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a  b  s  t  r  a  c  t

Electromyography  (EMG)  signal  is  one  of  the widely  used  biological  signals  for  human  motor  inten-
tion  prediction,  which  is an  essential  element  in human-robot  collaboration  systems.  Studies  on motor
intention  prediction  from  EMG  signal  have  been  concentrated  on classification  and  regression  models,
and  there  are  numerous  review  and  survey  papers  on classification  models.  However,  to the  best  of our
knowledge,  there  is  no review  paper  on  regression  models  or  continuous  motion  prediction  from  EMG
signal.  Therefore,  in  this  paper,  we  provide  a comprehensive  review  of  EMG-based  motor  intention  pre-
diction  of continuous  human  upper  limb  motion.  This  review  will  cover  the models  and  approaches  used
in  continuous  motion  estimation,  the  kinematic  motion  parameters  estimated  from  EMG signal,  and  the
uman-robot  collaboration

ntention  prediction
ontinuous motion
pper  limb

performance  metrics  utilized  for  system  validation.  From  the  review,  we  will  provide  some  insights  into
future  research  directions  on  these  subjects.  We  first  review  the overall  structure  and  components  of
EMG-based  human-robot  collaboration  systems.  We  then  discuss  the state  of  arts  in continuous  motion
prediction  of the  human  upper  limb.  Finally,  we conclude  the  paper  with  a  discussion  of  the  current
challenges  and  future  research  directions.
©  2019  Elsevier  Ltd. All  rights  reserved.
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. Introduction

Robots have a wide range of applications and, currently, they
re entering into the daily life of humans [1]. The advancement of
obotic research and technology has brought them from a confined
o shared environment. As a result, a close interaction of a human
nd robot has been considered as a practicable issue. Humans and
obots can interact through various methods that are varied in the
evel of interaction and in the degree of sophistication [2,3]. The
ifferent modes of interaction can be defined as manual, shared or
o-activity, and autonomous modes [4,5]. In manual or autonomous
nteraction modes, a robot or human complete a given task inde-
endently. In other words, the robot provides no assistance to the
uman during the manual mode and the human provides no assis-
ance to the robot during the autonomous mode.

An automated system could be appropriate for precision and
epetitive tasks in structured environments but may  not be suitable
or some tasks in unstructured environments that require abili-
ies of fast judgment, flexibility, and adaptation. Although humans
an provide such abilities, their limited load capacities can make
anual operations difficult. As a result, there are some cases of

asks, where both manual and autonomous systems could be inap-
ropriate. Instead, such tasks require cooperation or collaboration
etween the human and robot within the shared mode of interac-
ion.

The current development in sensor technology has made the
nteraction of robots and humans more effective. As a result, a
uman and robot can perform a given task in cooperation or col-

aboration through various modes of communication. Although
he terms of collaboration and cooperation are mostly used inter-
hangeably in human-robot interaction studies, conceptually, they
re different. During cooperation tasks, robot and human part-
ers interact without the need to know what the other is doing

n a shared task. However, during collaboration tasks, both part-
ers should communicate with and understand each other and it
equires a high level of interaction [5–7].

Human-robot collaboration is a broad research field that can
e applied in diverse areas, such as manufacturing operation [8],
eleportation application [9], intelligent vehicles and aircrafts [10],
ntertainment and education [11], assistive and rehabilitation
echno- logy [12] and robot-assisted surgery [13]. Human-robot
ollaboration systems can improve productivity, enhance the qual-
ty of tasks, and reduce the workload of humans [14,15]. Close
nteraction and best performance can be achieved when the part-
ers can efficiently communicate with and understand each other
16]. One of the challenges in collaboration systems is the ability
o estimate human intentions so that the robot reacts to his/her
ntentions naturally while preserving the safety of its human part-
er. Both a human and robot need to understand the current state
f their partner and be able to predict what they will do next in
hared tasks [17].

An  intention, which is a desire of subjects to accomplish some-
hing, could be either explicit or implicit. The former involves the

urposeful conveyance of information, while the latter involves the

nvoluntary conveyance of information about emotional and con-
extual states, such as facial expression [18]. In implicit intentions,
he cue generated by the human is not primarily aimed to interact
 .  . .  . . . .  . . .  . . . . .  .  . . . . .  . .  .  .  . . .  . . .  . . . . . . .  .  . . .  .  . . . .  .  .  . . . . .  . . . . . . .  .  .  .  . . .  .  . .  . . . .  .  123

with  the robot, but the robot can use the cue to infer the intention
of the human. The core goal of intention prediction in collaboration
systems is to give robots some intelligence so that they are capable
to read human emotion or action. Consequently, they can commu-
nicate implicitly with their human partner to modify their action
and adapt to human action [19–22].

