, the neural decoding of highly 
dexterous movements is compli-
cated, because the cortical regions 
responsible for movements with 
higher DoFs are located extremely 
close to each other in the motor 
region of the brain. The classifica-
tion of these direction-specific cortical sources is not a 
trivial task, especially through the use of sensor EEG. 

Consequently, researchers have looked into various 
modalities to observe the neural correlates of motion 
kinematics. The authors of [51] present a review (until 
2009) of BCI techniques (mostly invasive) focusing on 
decoding movement direction and continuous movement 
trajectories. Since then, there has been an increasing 
number of noninvasive BCI studies in this direction. So, 
in the next section, we concentrate primarily on those 
works that use ESI to study the neural correlates. Various 
state-of-the-art EEG source-space-based methods for 
classifying different types of movements are summa-
rized in Table 1.

Directional Decoding
In [52], Waldert et al. show that hand movement direction 
decoding is possible using noninvasive magnetoencepha-
lography (MEG) and EEG with a significant power modu-
lation in the frequency range of < 7 Hz and high gamma 
(62–87 Hz). In another high-density EEG study (128 chan-
nels), Wang et al. [53] reported the classification of left- 
versus right-arm movement intention using the equivalent 

dipole approach for source localization. Both [52] and [53] 
reported that the features from the parietal reach region 
(PRR) result in good decoding accuracy, partially due to 
the fact the PRR receives a visual cue regarding the move-
ment direction. 

Other researchers [54] presented a right-arm MI BCI 
paradigm in a two-dimensional (horizontal and vertical) 
plane. Here, they calculated sLORETA-based source-
space contributions using partial least squares regression 
instead of multiple linear regression (MLR), as the 
weights of an MLR model are not interpretable. Interest-
ingly, the central subareas of supplementary motor area 
contained the predominant sources, which were consis-
tent across subjects. Shenoy et al. reported similar obser-
vations in [34], wherein the cortical sources responsible 
for right-hand movement in four orthogonal directions 
were located toward the central sulcus. In [55], the 
authors used weighted MNE (wMNE) as an inverse model 

for source localization, followed 
by feature extraction using super-
vised factor analysis. In a recent 
study on goal-directed ME and MI 
paradigm [40], the researchers 
reported that the sLORETA-based 
movement-related cortical poten-
tials revealed significant activa-
tion in the posterior parietal lobule 
in addition to the primary and pre-
motor cortex.

The feedback from the neural 
decoder to control the movement 
of a cursor or an end effector is 
crucial from a BCI perspective. 

The studies reported in [56] and [57] revealed that the left 
versus right cursor control using online ESI–BCI is possi-
ble. Going further, Bradberry et al. employed sLORETA-
based source imaging [33] in which they used the 
low-frequency EEG signals in a linear decoding model to 
generate the x and y coordinates of a cursor. They report-
ed the cortical regions, such as the precentral and post-
central gyrus, lateral premotor cortex, superior temporal 
sulcus, and lateral prefrontal cortex, to be associated 
with the encoding of the observed cursor velocity. Howev-
er, it is to be noted that the researchers did not explore as 
much the ESI with feedback for actual motor control in 
different directions.

Decoding of Kinematic Movement Parameters
In addition to the directional decoding, kinematic 
movement parameters like speed are also vital for neu-
roprosthetic control. The work in [58] found different fin-
ger-tapping speeds to be associated with the activation of 
different parts of the primary motor cortex (M1) and pre-
motor cortex. In an MEG-based visuomotor adaptation 
study [59], sLORETA-based source imaging identified that 
the contralateral precentral gyrus, postcentral gyrus, 

In addition to the 
directional decoding, 
kinematic movement 
parameters like 
speed are also vital 
for neuroprosthetic 
control.
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ipsilateral superior parietal lobule, and precuneus were 
involved in the encoding of the hand velocity in all phases. 
Although [59] was an MEG-based study, the same source-
imaging approach can also be extended to EEG. 

In an EEG-based gait speed study [60], independent 
components clustering, as well as equivalent dipole 
localization based on brain electrical source analysis 

(BESA), in a four-shell spherical model revealed that the 
posterior parietal cortex contains information regard-
ing gait speed. Although an invasive study, we find it 
worth highlighting [61], which suggests the speed-relat-
ed information is well represented in the neural activity 
as compared to direction-related information. It is 
worth noting that the low-frequency cortical source 

Table 1. An overview of the state of the art in EEG source analysis  
of movement-type classification.

