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Abstract—In recent years, electromyography (EMG)-based
practical myoelectric interfaces have been developed to improve
the quality of daily life for people with physical disabilities. With
these interfaces, it is very important to decode a user’s movement
intention, to properly control the external devices. However,
improving the performance of these interfaces is difficult due
to the high variations in the EMG signal patterns caused by
intra-user variability. Therefore, this paper proposes a novel
subject-transfer framework for decoding hand movements, which
is robust in terms of intra-user variability. In the proposed
framework, supportive convolutional neural network (CNN)
classifiers, which are pre-trained using the EMG data of several
subjects, are selected and fine-tuned for the target subject via
single-trial analysis. Then, the target subject’s hand movements
are classified by voting the outputs of the supportive CNN
classifiers. The feasibility of the proposed framework is validated
with NinaPro databases 2 and 3, which comprise 49 hand
movements of 40 healthy and 11 amputee subjects, respectively.
The experimental results indicate that, when compared to the
self-decoding framework, which uses only the target subject’s
data, the proposed framework can successfully decode hand
movements with improved performance in both healthy and
amputee subjects. From the experimental results, the proposed
subject-transfer framework can be seen to represent a useful
tool for EMG-based practical myoelectric interfaces controlling
external devices.

Index Terms—Subject-Transfer Framework, Myoelectric In-
terfaces, Electromyography, Convolutional Neural Networks.

I. INTRODUCTION

ECENT advances in pattern recognition and machine
learning techniques within the field of signal processing
have allowed a user’s movement intentions to be recognized
through analysis of their bio-signals. In particular, electromyo-
graphy (EMG)-based intention recognition, also known as
myoelectric interface, has become a useful technology due

This work was partly supported by Institute of Information & Communi-
cations Technology Planning & Evaluation (IITP) grant funded by the Korea
government (No. 2017-0-00432, Development of Non-Invasive Integrated BCI
SW Platform to Control Home Appliances and External Devices by User’s
Thought via AR/VR Interface) and partly funded by Institute of Information &
Communications Technology Planning & Evaluation (IITP) grant funded by
the Korea government (No. 2017-0-00451, Development of BCI based Brain
and Cognitive Computing Technology for Recognizing User’s Intentions using
Deep Learning).

K.-T. Kim and S.-W. Lee are with the Department of Brain and Cogni-
tive Engineering, Korea University, Anam-dong, Seongbuk-ku, Seoul 02841,
Korea. E-mail: {kim_kt, sw.lee} @korea.ac.kr.

C. Guan is with School of Computer Science and Engineering, Nanyang
Technology University, 50 Nanyang Avenue, Singapore 639798, Singapore.
E-mail: CTGuan@ntu.edu.sg

*S.-W. Lee is the corresponding author.

VP i W PP - R f‘*#,,__.‘_‘)‘p_vﬂ_‘_

~ .'-ﬁ

AN oy A PNIA,
AN e \-

b y p;“\.’\_»\'w\_ A ,L__,../\..)‘u‘r-\.\__

(c) Feature Extraction

(d) Control Device & Classification

Fig. 1: Overview of myoelectric interface for control devices,
using pattern recognition and machine learning.

to its ease of use and noninvasiveness [1], [2]. Myoelectric
interfaces have the advantage of being able to interact with
both the user and external devices. From this, rehabilitation
devices controlled by myoelectric interfaces have emerged as
a new technology, one that allows a more efficient interaction
with the environment for both able-bodied and disabled people
as they perform everyday activities. Examples of these external
devices include arm prosthetics [3]-[8], teleoperation robots
for extreme environments [9] and gaming interfaces [10].
These techniques are capable of recreating the natural intention
of actual movements.

The overall architecture of the myoelectric interface for a
control device is illustrated in Fig. 1. The acquired EMG
signals are preprocessed to remove noise or artifacts. Then,
suitable features are extracted and classified using pattern
recognition and machine learning techniques. Based on the
output of the classifier, the user’s movement intentions are rec-
ognized for interfacing with external devices. Various features
within the time and frequency domains as well as numerous
types of optimal classifier have been extensively investigated
in attempts to improve the performance of movement intention
classification techniques, with varying degrees of success
[11]-[15].