There are various signals to facilitate the communication
between a human and robot. Researchers have used different
modes of intention inference, such as head pose, eye gaze, hand
position and orientation, speech, kinematic parameters (such as
velocity and force), and biological signals. In general, the signals
that are utilized for intention prediction could be categorized as
biological and non-biological signals [23–27]. Human body gener-
ates various biological signals, such as Electrooculogram (EOG) [28],
Electrocorticogram (ECoG) [29], Electroencephalogram (EEG) [30],
Magnetoencephalography (MEG) [31], and Electromyogram (EMG)
[32]. Recently, these signals have been widely used in human-
robot collaboration systems to predict the intention of the users
[33,34]. To make this paper manageable, we  focus here on EMG-
based motor intention prediction for human-robot collaboration
systems.

EMG signals are acquired as bio-electric signals generated from
muscle cells and have a wide range of applications, such as in reha-
bilitation and assistive technologies, ergonomics, clinical diagnosis,
and sport science [32]. In several robotic applications, especially in
human-robot collaboration systems, EMG  signal is used as a signal
for intention prediction of human motion. Most importantly, it is
used to estimate the kinematics of upper limb movements, which
are the most active parts of human body and vital for daily activities
[35–38].

The EMG-based intention prediction of human motion can be
broadly categorized as classification and regression models. Many
researchers have been focused on discrete motion control from
the signals, and there are numerous survey papers on classifica-
tion models, including the work by Ahsan et al. [39], Chowdhury
et al. [40], and Oskoei et al. [41]. Although the estimation of contin-
uous human motor intention from EMG  signal and its application
are currently the hot issue in EMG-related research activities [42],
to the best of our knowledge, there is no review paper on continu-
ous human motion estimation from the EMG  signal. Hence, for the
remainder of this paper, we  will focus on the EMG-based motor
intention estimation of continuous human upper limb motion.
Though the term EMG-based continuous motion estimation is
referred as proportional myoelectric control [43] in prosthetic con-
trol systems and related studies, we  prefer the former term to
address the wider application of EMG-based control systems.

In  this paper, based on a survey of over 100 related papers,
we present a comprehensive review of EMG-based motor inten-
tion prediction of continuous human upper limb motion, including
the models and approaches used in continuous motion estimation,
the motion kinematics estimated from EMG  signal, and the per-
formance metrics utilized for system validation, and provide some
insights into future research directions on these subjects.
The  contribution of this review is threefold: 1) we present a
comprehensive review on the overall structure and components
of EMG-based collaboration systems with focus on the continu-
ous motion of human upper limb; 2) we provide a comprehensive
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eview on the state-of-the-art methods and techniques in continu-
us motion prediction of human upper limb, and its application in
uman-robot collaboration systems; 3) we discuss current chal-

enges and future research directions of EMG-based continuous
otor intention prediction of human upper limb.

The remainder of the paper is organized as follows: Section 2
iscusses the complete system of EMG-based human-robot collab-
ration systems; Section 3 presents continuous upper limb motion
rediction from EMG  signal; Section 4 presents discussion and con-
lusion of the paper.

.  EMG-based human-robot collaboration system

A  human-robot collaboration system allows a human and robot
o complete a shared task in a way that the robot responds to
he intentions of the human, and at the same time, preserves the
afety of its partner. Hence, communication and understanding of
he partner, keeping the safety of the partner, mutual trust and,
daptation, are the defining features of such systems. Above all,
ommunication among the partners is an indispensable element of

 human-robot collaboration system.
As shown in Fig. 1, a human-robot collaboration system, which

s focused on the EMG-based continuous human motion predic-
ion, consists of human, EMG  signal processing technique, intention
rediction model/algorithm, robot and its control mechanism, and
asks to be executed (application). In this system, the EMG  signal
erves as a communica-tion mode between the human and robot.

The EMG signal is acquired from a human upper limb and it is
tilized to convey his/her intention to a robot so that both partners
ollaboratively perform a given shared task. During the execution
f the task, the robot is communicated with the human through
arious feedback mechanisms. Hence, a reliable and robust control
trategy ensures a smooth communication between the human and
obot partners.