Study Type of Experiment Nch Inverse Methods Features and Classifier 
Key Findings [Classification 

Accuracies (CAs)]

[8] Left- versus right-hand MI 59 EDA, CCD Complex Morlet wavelets features CA of 78.9% (EDA), 80.6% 
(CCD) 

[20] Left- versus right-hand MI 59 CCD Von Neumann relative entropy 
 features 

CA of 88% (CCD) 

[21] BCI Competition 2003 
Data Set IV [22]: Self-
Paced Tapping (SPT) 

28 sLORETA Data-driven spatial-filter plus sLORETA 
source power in left and right ROIs; 

classification based on a simple 
 decision tree 

CA of 83% (sLORETA plus 
spatial filter); 78% (sLORETA, no 

spatial filter) 

[23] Left- versus right-hand MI 16 FD-MNE TF combination with lowest p-values CA of 71% (trained group) 

[24] Data Set IV [22]: SPT; 
Data Set IIIa [25] 

60 sLORETA Fuzzy Region of Interest Activity 
(FuRIA)-based features; classification 

using OVR-SVM 

CA of 84% (Data Set IV), CA of 
82.4% (Data Set IIIa) 

[26] BCI Comp. 2003 Data Set 
IV: SPT 

28 LORETA Change in power spectral density 
(PSD) in 1–40 Hz and Bereitschaftspo-

tential features 

CA of 84.25% 

[27] Error-potential paradigm 
(left-hand versus foot MI) 

64 sLORETA PSD features from sensor-space are 
classified using a simple Gaussian 

classifier 

CA of 81.8% (correct trials) 

[28] MI-based cursor control 
in left versus right (Graz 

approach) 

128 Beamformer Log-bandpower of 20 frequency 
bands; spatial filters obtained using 

static beamformer 

Mean CA of 79.8% 

[29] Left versus right index 
finger tapping (ME) 

128 LAURA Single-trial discriminative power 
features classified using LOO-SVM 

cross-validation 

Average CA of 97% over 12 
subjects 

[30] MI-based cursor control 64 LORETA FuRIA features and adaptive FLD 
classifier 

Average CA of 85% 

[31] Left- versus right-hand MI 64 MNE Morlet wavelets-based TF selection 
(6–30 Hz) followed by ERD/S, 

Source R > scalp R 

[32] Self-initiated movement 
to one of the eight direc-

tions 

128 sLORETA Linear decoding model to fit the 
3-D coordinates of hand move-

ment with EEG 

Continuous decoding of 
hand velocity from EEG is 

 demonstrated 

[33] MI-based cursor control 
in up, down, left, and 

right 

128 sLORETA Regression weights of the linear 
 decoding model multiplied by 

 time-series of voxels 

Continuous decoding of hand 
MI with minimal calibration 

[34] Right-hand movement in 
four directions 

118 wMNE Features from regularized variants of 
CSP followed by OVR SVM 

Four-class CA of source-space 
SRCSP (64.98%) > sensor-

space (52.20%) 

[35] Right-hand movement in 
four directions 

118 sLORETA Features from supervised factor 
analysis (SFA) followed by OVR-SVM 

Four-class CA of source-space 
SFA features (71%) 

Comp.: competition; EDA: equivalent dipole analysis; CCD: cortical current density; OVR: one-versus-rest; SVM: support vector machine; LOO: leave-one-out; FLD: 
Fisher’s linear discriminant; ERD/S: event-related desynchronization/synchronization; CSP: common spatial patterns; SRCSP: shrinkage-regularized CSPs.
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signals are predominantly used for movement trajectory 
reconstruction [54].

Upper-Limb Movement Decoding
For a more realistic and practical neuroprosthesis, it is 
important to decode the movement of localized arm 
parts, such as the finger, wrist, elbow, and shoulder. How-
ever, the localization of the cortical sources responsible 
for the movement of these arm parts is not trivial, as 
these neural sources overlap in the cytoarchitectural 
maps of the brain. In that respect, there have been sever-
al studies that sought to address this challenge. In a 
sequential finger-tapping move-
ment imagery versus execu-
tion study [41], sLORETA-based 
source imaging showed signifi-
cant differences between MI and 
ME in Brodmann Areas (BAs)  
2 and 3. Carrillo-de-la-Peña et al. 
hypothesized that the neuronal 
sources involved in localized 
arm movement imagery would 
be restricted to the selection of 
arm part and that an additional 
set of neurons would engage in 
parameters such as direction, 
speed, and force. As the team 
conducted this study using only 28 EEG channels, with 
no MRI coregistration, the results interpreted in [41] need 
further validation. 