However, most of the research efforts looking at advancing
the practical applications of myoelectric control have revealed
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a gap between the research findings and clinically viable
implementations [8]. This gap is mainly formed by the intra-
user variability problem present in EMG characteristics. Intra-
user variability means that the EMG characteristics show a
nonstationary distribution over long-term usage, caused by
physiological changes. It is attributable to several factors,
such as electrode displacement, signal crosstalk, and the EMG
signal recording environment system [15], [16]. Variations
in EMG signal distributions can occur even between trials
for the same subject. This variation can limit the long-term
uses of EMG-based external device control. The classifier can
be trained by asking users to repeat a calibration protocol,
though this is inefficient and inconvenient, as the number of
movements required of the user is increased considerably, even
when the calibration time is only few minutes.

Various approaches based on pattern recognition and ma-
chine learning techniques have been applied to the task of
eliminating the burden of calibration protocols. Notably, a self-
adaptation system that can recalibrate using only the predicted
intention of the user has been developed, to enhance the
robustness of EMG-based user intention recognition [17]-[21].
Sensinger et al. [17] proposed supervised and unsupervised
adaptive paradigms, to expand the training dataset by including
online data along with their predictions. The experimental
results showed that all the adaptative paradigms were able to
reduce the error margins present in the non-adapting classifier.
However, because of this additional data, the performance of
the classifier could, in fact, degrade. Obtaining the adaptive
paradigm which best reduces this degradation remains an open
question. Tommasi et al. [18] proposed an adaptation approach
based on multiple pre-trained models, which utilized a support
vector machine (SVM). However, the proposed method was
evaluated using only 7 classes of small hand movement.
Therefore, experiments with more classes are required before
control of various external devices is possible. Matsubara and
Morimoto [19] devised a bilinear model of EMG signals con-
sisting of user- and motion-dependent features. They separated
the user-dependent EMG signals from the signals associated
with movements, using a training step. A multiclass SVM was
then trained with the motion-dependent data. Subsequently, the
user-dependent features were extracted by providing new data,
which was then inputted to the existing model after observing
one trained movement modeled by the SVM. However, the
dimensions of the user- and motion-dependent features were
selected experimentally, something which remains a persis-
tent limitation. Liu et al. [20], [21] used an adaptive linear
discriminant analysis approach to compensate for the non-
stationarity in EMG signals. The pre-trained classifiers were
adapted using a new short-labeled dataset that was collected
daily. They demonstrated an improved accuracy over the non-
adapting classifier, but used the prediction results directly,
which may have included data that was incorrectly classified.

Recently, the convolutional neural network (CNN) has
emerged as one of the most powerful machine learning ap-
proaches [22]. Following the advances in computing power
obtained via the development of graphics processing units
(GPUs), the CNN has now been applied to the recognition
of user intention in several myoelectric interface studies [23],

[24]. Zhai et al. [24] proposed a CNN-based framework for
hand movement classification based on reduced-dimension
EMG spectrograms using principal component analysis (PCA).
In addition, by combining a CNN with a median-based label
updating mechanism, the proposed framework provided an
effective self-recalibration procedure to maintain stable per-
formance.

In this study, we aim to develop a CNN-based subject-
transfer framework that can improve the classification accuracy
for hand movements within non-stationary EMG signals. The
main hypothesis of the subject-transfer strategy is that the char-
acteristic patterns of the EMG signal between the target subject
and other subjects may be similar for the same task. Therefore,
the data of other subjects can help in the intention recognition
of the target subject. This hypothesis has shown great success
in another field of research, namely electroencephalography-
based brain—computer interface studies [25]-[27].

In the proposed subject-transfer framework, the supportive
CNN classifier for other subjects’ EMG data is used instead
of using other subjects’ data directly. First, effective pre-
trained CNN classifiers are selected as supportive classifiers
using the first trial of the target subject. Then, the selected
CNN classifiers are fine-tuned from the first trial of the target
subject. Finally, the classification for subsequent trials of the
target subject is determined by voting the outputs of the fine-
tuned supportive CNN classifiers. To validate the proposed
framework, we compare its classification performances with
the self-decoding framework using the time domain and auto-
regressive (TDAR) features and SVM which were widely
used in EMG studies, and the self-decoding framework with
CNN [24] which has shown good performance on the NinaPro
databases 2 and 3 [28], [29].

The remainder of this paper is organized as follows. Section
IT presents the benchmark database and details the proposed
subject-framework. Section III presents the experimental re-
sults, which are then discussed, along with the proposed
framework, in Section IV. Finally, our conclusions and future
plans are presented in Section V.