.1.  Upper limb motion

The  motion of the human upper limb is complex and involves the
nteraction of the nervous systems, musculoskeletal systems, and
ts surroundings. Human upper limb offers several degrees of free-
om (DOF), and its movement requires the coordination of different

oints that consist of a wide range of motion. It involves shoulder,
lbow, wrist, and finger joints to perform a set of activities of daily
ife. To make the scope of this paper more specific, we excluded the
eview on finger motion.

Shoulder  motion has three DOFs (i.e., abduction/adduction, flex-
on/ extension, and internal/ external rotation). Elbow joint allows
wo DOFs (i.e., flexion/ extension and supination/ pronation). The
rist joint has two DOFs (i.e., flexion/extension and radial/ulnar

eviation) [44]. Each muscle in the upper limb includes many motor
nits. The motor unit consists of a motor neuron and numerous
uscle fibers, which are varied by numbers across human muscles.

he muscle fibers of each motor unit are interconnected with fibers
f other motor units so that fibers belonging to several motor units
re close to each other. Neural and muscle cells are excitable cells
hat can produce a change in the potential across the membrane,
hich separates the cell from the environment. If the application of

n external stimulation to their membrane leads to depolarization
nd the depolarization reaches a certain threshold value, then an
ction potential is produced.
Human upper limb motion is so redundant that there are infinite
umbers of possible paths even for a simple task, such as reaching

 target in unconstrained environments. However, the redundancy
an be taken as a beneficial feature because it provides more flexi-
ility to carry out complex tasks [45]. There are various studies on
rocessing and Control 51 (2019) 113–127 115

minimizing the range of actual trajectories based on the optimal
rules, such as minimum-jerk model and inverse optimal control
[46]. Most of these optimization rules are focused on at optimizing
one or more specific features of the movement. However, human
motor control may  care about overall task characteristics instead
of optimizing one or more of the features.

During upper limb motion, a range of different limb trajectories
and associated movement patterns are involved. Hence, parame-
ters (such as kinematics and models of joints or segments, the range
of motion, activities, and assumptions and algorithms involved) are
needed to be defined [47]. Some factors, which affect the movement
tasks (such as width and height of the reaching motion and loading
condition) should also be considered [48].

2.2. EMG signal processing

EMG  signal can be used for numerous applications, includ-
ing assistive and rehabilitation robotics [49,50], ergonomics [51],
diagnosis and clinical application [52], sport science and motion
analysis [53,54], telerobots [55], military task [56], and etc. Some of
these applications (such as assistive and rehabilitation robots, and
telerobots) may involve the shared mode of interaction of human
and robot partners; hence, they can be categorized as a human-
robot collaboration system.

The advantageous features of EMG  signal that make it valuable
for motion study include its simplicity in acquisition as well as pro-
cessing, the development of wireless and wearable electrodes, the
provision of fast and practical communicating control commands
to artificial systems. It can give information about the intention of
motion about 50–100 ms  before the motion actually happens and
is used in interfaces, where intention prediction is required within
this prediction horizon [42]. Moreover, it is useful for making user
upper limb free of bulky interface sensors.

However, its dependency on the anatomy, instrument, meth-
ods, and procedures used in the system, is the main limitation
of the signal. Besides, different artifacts and crosstalk affect the
quality of signal and thereby affect the interpretation of intention
from the signal [57–59]. However, in an effort to overcome some
of the mentioned limitations, various signal processing techniques
and tools have been developed. Since EMG  signal is generated as a
result of human muscle activity, it is a reliable source of signal for
muscle-related studies and for the development of human-robot
collaboration systems on the basis of human upper limb motions
[60]. In this system, it can provide information on arm and hand
motion to predict the intention of the human, which can be mod-
eled as a classification or continuous motion.

As shown in Fig. 1, the stages to use EMG  signal for human
motion intention prediction thereby controlling a robotic device
can be identified as 1) signal acquisition, 2) signal preprocessing,
and 3) feature extraction. Although some of the techniques used
in each stage might be slightly different between classification
and continuous motion estimation models, the basic principles are
common for both models [61,62].

2.2.1. EMG  signal acquisition
Signal  acquisition stage requires a critical attention as the subse-

quent processes and the accuracy of continuous motion parameter
estimation primarily depends on the quality of the signal. This stage
mainly involves considering the method used to record the signal,
acquisition device, number of channels and position of muscles,
amplifier and filter design, sampling rate, and data transmission

approaches [32].