In another study, a LAURA-based inverse solution 
revealed that the best discriminating voxels are present in 
the dorsal premotor cortex. Contradicting the belief that 
only intracortical recordings can reveal high-frequency 
oscillations, this study [29] showed that high-frequency 
oscillations are indeed observable at the scalp level, which 
needs further investigation.

Seeber et al. studied rhythmic finger movements 
[62], using individual T1 MRI scans to create a forward 
model, followed by sLORETA as an inverse model. 
They showed that the flexion and extension of the fin-
ger have different movement phase-related b synchro-
nies. Besides, there are studies that have focused on 
the decoding of wrist ME and imagination [37], [38], 
[63]. In [37], a Tikhonov regularized MNE-based in -
verse solution revealed that the precentral region of 
interest (ROI) encodes the wrist deviation. This study 
also cautioned that without kinesthetic feedback, the 
precise naturalistic motor control commands would 
be challenging. 

Another investigation [63] explored radial–ulnar 
wrist movement decoding. The researchers reported pre-
central, postcentral, and premotor areas to have signifi-
cant activity peaks in the cortical source space modeled 
using MNE. Furthermore, the work in [38] studied wrist-
based MI decoding. In it, Edelmann et al. reported that 

the source-space EEG outperformed sensor-space EEG 
in classifying the MI of wrist pronation, supination, flex-
ion, and extension. Source activation based on wMNE 
showed that the hand knob region near the central sul-
cus contains discriminative information on different 
types of wrist MI. Some of the recent works on ESI for 
localized movement kinematics decoding are summa-
rized in Table 2.

Cortical Biomarkers to  
Prognosticate Movement Disorders
ESI has been extensively explored in epileptic studies 

in which the seizure location needs 
to be localized before surgery. 
Revisiting the literature on ESI 
studies in epilepsy is currently 
beyond the scope of this article. To 
this end, we recommend [64] to 
readers; it provides a comprehen-
sive overview of ESI methodologies 
and pitfalls in epilepsy studies. In 
this section, we shall review the lit-
erature concerning ESI in other 
neurological disorders. 

Researchers are currently ex -
amining the use of brain connec-
t iv ity measures as a potential 

biomarker in stroke, amyotrophic lateral sclerosis (ALS), 
Alzheimer’s disease (AD), Parkinson’s disease (PD), and 
Huntington’s disease (HD). Cortical connectivity mea-
sures give an idea of the statistical dependencies 
between the time-series data of different brain regions 
[functional connectivity (FC)] and the causal interac-
tions of different ROIs (effective connectivity). A 
detailed review of connectivity measures can be found 
in [65] and [66]. The research in [44] and [45] reported 
alpha- and beta-band coherence-based FC measures in a 
group of ischemic stroke patients. The team used alpha-
band synchrony as a prognostic indicator of poststroke 
cortical plasticity. The findings also concurred with 
those of a similar MEG-based study [67] that explored 
connectivity analyses in neurodegenerative diseases like 
ALS and PD. 

In one such study on PD-related dementia and AD, the 
EEG-based sensor-connectivity analysis revealed that 
the relative wavelet energy could be used as an indication 
of healthy versus dementia-affected people, while the 
wavelet coherence values could be used to differentiate 
PD-related dementia and AD [68]. In another work con-
ducted on HD patients [49], EEG connectivity analysis 
using an exact LORETA (eLORETA)-based inverse solu-
tion revealed that there was an increased interhemispher-
ic coupling between the motor areas during the wake 
state in HD patients as compared to healthy controls. The 
current research trend in ESI-based cortical biomarker 
studies is shown in Table 3.

ESI has been 
extensively explored 
in epileptic studies 
in which the seizure 
location needs  
to be localized  
before surgery.
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Study Type of Experiment Nch Inverse Method Features and Classifier 
Key Findings  (Classification 

Accuracies)

[36] Lower-limb extension/flexion (ME) 64 sLORETA Task-related bandpower 
increase/decrease  

(TRPI/TRPD) 

BA6 and cingulate cortex 
(BA23, 24, 31) involved in 
gait movement relative to 

resting period 

[37] Radial–ulnar wrist MI and ME 61 Tikhonov regular-
ized MNE 

Time-frequency bins classified 
using Bayes linear classifier 

Kinesthetic feedback is 
essential for good motor 
decoding performance 

[38] Right-hand MI of flexion, extension, 
pronation, and supination 

64 wMNE Morlet wavelet features and 
Mahalanobis distance-based 

classifier 

Source-space EEG features 
could classify four types of 

wrist movement with an  
accuracy of 79.8% 

[39] Hand opening and closing (ME) 160 LORETA Time–frequency synthesized 
spatial patterns 