II. MATERIALS AND METHODS
A. Benchmark database

In this study, the NinaPro databases 2 and 3, which contain
tasks relating to upper-limb movement, are used for the ex-
periments [28], [29]. NinaPro is a publicly accessible database
that has been previously used in myoelectric interfaces for
decoding hand movements. In database 2 (DB2), the EMG
data from 40 healthy subjects (12 females, 6 left handed
and aged 29.9+3.4 years)who performed 49 movements (8
isometric and isotonic hand configurations, 9 basic wrist
movements, 23 grasping and functional movements and 9 force
patterns) relevant to the activities of daily living are present
in the database. Database 3 (DB3) comprises data from 11
transradial amputees with disabilities of the arm, shoulder,
and hand, containing a score ranging from 1.67 to 86.67 (on
a scale of 0-100) for each subject’s ability to perform the
same hand movements as in DB2 [24]. In the experimental
set-up, each movement was repeated 6 times with a 3-s rest
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Fig. 2: The 25 principal components (PCs) were extracted and reshaped into a 2D matrix, then rearranged in such a way that
the most significant PC sits at the center of the matrix. Then, 800 filters of size 4 x 4 convolved with the PCs, and fully

connected the feature maps for classification.

period between. The EMG signal was recorded using 12
electrodes of a Delsys Trigno Wireless system, which provides
a sampling rate of 2,000 Hz. Then, the recorded signal was
filtered with a Hampel filter to remove the 50 Hz power line
interference. The electrodes were positioned to combine a
dense sampling approach [30]-[32] with a precise anatomical
positioning strategy [2], [32]. Eight electrodes were positioned
around the forearm at the height of the radiohumeral joint, a
constant distance from each other. Two electrodes were placed
on the main activity spots of the flexor and extensor digitorum
superficialis [29]. The last two electrodes were placed on the
main activity spots of the biceps and triceps brachii. More
details about the acquisition setup are provided in the official
database [28].

B. Data preprocessing

The data preprocessing followed the method used in the
studies already published [24], [33]. The EMG signals were
sectioned into 200-ms (400 samples) segments with a 100-ms
(200 samples) overlap. Because the delay is less than 300 ms,
it is considered sufficient for continuous classification in real-
world applications [34]. Additionally, a number of segments
for all movement types (including rest) were balanced in this
study to minimize the bias in accuracy calculations [24]. Then,
each segment (with each channel) is processed independently
for extraction of the spectrogram and for normalization. The
spectrogram of each segment is extracted using a 256-point
fast Fourier transform with a Hamming window and 184-
point overlap. Hence, the spectrogram is calculated at 129
different frequencies (0—1,000 Hz) with three time bins. Only
the first 95 frequencies of the spectrogram are used, as the
major energy of the EMG is observed within a frequency range
of 0-700 Hz. Therefore, the size of each spectrogram is 95
X 3 x 12 (frequency x time bins X channels). Then, before
performing the PCA, the spectrograms are converted into a
range of 0—1 via maximum-minimum normalization [33].

To apply PCA, the normalized spectrograms are vectorized
at the channel to improve computational efficiency and per-
formance. PCA is applied to the spectrogram to reduce the
dimensionality whilst retaining the useful information from

the EMG signals. Then, because the first 100-500 principal
components (PCs) are sufficient to achieve good performance
[33], only the scores of the first 25 PCs of each channel are
used as an input to the classifier. As a result, each spectrogram
is reduced to a dimension of 25 x 12 (PCs x channels).

C. CNN architecture

Fig. 2 shows a schematic for the CNN architecture used
in the proposed framework. The CNN is composed of the
following four parts. The first part is a convolutional layer
with 800 filters of size 4 x 4. The second part is a rectified
linear unit (ReLU), which acts as a non-linear activation
function. The ReLU is used to avoid the vanishing gradient
problem [35]. The third part contains two fully connected
layers with a size of 800 (dropout rate of 0.5). The fourth part
is a softmax loss layer used for classification. The softmax
loss layer computes the cost function using the normalized
exponential function. It also outputs the probabilities of all
the movement types considered in the current prediction. After
several tests, the CNN was trained using a stochastic gradient
descent method with a momentum of 0.9; the learning rate
was set to 0.001; and the batch size was fixed at 256. An
open-source MATLAB toolbox (MatConvNet) was used to
implement the CNN classifier [36]. Computations using the
CNN were performed with the NVIDIA CUDA Deep Neural
Network library, which was trained on two NVIDIA Titan Xp
GPUs [37].