The  electric potential generated by muscle cells are recorded
either as intramuscular electromyography of surface electromyo-
graphy [63,64]. On one hand, intramuscular EMG  records the
electrical activity of a muscle by inserting a needle or wire elec-
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Fig. 1. EMG-based intention prediction of continuous hum

rode through the skin into the muscle, while surface EMG  records
uscle activity from the surface of the skin above the muscle.

lthough intramuscular electromyography is an invasive method
nd usually used in a clinical application, it can be a potential
o be used as an intention prediction signal to control intelligent
obotic devices, especially for assistive technologies [65,66]. On the
ther hand, surface electromyography is a non-invasive method
nd widely utilized for application of human-robot collaboration
ystems [57]. The combination of the two acquisition modalities
an also be used in intention prediction. For instance, Kamavuako
t al. [67] reported that their combination improved the accuracy of
rediction of upper limb motion. Throughout this paper, the term
MG is used to express the surface EMG, unless otherwise explicitly
xpressed as intramuscular EMG.

On the bases of electro-chemical behavior, EMG  elec-
rodes can be polarizable or non-polarizable. Non-polarizable
ilver–silverchloride (Ag/AgCl) electrodes are highly stable and pre-
erred for EMG  measurements [68]. Monopolar, bipolar, and array
lectrodes are the most common electrode configurations used in
EMG interfaces [69]. Compared to bipolar electrodes, the monopo-
ar configuration is more sensitive to changes in muscle activity

ith increases in force [70]. Staudenmann et al. [71] reported that
he use of full high-density EMG  grid in a bipolar way, compared to
onventional bipolar electrodes, significantly improves force esti-
ation. Electrodes vary in shapes, such as circular, rectangular, and

quare electrodes. Circular electrodes that can vary from 1 mm2 to a
ew cm2 in sizes, are widely used [69,72]. The benefit of large elec-
rodes is that it is less sensitive to electrode shift [73]. However,
he influence of the electrode size and shape on the EMG  signal is
nsignificant.

EMG  signals can be recorded both with wet and dry electrodes.
he wet electrodes use conductive electrolyte gel between the elec-
rode and skin, whereas the dry electrodes do not need any gel. In
he wet electrode, before applying the gel, it is required to prepare
he surface of the skin, such as clean and shave any excessive hairs.
urrently, wearable acquisition devices are developed and many

f them are based on dry electrodes. Increased user comfort, mini-
ized preparation time, and portability are the advantages of this

evices, although their signal to noise ratio is lower compared to
he wet electrode technique [32].
per limb motion for human-robot collaboration systems.

Selecting  an appropriate number of EMG  channels and elec-
trode positions are another important issues to be considered in
signal acquisition [74–77]. The number of channels and electrode
positions can be selected either on the basis of physiological and
anatomical knowledge of skeletal muscles or some statistical opti-
mization techniques. Since the DOFs to be studied can require the
coordination of two  or more muscles, understanding the nature of
the motion for the determination of muscle positions is critical.

During  real-time applications, electrodes may shift from the
designated part of the muscle (i.e, because of dynamic changes in
the human body) or may  lose contact with the surface of the skin.
This encounter reduces the amplitude of the measured signal and
thereby affects the accuracy of prediction. Detection of signal fail-
ure, which is caused by electrode shift or lose, is a challenging task,
and various methods have been proposed to address this challenge,
such as human movement modeling [78]. The use of high-density
EMG, which is insensitive to electrode shift, can reduce the effects
of electrodes shift and maintain a high performance even when
some electrodes are omitted [79,80].

The quality of the measured EMG  signal can be described by the
ratio of the measured EMG  signal to unwanted noise contributions
from the environment. High-quality signal provides more of the
required information for intention prediction so that it increases
the accuracy of prediction. However, noises from various sources
are inevitable and can contaminate the recording of EMG  signals
[57,81–83]. In this regard, amplifiers are designed and applied to
reject or eliminate the noises in order to maximize the signal to
noise ratio [84–86].