Contralateral activity  
(M1, S1) during hand  

opening, bilateral activity 
during hand closing 

[40] Right-hand ME (goal directed 
versus nongoal directed) 

60 sLORETA Movement-related cortical 
potential features classified 

using SRLDA 

Source-space EEG can  
distinguish goal-directed 

and nongoal-directed  
movements 

[41] Sequential finger tapping  
MI and ME 

28 sLORETA Lateralized readiness 
potential-based features 

Few cortical sources 
involved in the selection 

of arm parts, but more for 
kinematic parameters 

[42] Elbow ME (short, medium, and 
long) 

128 BESA ERSP features followed by 
directed transfer function 

M1 uses distinct oscillatory, 
broad-band activity region-

ally to make correct decision 

S1: somatosensory cortex; SRLDA: shrinkage-regularized linear discriminant analysis; ERSP: event-related spectral perturbation.

Table 2. An overview of the state of the art in EEG-based localized  
arm movement and kinematics.

Study Type of Disorder Nch Inverse Methods Main Connectivity Findings Clinical  Correlates 

[43] Chronic stroke 128 Beamformer Resting-state alpha-band coherence with NFT can 
induce region- and band-specific enhancement 

of neural synchrony 

Motor deficit 

[44] Ischemic stroke 128 Beamformer Decrease in alpha-band imaginary component 
of coherence between lesion-affected brain parts 

and rest of the brain 

Cognitive and 
 motor deficit 

[45] Ischemic stroke 128 Beamformer Increase in beta-band WND (graph-theoretic 
 measure) at ipsilesional M1; motor improvement 

within two to three weeks after stroke onset 

Motor and cogni-
tive deficit 

[46] MTBI 19 sLORETA Significant increase in short-distance connectivity 
and decrease in long-distance connectivity 

MTBI 

[47] AD 19 eLORETA Decrease in CSF beta-amyloid (Ab42) concentration; 
increase in CSD (right temporal region) 

AD pathology 

[48] AD 19 sLORETA Increase in lagged linear coherence; decrease 
in MMSE scores 

Cognitive decline 

[49] HD 19 eLORETA Increase in lagged phase synchronization in 
delta (BAs 6–8), theta and alpha (BAs 1–3) 

Cognitive decline

NFT: neurofeedback training; MTBI: mild traumatic brain injury; CSF: cerebrospinal fluid; CSD: current source density; MMSE: minimental state exam.

Table 3. Recent works (from 2013 onward) on EEG-based cortical  
biomarker systems for clinical applications.
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Discussion

Source Localization: Pitfalls and Challenges
There exist some practical concerns regarding source 
imaging. We recommend having a subject-specific MRI 
scan to achieve a more reliable head model, which is cru-
cial for better source-imaging results. Although MRI is 
expensive, only one scan would ever be needed for a sub-
ject-specific anatomy, as it can be reused. Furthermore, 
we advise performing the digitization of the EEG 
electrode positions to create a coordinate transform 
between the subject-specific head 
model and the electrode location 
in a three-dimensional (3-D) geo-
physical space. Although it is 
obvious that the higher the num-
ber of EEG electrodes, the better 
the scalp spatial resolution, the 
improvement in the source local-
ization accuracy is minimal be -
yond a certain number of channels 
[69]. If there is no subject-specific 
MRI scan available, then the next 
suggested approach is to use an 
ICBM-152 template anatomy, 
coregistering the positions of the 
EEG electrodes with the aid of a 
digitizer like Polhemus or ANT-
Xensor. In the absence of both an 
MRI and a 3-D digitizer, the final recourse would be to 
apply a template anatomy as is, at the cost of less-reliable 
source localization accuracy. 

Recently, Yu et al. proposed the New York head, a pre-
cise, standardized head model that can be used in the 
absence of an MRI [70]. Since the New York head is a 
highly detailed anatomical model developed using FEM, 
the source localization accuracy is higher than what one 
would get by using a BEM of ICBM-152, and it is competi-
tive with individualized BEMs. Furthermore, the transfer 
learning approach used in [71] has been shown to handle 
intersubject variabilities by training a BCI classifier 
using the source-imaging data transferred from other 
subjects with better accuracy than the standard subject-
specific approach.