D. Subject-transfer framework

Fig. 3 shows a schematic for our subject-transfer framework.
This framework is proposed for applying existing CNN models
from other subjects to a target subject. The main hypothesis
of the proposed framework is that the characteristic patterns
of the EMG signal between the target subject and the other
subjects may be similar for the same tasks. Therefore, when
sufficient pre-trained CNN classifiers from other subjects are
available, it is possible to achieve high decoding performance
by transferring multiple existing CNN models to the target
subject. In addition, the decoding performance obtained using
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Fig. 3: Block diagram of the proposed subject-transfer framework. The supportive CNN classifiers are selected using the first
trial of the target subject. Then, the supportive CNN classifiers are fine-tuned for to classify a subsequent trial the target subject.

the subject-transfer approach could be high compared to that
obtained using a self-decoding model trained using only EMG
data from the first trial of the target subject.

1) Source CNN classifiers: First, the source CNN classi-
fiers are pre-trained using the EMG data of all the trials (6
repetitions in each hand movement) from all other subjects
(excluding the target subject).

2) Supportive CNN classifiers selection: The pre-trained
source CNN classifiers are ranked according to the classifi-
cation accuracy for the first trial of the target subject’s hand
movements. Then, several CNN classifiers that show better
performance are selected as the supportive CNN classifiers
for decoding the hand movements of the target subject (10
supportive CNN classifiers were used in our experiments).

3) Fine-turning the CNN classifiers: All the selected sup-
portive CNN classifiers are fine-tuned using the first trial of
the target subject’s hand movements, to adapt them to the
characteristics of the target subject.

4) Classification for target subject: For classifying the new
trial (each test trial) of the target subject, all the fine-tuned
supportive CNN classifiers decode the new trial and assign it
to one of the hand movements. Then, the outputs of the fine-
tuned classifiers are voted for final classification. Assume that
L™ denotes the predicted label for a new trial of the target
subject. The label is predicted based on the output that was
most commonly classified by the supportive CNN classifiers.

L™ « mode(L', L?, ..., L' L) (D)

where L! denode the output of i*" supportive CNN classifiers
(in our experiments, ¢ = 10).

E. Performance evaluation

1) Classification accuracy: The classification accuracy is
defined as the ratio between the number of correctly classified
segments and the total number of testing segments, in each
trial. The accuracy, Accy for the target subject & is calculated
as,

M

1
_ # of correct segments
dcep =3 I

# of total segments

n=1

where M is the total number of movement types. The class-
specific accuracy is understood to be a preferred metric
over global accuracy, for quantifying the performance of the
classifier [38], [39].

2) Statistical analysis: For better quantitative compari-
son between the proposed subject-transfer and self-decoding
frameworks, we performed statistical analysis via the ¢-test and
the Wilcoxon rank sum test. In each figure, * means p < 0.05
and **x means p < 0.01. Unless specified, all the results are
presented as p < 0.05.

III. EXPERIMENTAL RESULTS

A. Performance evaluation with healthy subjects (DB2)

To investigate the effects of the number of supportive CNN
classifiers employed, we first implemented an experiment that
could confirm the accuracies in terms of this number. In this
experiment, 1-39 CNN classifiers trained by other subjects
(1-39 subjects excluding the target subject) were used as
supportive classifiers. Fig. 4 shows the average accuracy of a
test trial of 20 subjects who were selected randomly from DB2.
Of the six repetitive hand movement trials administered to each
subject, the first was used for selecting the supportive CNN
classifiers and fine-tuning those selected, and the second trial
was used as the test trial. Consequently, using 10 supportive
classifiers showed good performance, while using more than
10 classifiers did not lead to any significant improvement.
Therefore, for the proposed subject-transfer framework, we
used 10 CNN classifiers as supportive classifiers in all exper-
iments for healthy (DB2) and amputee subjects (DB3).

62
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g
g
59 ¢ 1
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581 1
57
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Number of supportive CNN classifiers

Fig. 4: Averaged classification accuracy across different num-
bers of supportive CNN classifiers in the randomly selected
20 healthy subjects (DB2).
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Fig. 5: Classification restults within the self-decoding (TDAR-
SVM), self-decoding (CNN), subject-transfer (Raw data), and
subject-transfer (CNNs) frameworks in the DB2 (x means p <
0.05 and ** means p < 0.01).