The  other procedure in the signal acquisition is the conversion
of the signal from the analog to digital form by analog to digital
converters. The choice of an optimal sampling rate is an important
issue to avoid both under-sampling and oversampling [86–88]. The
sampling rate of 1000 Hz with a low-pass filter at 400–450 Hz is
commonly used in EMG  recordings. Li et al. [89] investigated the
effects of sampling rate on the accuracy of classification model on
arm and hand movements. Only a slight decrease in accuracy was

found when the sampling rate was decreased from the commonly
used values. A similar result was  also reported in [88]. However,
we could not find any research paper that investigates its effect
on continuous motion prediction as it might not be explored. The
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ignal that is acquired through the above processes and methods is
he unprocessed or raw signal, and several processing techniques
an be applied on the signal to utilize it for the intended purposes.

.2.2. Preprocessing
At  the very beginning of the preprocessing stage, it can be

equired to check the raw EMG  signal for baseline offset. Baseline
ffset can be adjusted during the signal acquisition process, like the
ork by Tomasini et al. [90], who proposed a digitally controlled

ystem for EMG  signal acquisition with zero-offset. However, the
aw EMG  signal may  have a baseline offset from zero, and usu-
lly, the raw signal is corrected for baseline offset by subtracting
he mean EMG  amplitude from every data value. Frey et al. [91]
roposed another approach, which is a nonlinear error modeling
hat corrects EMG  signal as a nonlinear function of both baseline
nd measured signal amplitude. Rectification is another important
reprocessing procedure to extract EMG  envelope modulation [92].
hough the full-wave or half-wave rectification of EMG  signal could
e obtained, full-wave rectification is widely used and preferable
because it retains all of the signal energy) to estimate upper limb

otion from EMG  signal.
Despite  the necessary caution in the acquisition process, some

oises and artifacts could be super-imposed on the raw EMG  signal.
hus, there is a need to design a filter to smooth the signal or reduce
he noises. The filter type, order, and cutoff frequency are among
he important factors to be considered during the design of a filter.
everal researchers have used a low-pass filter of Butterworth with

 cut off frequency ranging from 2 Hz to 20 Hz, while predicting
ontinuous upper limb motion parameters [93–97].

Other advanced EMG  processing techniques for the removal
f noises and artifacts include signal whitening [98], independent
omponent analysis (ICA) [99–101], empirical mode decomposi-
ion (EMD) [102,103]. Although these techniques are capable of
mproving the accuracy of motion prediction, they are computa-
ionally expensive [104,105]. Currently, some processing tools with
ow computational load have been proposed, such as the work of
ayashi et al. [106] who proposed variance distribution estimation
ased on marginal likelihood maximization.

.2.3. Feature extraction
To  estimate continuous motion parameters for real-time appli-

ations, the analysis is performed on time segments or windows.
oth adjacent windowing and overlapped windowing techniques
an be used. However, the overlapped window approach is prefer-
ble as it can reduce controller delay. Usually, there are three types
f features in EMG  control systems: a) time domain, b) frequency
omain, and c) time-frequency domain [107–109].

Time Domain Features: The time domain features are computed
irectly from raw EMG  (i.e., without any transformation), and the
esultant values are given as a function of time [109]. Compared
o the other features of EMG, they involve a lower computational
omplexity and thus have been widely used in both classification
nd regression models. The commonly used time domain features
nclude mean absolute value (MAV), integrated electromyogram
IEMG), root mean square (RMS), zero crossing (ZC), slope sign
hanges (SSC), waveform length (WL), and etc. Several combina-
ions of these time domain features are usually used in continuous

otion estimation. However, most of the features are redundant,
nd hence combining some of the features may  not result in signif-
cant improvement in the accuracy of prediction than using either
f them [109]. The question of which feature or combination of

eatures can result in the best prediction accuracy for a model is
sually a trial-and-error approach, which is required to compare
he performance of several alternatives.

Frequency Domain Features: The frequency domain features are
xtracted by using estimated power spectrum density and are
Fig. 2. EMG-based continuous motion prediction approaches.

computed by parametric methods. However, these features in com-
parison with time domain features require more computational
cost. The commonly used frequency domain features of EMG  sig-
nal include auto-regressive coefficients (AR), power spectrum (PS),
mean frequency (MNF), median frequency (MDF), frequency ratio
(FR), and etc.

Time-Frequency Domain Features: Time-frequency representa-
tion can localize the energy of the signal both in time and in
frequency. However, these features generally require a transfor-
mation that could be computationally expensive. Some of these
features include short time Fourier transform (STFT), wavelet trans-
form (WT), and etc.