Remarks on the Identification of ROIs  
for Movement Decoding
In the previous section, we noted that there are several 
ROIs involved in the encoding and decoding of motor 
tasks. However, there is no general consensus regarding 
the selection of ROIs, as there are studies reporting 
both brain-atlas-based predefined selection of ROIs 
(e.g., [28], [35], [71]) and data-driven methods for such 
selection [24], [26], [38], [72]. In the absence of a subject-
specific cortical model, we suggest employing data-driv-
en ROI selection, either by using information theoretic 

approaches [26], [72] or based on statistically significant 
voxels, as in [24] and [38]. 

From a BCI perspective, it is possible that the BCI 
classification performance may be inferior if we use 
only the data within a predefined ROI, as there is a risk 
that the discriminative sources could, as well, be out-
side ROIs. Nevertheless, in the context of BCI for move-
ment decoding, the neural ROIs are well established, 
and they can complement the information provided by 
data-driven ROI selection. It would be interesting to 
explore the objective comparison of these two approach-

es in a BCI paradigm, which is 
another possible future direction 
for ESI studies.

Future Directions for Practical  
Applications in ESI-Based 
Online BCI
Although there has been signifi-
cant progress in identifying the 
cortical sources responsible for 
the movement of a rm par ts, 
there is a long way to go toward 
realizing the BCI-based neuro-
prosthetics control that is func-
tionally as capable as the real 
human hand. To this end, future 
work should aim at real-t ime 
source imaging of multiclass BCI 

with far more DoFs. In Table 2, we have highlighted 
some of the studies in this direction, most of which are 
offline data analysis of EEG-based decoding of differ-
ent DoFs associated with the upper limb. Prompted by 
a recent work on robotic arm control for reach and 
grasp using noninvasive scalp EEG [73], the objective 
of noninvasive BCI-based neuroprosthetics seems to 
be achievable. 

Although it is evident that the online use of ESI decod-
ing is paramount in the practical use of state-of-the-art 
neural signal processing methods, there are certain hur-
dles in an online ESI, such as the low signal-to-noise ratio 
in a single-trial EEG and the limited time available to com-
pute the inverse solution [74]. Because of this concern of 
computational intractability, there are only a handful of 
studies that report online source imaging for BCI [56], [57], 
[75], [76]. One way to address this challenge is to use a 
smaller lead-field matrix (of the forward model) with 
appropriate regularization techniques to handle single-tri-
al nonstationarity. 

Future studies should aim at leveraging the anatomi-
cal information of ROIs and extracting task-relevant fea-
tures for fast classification of complex movement types. 
Recently, real-time source-imaging tool boxes have been 
made available as open source [77], [78], so we hope 
there will be an increasing number of real-time ESI stud-
ies for BCI applications.

Future studies should 
aim at leveraging 
the anatomical 
information of ROIs 
and extracting task-
relevant features for 
fast classification  
of complex  
movement types.
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Remarks on EEG-Based Cortical Biomarker Studies
Traditionally, connectivity measures are computed using 
the source-space EEG, as the scalp connectivity measures 
are not robust against volume conduction effects [79]. With 
the availability of open-source tool boxes like eConnec-
tome [80] and BrainStorm [9], there is an increasing num-
ber of ESI-based connectivity studies. Therefore, re  searchers 
can examine the outcomes of source-space connectivity 
measures and make a reasonable inference about the 
observed neural correlates. 

When it comes to clinical diagnosis, however, we rec-
ommend that researchers use EEG-based biomarkers as a 
secondary standard. Neuroimaging studies with fMRI 
have reported the causal interpretation of brain connectiv-
ity using dynamic causal modeling, Granger causality, and 
related techniques. As fMRI suffers from poor temporal 
resolution, it limits the interpretation in effective connec-
tivity analysis, where temporal information is vital. We 
urge readers to weigh in the advantage of either multimod-
al EEG–fMRI or EEG-based source imaging before inter-
preting the connectivity measures. As we noted in the 
“Cortical Biomarkers to Prognosticate Movement Disor-
ders” section, EEG-based cortical biomarker studies are 
gaining momentum in diagnosing various movement-relat-
ed disorders, the exception being ALS. Therefore, ESI for 
source-level connectivity analysis of ALS patients could be 
a future research direction.

Conclusions
In this article, we have spotlighted some of the EEG 
inverse methods being used in movement decoding, 
 followed by cortical biomarkers for neurorehabilitation 
applications, cautioning readers about certain interpreta-
tional caveats. Further advances in robust machine learn-
ing and signal processing techniques for ESI-based BCI 
can result in a more visible impact on our daily lives.
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