Fig. 5 shows the classification results obtained with two self-
decoding frameworks and the two subject-transfer frameworks:

o Self-decoding (TDAR-SVM): In general, the TDAR fea-
tures are widely used in the EMG analysis [15]. In this
framework, the mean absolute value, zero crossings, slope
sign change, waveform length, and auto-regressive feature
were used as the TDAR features. Then, the SVM was
used as a classifier. The SVM classifier was trained only
from the TDAR features of the first trial (repetition 1) of
the target subject’s hand movements.

o Self-decoding (CNN): The self-decoding framework was
proposed in [24] by Zhai et al. In this framework, a
randomly initialized CNN classifier was also trained only
by the first trial of the target subject’s hand movements.

o Subject-transfer (Raw data): In this framework, subject-
transferal took as raw data the selected supportive sub-
jects instead of the trained CNN classifier. This frame-
work was implemented for a performance comparison
between the use of raw data from the supportive subjects
and that of a CNN trained with the data of the supportive
subjects. In the subject-transfer (Raw data) framework, a
CNN classifier was trained by all the raw data from 10
subjects who were selected as supportive subjects. The
trained CNN classifier was then fine-tuned to the first
trial of the target subject.

« Subject-transfer (CNNs): In the proposed framework, 10
supportive CNN classifiers, which were pre-trained by
each supportive subject’s raw data, were selected and
fine-tuned to the first trial of the target subject.

As shown in Fig. 5, the proposed framework (subject-
transfer (CNNs)) exhibits the highest accuracy for each test
trial (repetitions 2—6). The averaged accuracies (50 classes)
showed 29.32%, 49.76%, 49.73%, and 52.52%. The proposed
framework shows a substantial performance improvement of
23.2% than the self-decoding (TDAR-SVM) framework. The
proposed framework also shows performance improvements

90 - | I Self-decoding (CNN)
[ ]Subject-transfer (CNNs)|

O

%k

Accuracy (%)
[ (% B W
f=] (=] (=) f=]
: : : :

—_
(=1
T

Tand II 1, 11, and IIT
Training trials for CNN (Repetition Numbers)

Fig. 6: Classification restults of the self-decoding (CNN)
and subject-transfer framework (CNNs) within two and three
training trials.

about 3% over compared to the self-decoding (CNN) and
the subject-transfer (Raw data) frameworks. Furthermore, the
statistical analysis revealed statistical significances between
the proposed framework and other frameworks. Subsequently,
using the CNN classifier, which was pre-trained using other
subjects’ data, yielded a better performance than that of using
the raw data of other subjects. Based on these experimental
results, we can conclude that the proposed framework can
help improve the decoding accuracy of the hand movements
in healthy subjects.

Fig. 6 shows the classification results with two training
trials (repetitions 1-2) and three training trials (repetitions 1-
3). In practice it would not be difficult to implement two
or three repetitions. Consequently, the self-decoding (CNN)
and proposed subject-transfer (CNNs) frameworks were imple-
mented with two and three training trials in these experiments,

70 |- | I Self-decoding (CNN)
[ Subject-transfer (CNNs)

* 4

TN T

IS
o
T

Accuracy (%)
W
(=]

20 -

10

8 electrodes 10 electrodes
Used electrode sets

12 electrodes

Fig. 7: Classification results with three electrode sets (eight
around the forearm, two at the two main activity spots of the
exor and extensor digitorum supercialis, and two at the two
main activity spots of the biceps and triceps brachii).
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to investigate the decoding performance. As a result, the
proposed framework performs better in each training set.
These results demonstrate that the proposed framework is more
effective than the self-decoding framework, even for two or
more training trial sets.

Fig. 7 shows the decoding accuracies within various elec-
trode sets, to validate the effectiveness of the proposed subject-
transfer framework (CNNs). In practice it is difficult to attach
the electrodes to general and specific places, such as the main
activity spots of extensor digitorum supercialis, depending on
the user’s type. Therefore, to consider the various user types
we also investigated the decoding performance within three
electrode sets. In the NinaPro dataset, the electrodes were
attached at generic placements (eight around the forearm) and
specific placements (the two main activity spots of the exor and
extensor digitorum supercialis, and the 2 main activity spots
of the biceps and triceps brachii). Therefore, the electrode sets
comprised the following:

« 8 electrodes: 8 electrodes around the forearm.

e 10 electrodes: The 8 electrodes set plus the 2 main

activity spots of exor and extensor digitorum supercialis.

o 12 electrodes: The 10 electrodes set plus the 2 main

activity spots of the biceps and triceps brachii.