The  combinations of time domain and frequency domain fea-
tures can also be used. Yamanoi et al. [110] used the mean absolute
value and power spectrum features to predict hand posture and grip
force. Similarly, Artemiadis et al. [111] used the combination of time
domain and frequency domain features for real-time arm motion
estimation. Siddiqi et al. [112] reported that the frequency-domain
features performed better than the time-domain features in the
prediction of thumb angle and force during flexion motion. Nlandu
et al. [113] compared the performance of different combinations
of nine features extracted from intramuscular EMG  recordings for
the estimation of grasping force. Apart from this, to the best of
our knowledge, there is no comprehensive research on the influ-
ence of different features or combination of features of EMG  on the
performance of continuous motion prediction.

2.3. Continuous motion prediction model/algorithm

We categorized the EMG-based continuous motion prediction
approaches for human upper limb movements as model-based
and model-free approaches, as shown in Fig. 2. The model-based
approach comprises of kinematics models [114], musculoskeletal
models [115] or dynamic models. The model-free based approach
utilizes artificial intelligence method, such as neural network.

2.3.1.  Model-based approach
In the model-based approach, a linear or nonlinear analytical

relationship is established between inputs and outputs. The rela-
tionship may  consider several unknown parameters of the inputs
that contribute toward the prediction of the target output, e.g,

wrist position. These parameters could be first identified either
through experiments or some assumptions. Then the parame-
ters are adjusted repeatedly until the desired performance of the
model is achieved. In the model-based approach, the relationship
between EMG  signal (i.e. input) and desired motion parameters (e.g,



1 ignal 

f
d

r
I
l
T
a
p
m
m
p
t
a
fl

t
i
o
t
t
e
T
a

t
f
t
o
t
m
t

a
f
n
I
t
(
e
p
t
[
t

m
a
d
m
s
a
m

h
(
t
t
e
t
m

2

i
d
t

18 L. Bi, A.G. Feleke and C. Guan / Biomedical S

orce, acceleration, and position) can be expressed as a kinematic,
ynamic or musculoskeletal model.

Kinematic model: In upper limb studies, a kinematic model rep-
esents human arm motions as kinematic chains of rigid body parts.
t requires the anatomical and functional knowledge of the upper
imb, and it is the bases to understand human upper limb motions.
he segments are upper arms, forearms, and hands, while the joints
re shoulder, elbow, and wrist. Markers can be used to define the
osition and orientation of the segments [114]. Usually, the kine-
atic chain is modeled as 7-DOF limb models, by excluding fingers
otion. Three degrees of freedom at the shoulder are elevation

lane, thoracohumeral angle (elevation angle), and shoulder rota-
ion; the two degrees of freedom at the elbow are elbow flexion
nd forearm rotation; the two degrees of freedom at the wrist are
exion and deviation.

However,  the main problem associated with this approach is
hat an accurate representation of human upper limb is challeng-
ng. Because human upper limb is irregular in shape and made
f inhomogeneous and nonlinear materials, it is usually difficult
o accurately represent the relationship between the input and
argeted output. The kinematics model mainly aims to find param-
ters, such as positions, orientations, velocities, and accelerations.
o obtain the positions of the joints, techniques (such as forward
nd inverse kinematics) have been employed [114].

Dynamic modeling: Dynamic modeling of upper limb involves
he determination of torque or force by considering the weight and
orce of the limb as an input to a function of inertia, Coriolis, cen-
rifugal, and gravity vectors. Each of this function takes a kinematics
f human arm (orientation, position, velocity and acceleration vec-
ors) obtained from the kinematic model. In EMG-based upper limb

otion analysis, the dynamic model is used in the estimation of
orque and force from EMG  signal.

Koike et al. [116] used a forward dynamics model acquired by
n artificial neural network to reconstruct human arm movement
rom EMG  signal. Clancy et al. [117] used linear and nonlinear poly-
omial model structures to estimate elbow torque from EMG  signal.

n their model, extension and flexion of EMG  signals were related
o joint torque by using four parameter dynamic model structures
i.e, Linear, Polynomial nonlinear, Hammerstein, and Weiner mod-
ls). The parameters of the model were estimated by using the
seudo-inverse technique to regularize a least square minimiza-
ion. Similarly, Liu et al. [105], Koirala et al. [93], and Hashemi et al.
118] used different types of dynamic models to estimate either
orque or force from EMG  signal.