In Fig. 7, the proposed subject-transfer framework (CNNs)
shows better performance in all electrode sets. The results were
calculated as the average of all the test trials (repetitions 2—6
in all healthy subjects). Based on these experimental results,
we confirmed that the accuracies of hand movement decoding
methods are higher when a higher number of electrodes are
attached. Furthermore, we can conclude that the proposed
subject-transfer framework (CNNs) has better performance in
all electrode sets.

B. Performance evaluation with amputated subjects (DB3)

We also tested the proposed subject-transfer framework
(CNNS5) on the amputee subjects in NinaPro database 3 (DB3).
In the aforementioned experiments with DB2, all subjects

were able-bodied, implying that they are far more anatomically
similar to each another than to the amputee subjects. Because
of the similarity, the proposed subject-transfer framework may
show better performances than the self-decoding framework.
Therefore, the objective of these additional experiments was
to confirm that the proposed framework shows better per-
formance than self-decoding frameworks, even for amputee
subjects.

Fig. 8 shows the classification results with two self-decoding
frameworks and three subject-transfer frameworks:

o Self-decoding (TDAR-SVM) and Self-decoding (CNN):
The same framework as previously mentioned for DB2.

o Subject-transfer (Healthy): In this framework, the subject-
transferal used supportive CNN classifiers from only
healthy subjects. This framework was implemented to
confirm that the CNN classifiers from healthy subjects
can be used for amputee subjects.

o Subject-transfer (Amputee): In this framework, the
subject-transferal used supportive CNN classifiers from
only amputee subjects.

o Subject-transfer (All): In this framework, subject-
transferal was conducted using supportive CNN classi-
fiers from healthy and amputee subjects. The objective of
this framework was to confirm how many CNN classifiers
from healthy subjects to select when classifying hand
movement decoding for amputee subjects.

For Fig. 8, we omitted two amputee subjects (Sub7 and
Sub8) from the database, as they had only 10 electrodes owing
to insufficient space on their stump. The results show that
the subject-transfer framework has better performance than
other frameworks. Specifically, the subject-transfer (Amputee)
framework shows the best performance for each test trial.
These results prove that the subject-transfer strategy can help
decode the hand movements of amputee subjects via EMG
signals.

Fig. 9 shows the decoding accuracies within the three
electrode sets that were previously used for DB2. In healthy

55
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Fig. 8: Classification results within the two types of self-decoding (TDAR-SVM and CNN) and three types (healthy, amputee,
and all) of subject-transfer framework (CNNs). In each subject-transfer framework, supportive subjects were selected in healthy
subjects only, amputee subjects only and all subjects, respectively.
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Fig. 9: Classification results with three electrode sets (same
sets as in DB2). For the classification accuracy within the 12
electrode sets, only 9 subjects’ data was used because Sub7
and Sub§ attached only 10 EMG electrodes.

subjects, we are generally able to attach the EMG electrodes to
their standard positions; however, this may not be possible for
an amputee. Therefore, we investigated the performances of
the proposed subject-transfer framework within three electrode
sets for the amputee subjects. Because it is very difficult
to attach the electrode to the same place for each amputee
subject, we wanted to explore the possibility of solving these
electrode placement issues. The results were calculated as
the average of all test trials (repetitions 2—6 in all amputee
subjects), similar to DB2. In the results, the proposed subject-
transfer framework (CNNs) shows better performance in each
electrode set than the self-decoding framework (CNN), even
with amputee subjects. Based on these results, we confirm that
the proposed framework can help amputee subjects despite the
issue of electrode placement.