Musculoskeletal Model: Several researchers have proposed
usculoskeletal models from simple to complicated modeling

pproaches that involve different assumptions and analysis for the
esired application. Hill-based muscle model is widely used as a
usculoskeletal model to predict continuous motion from EMG

ignal. It predicts the force developed by the physiological muscle
s a function of the neural activity level and joint kinematics (i.e,
uscle length and velocity).

The challenges with this model include the redundancy of
uman muscles around joints and the changes in parameters
velocity and arm length). Despite its challenges, it can be used
o build a quantitative relation between EMG  signals and musculo-
endon forces. Wang et al. [119], first utilized Hill-type models to
stimate muscle force from the predicted muscle activations. Then,
hey predict muscle moment by incorporating muscle geometry

odel along with the muscle forces.
.3.2. Model-free approach
In  this model, a numerical function, which is usually approx-

mated by machine learning, is mapped between the input and
esired target. The main problem of this approach is that the rela-
ionship between the input and output is unknown or a black box.
Processing and Control 51 (2019) 113–127

Several  artificial intelligence algorithms have been utilized to map
an input set to an output set without consideration for any formu-
lation of muscle functionality. Basically, in this approach, a large
array of inputs and related outputs of a system were presented to
the system. After the training period, the system is expected to pre-
dict the continuous motion parameter given a random EMG  signal
as the input set.

This  approach is widely used for EMG-based continuous motion
prediction. The various artificial intelligence methods to predict
continuous human upper limb motion include the neural network
model, fuzzy approximation, Bayesian network, hidden Markov
model, and Kalman filter. Loconsole et al. [120] used time-delayed
neural networks to estimate the joint torque of an active exoskele-
ton robot from MAV  features of EMG  signals. They used two
different neural networks, one for elbow and the other for the
shoulder torque estimation. However, they considered four direc-
tions (upward, downward, forward, and backward) alone along the
sagittal plane. Nielsen et al. [121] used a multilayer perceptron arti-
ficial neural network to estimate force from four feature sets of EMG
signal.

2.4. Control system

In  the design of control system, the kinematics parameters
estimated from EMG  signal is fed into a robot to produce out-
put commands. Once a robot knows human intentions through a
motion kinematics, it acts according to the intention to achieve
a shared goal. Such human robot-collaboration system requires
the design of an appropriate control strategy that should aim to
achieve the best performance, stability, and safety. Several kinds of
EMG-based control methods have been proposed to control robots
according to human intention. The control system could be cat-
egorized on the bases of model (such as dynamic and kinematic
control), or hierarchy of control system (such as proportional and
impedance control).

In  assistive or assist-as-needed controllers, the robots help users
to move their disabled or weakened upper limbs in the desired
trajectory to reach a target or accomplish tasks, such as grasping.
Teramae et al. [122] developed an assist-as-needed controller based
on a model predictive control (MPC) approach. In their system, the
robot only assists the deficient torque to generate a target move-
ment to enhance the recovery of motor functions of patients. In
such case, the accuracy of prediction may  not be strictly neces-
sary, because the user could gradually adapt to the system. Kiguchi
et al. [123] proposed an impedance control method for an upper-
limb power-assist exoskeleton robot. Moreover, they applied a
neurofuzzy matrix modifier to make the controller adaptable to
any users. Peternel et al. [124] proposed an adaptive exoskeleton
control system, which is primarily a feed-forward control scheme.
It dynamically adapts the shape of the robot joint torque trajec-
tories in accordance to the human intention. In their proposed
system, EMG  was  used to estimate the direction of torque change to
minimize human effort. Kim et al. [125] developed an EMG-based
variable impedance control for elbow exercise. However, the con-
trol system could not control the fluctuation of EMG  level. Rahman
et al. [37] proposed a nonlinear sliding mode control for exoskele-
ton that provides active assistance in arm movements.

Artemiadis et al. [111] proposed an inverse dynamic con-
troller for manipulating an anthropo-morphic robot arm by using
EMG signals from the muscles of the upper limb. The unique-
ness of the proposed method is that it is not affected by EMG

changes with respect to time. Similarly, Kwon et al. [126] pro-
posed a proportional-derivative (PD) controller that uses a motion
estimated from upper limb for human–machine collaboration. Gen-
erally, to utilize the benefits of EMG  signal in human intention
prediction for human-robot collaboration, it is necessary to develop
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 robust and reliable control system. Particularly, the control sys-
em should aim to address the sensitivity of EMG  signal to time and
cross persons.