IV. DISCUSSIONS
A. Decoding of hand movements with the subject-transferring

In our experiments, we applied a subject-transferal method
to improve the decoding accuracy for the hand movements
of healthy and amputee subjects. In Fig 5, the averaged
classification results show that the proposed subject-transfer
framework (CNNs) can classify hand movements more ef-
fectively in each trial (DB2). Fig. 10 illustrates in detail the
differences in classification performance between the self-
decoding and subject-transfer frameworks for all subjects. The
largest difference in each test trial was observed in Sub35 with
6.77%, and the smallest difference was observed in Sub10 with
0.03%. These results mean that the proposed method might not
be effective for some subjects, but subject-transferal can help
to improve accuracy in general. Fig. 11 also shows the same
results for the amputee subjects (DB3) with 10 electrode sets.
The largest difference in each test trial was observed in Sub3
with 6.68%,and the smallest difference was observed in Sub10
with 0.66%.

Based on these results, we conclude that the proposed
subject-transfer framework did not always improve the ac-
curacy for all subjects, including amputee subjects. We also
concluded that additional experiments are required to address
this issue, and these will be conducted with more subjects
(healthy and amputee) in future work. In this study, we focused
on the validation of the effectiveness of the proposed frame-
work. Therefore, the scope was limited to offline data and
experiment. Additionally, the EMG data in Ninapro dataset
was collected ideally within a conditioned environment. This
is a limitation of our experiments. For an online scenario, the
proposed framework has to be validated for effectiveness in
real-world environments.

B. Supportive CNN classifiers for the target subjects

Regarding the subject-transfer approach, recent work [40]
showed that subject-transferal is not effective for healthy
subjects. Specifically, the experimental results showed that the
subject-transfer method can be ineffective, via hyper-parameter
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Fig. 10: The difference of classification accuracy in each healthy subject (DB2) between the proposed framework and the

self-decoding framework (p < 0.05).
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Fig. 11: The difference of classification accuracy in each
amputee subject (DB3) between the proposed framework and
the self-decoding framework (p < 0.05).

optimization of the SVM classifier. However, more experi-
ments are required to confirm the ineffectiveness, because the
experiments were conducted using only the SVM classifier.
Additionally, experiments validating effectiveness with healthy
subjects were not conducted in this study because the CNN
classifier showed better decoding performance than the SVM
classifier in recent work [24]. However, to be clear about this
issue, we plan to analyze the effectiveness of the proposed
subject-transfer framework for healthy subjects via another
database.

Interestingly, in Fig. 8, the classification results for the
‘Subject-transfer (Healthy)’ and ‘Subject-transfer (All)’ frame-
work were almost matched in every test trial. Therefore, we
investigated the selected supportive CNN classifiers in the
‘Subject-transfer (All)’ framework. Fig. 12 shows the selected
supportive CNN classifiers for hand movement decoding for
the amputee subjects. The results show that the supportive
CNN classifiers for amputee subjects were almost always
selected from healthy subjects. Consequently, it can be inferred
that the classification results were calculated to be similar in
every test trial because the supportive CNN classifiers were
primarily selected from the healthy subjects.

In fact, the highest decoding performance was exhibited
when the supportive subjects were selected only from the
amputee set, as shown in Fig. 8. This could imply that an
incorrect supportive CNN classifier (from the healthy subject
group) is selected during the ‘Supportive CNN classifiers
selection’ step shown in Fig. 3. In the proposed framework,
the supportive CNN classifiers were selected using only the
classification results of the target subject’s first trial, without
using any advanced selection method. Therefore, in future
work, we will apply the advanced selection method (such as
the multiple distance measurement-based selection of [27]) to
our subject-transfer framework, to solve the selection issue.

T T T T T T T
‘- Amputee subjects [ Healthy subjects

Subject index (DB3)
Y - N

0

0 1 2 3 4 5 6 7 8 9 10
Selected as the supportive subjects

Fig. 12: Selected supportive CNN classifiers from healthy and
amputee subjects for amputee subjects.

C. Self-recalibration with subject-transferring

Recently, an efficient self-recalibration method was devel-
oped for real-world prosthetic applications [24]. To validate
the effectiveness of our proposed subject-transfer framework
we used this self-recalibration method. In the method, the
prediction results from the previous trial (the adjacent +15
segments) are re-inputted to retrain the classifiers prior to each
testing trial. To investigate the effects of the proposed subject-
transfer framework, we applied the self-recalibration method
and conducted additional experiments using DB2 and DB3.

The objective of these experiments was to confirm that
after subject-transferal, the supportive CNN classifiers would
be well retrained and adapted, based on the predictions from
previous trials. This is because in the proposed framework
the supportive CNN classifiers were trained with all trials,
including the trial-to-trial variability of other subjects. For
each experiment, only the first repetition was used as the fine-
tuning data. The first testing trial was performed on repetition
2, after which the predicted labels were updated using the
prediction from the most recent testing trial. Subsequently,
the supportive CNN classifiers were retrained by the updated
labels. The same procedure was repeated for the other test
trials (repetitions 3-6).

The average decoding performance in each database (DB2
and DB3) with the self-recalibration method is shown in Fig.
13. With healthy subjects (Fig. 13a), the average decoding
performance showed that the proposed framework outperforms
the self-decoding one. Furthermore, the differences between
the first and last test trials were 4.22% and 4.69% in the
proposed and self-decoding frameworks respectively. This
means that the proposed framework showed a lower loss of
accuracy than the self-decoding framework.

In the amputee subjects (Fig. 13b), the results revealed that
the proposed framework is slightly better than or similar to
the self-decoding framework. It can be interpreted that the
proposed framework has no effect on the classification perfor-
mance for amputee subjects when using the self-recalibration
method. However, for DB3, all subjects (excluding the target
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85 puting, distributed computing and other methods, the proposed
g0 Sig:;cfriﬁe(ﬁlé%s) | ) framework can improve efficiency in the online environment,

il T . N [1 | even if the self-recalibration strategy is applied.
S R
0r i L }} ARIN i 1 V. CONCLUSIONS AND FUTURE WORK
365 i | : : ‘ : | i | This paper presented a subject-transfer framework for im-
géo L E H 1 proving the performance of hand movement classification.
§ ssh ‘ : | ‘ I | In the proposed framework, the supportive CNN classifiers,
< I L | } il } ‘ ‘ } which are CNN classifiers pre-trained by other subjects, were
S0 L1 L } \ T |1 1 ranked and selected by a single-trial EMG analysis. Then,
45l . | |4 | | HE ] the classifiers were fine-tuned and voted for the classification
. : " I L 1 of hand movements within the target subject. In several
or 1 + | experiments examining 50 classes (49 hand movements and
35 : : : : : : rest state) of healthy and amputee subjects (DB2 and DB3),
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] curacy than the self-decoding frameworks. These experimental
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Seif-decoding (CNI) approach to myoelectric interfaces fqr r.eal—world apphcatlon.s.
50 - . 1 Subject-transfer (CNNs)| However, the performance of classifying hand movements in
il - *ox | each subject depends on many factors, such as muscle fatigue
_|7 s induced by repetitions, experimental environment and signal
40t ! 1T . processing methodology. In future work, we will confirm that
s the proposed framework can achieve stable performance for
) 57 1 greater numbers of amputee subjects through numerous trials
230t | — . and sessions conducted over multiple days. Moreover, online
< \ l experiments will be implemented in real-world applications,
By 8 ! i such as 3D games or robotic arms, to validate the feasibility
20t | : 4 | : ] and usability of the proposed framework. We believe that the
oo I T L subject-transfer framework will be more suitable than self-
I5r Lol l } \ i decoding frameworks in several real-world applications.
10 : : : : L :
11 11 v \ VI Mean
Test trials (Repetition Numbers) ACKNOWLEDGMENT
(b) Amputee subjects (DB3) .The a{utho.rs would like to thank.Dr. Xifiolong Zha% at the
City University of Hong Kong for his help in the experimental
Fig. 13: Comparison of classification accuracy between results, especially in feature extraction and self-recalibration.

the proposed subject-transfer (CNNs) and the self-decoding
(CNN) with self-recalibration frameworks [24].

subject) were selected as the supportive subjects because there
were only 9 subjects who attached all 12 EMG electrodes.
Therefore, additional experiments with more amputee subjects
should be conducted, to validate the effectiveness in amputee
subjects. In addition, as these experiments were an initial step
which was conducted offline, additional online experiments
are required to test a real-world environment.

Regarding online environments, we also examined training
time and classification time when using only a micropro-
cessor (Intel i7-7700K CPU) and when using only a GPU
environment. On average, the training time when using the
microprocessor was approximately 3 times that required when
using the GPU environment. However, for the classification
time in each test trial, the microprocessor averaged 3.83
s (£4.8 s) and the GPU averaged 3.73 s (£4.7 s). Thus,
the training time for the proposed subject-transfer framework
is long, but the classification time did not differ greatly.
Therefore, if the training time can be decreased via cloud com-
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