.5.  Human-robot collaboration application

The capability of a robot to recognize and predict the intention
f the human provides it with the information to take action to
elp the human partner perform the shared tasks. Meanwhile, the
afety is guaranteed (by prohibiting robot movement from unsafe
onditions) and interaction with the human partner is enhanced.

Intention  prediction from upper limb motions has several appli-
ations. Among collaboration systems, continuous human motion
rediction has been widely used in assistive and rehabilitation tech-
ology. In this technology, it can help weak elder, disabled, and

njured individuals to perform daily upper limb activities [127].
owever, most of the application is concentrated on the develop-
ent of exoskeleton and prosthetic robots [128–133]. There are a

ew researchers, who used the signal in the application of robotic
anipulation [60,111,126].

Most  of the applications of advanced models and algorithms
f EMG-based interfaces have been confined to academic envi-
onments, and they have been rarely implemented in commercial
ystems. Dario Farina et al. [134] suggested that for widespread
cceptance, especially for ideal prosthesis control, EMG-based
nterfaces should fulfill the criteria of being intuitive, closed-loop,
daptive, and robust to real-time control. In addition, the require-
ents for the minimum number of recording electrodes, minimum

raining, limited complexity, low consumption, and low sensitivity
o repositioning should be considered.

Even though the above criteria are set from the perspective of
ssistive devices, they are valid for other human-robot collabora-
ion applications. EMG  signal is noninvasive, simple and intuitive,
ich of neural information, and has a direct relation with a motion.
hese characteristics of the signal are a great potential to develop an
MG-based human-robot collaboration system, other than rehabil-

tation and assistive technology. Hence, the signal can be utilized in
ider applications and technology, which could practically address

he societal problems and improve quality of human life.

.  EMG-based continuous motion parameter prediction

The  EMG  signal characteristics can be influenced by physiolog-
cal and non-physiological factors that cause subject-specific and
on-stationary problems during movements. As a result, prediction
f motion parameters from EMG  signal is a challenging task. EMG
an be utilized to estimate continuous human intention of both
pper and lower limb motions. Since upper limb movement is quite

unctional and important in human daily life, its motion parame-
er prediction can be used in several human-robot collaboration
pplications. We  will present the motion parameter prediction of
houlder, elbow, and wrist from different muscles eliciting such
otions and the performance metrics of the prediction models.

tudies show that the relationship between EMG  and force is more
inear than those between EMG  and any other motion parameters.
s a result, the prediction of kinematic parameters is more chal-

enging and complicated than that of kinetic parameters. In one or
ther ways, several articles have discussed the prediction of kinetic
odels. Hence, we limited the topic of our review to kinematics
otion parameter estimation.
.1.  Kinematics motion parameter estimation

Several methodologies have been proposed for the utilization
f EMG  signals to infer human motion intention, and thereby to
ontrol a robot that collaborates with a human. On the bases of
rocessing and Control 51 (2019) 113–127 119

the  kinematics motion parameters, we  systematically categorize
the continuous motion parameter prediction of the human upper
limb into two  groups; the first group consists of acceleration and
velocity prediction, and the second category consists of joint angle
and position/ trajectory prediction. The parameters can be either
directly or indirectly predicted from EMG  signals. When the direct
estimation approach is used to estimate parameters, the EMG  is
directly mapped to the desired output target. However, in case of
indirect approaches, the desired output (e.g, acceleration) is the
output of some parameters (e.g, force), which is in turn obtained
from the direct mapping of EMG  signals.

3.1.1. Acceleration and velocity prediction
The prediction of acceleration and velocity from EMG  signal is

not as common as the other parameters prediction. Usually, these
parameters are not directly predicted from EMG  signal. Instead, first
forces are estimated from EMG  signal and then the estimated forces
are used to predict acceleration and velocity. Koike et al. [116] first,
they estimated joint torques at the elbow and shoulder in the hori-
zontal plane from the surface EMG  signals of 10 flexor and extensor
muscles. By using the estimated torques and actual joint kinemat-
ics, joint angle acceleration was  estimated. Artemiadis et al. [128]
estimated the angular velocity of shoulder and elbow motion by
using a decoding model based on the state-space model from seven
muscles of EMG  signals. Simultaneously, their proposed approach
is able to predict the exerted force by using a switching model.

Han  et al. [135] and Ding et al. [133] first developed a model that
combines the Hill muscle model and joint forward dynamics. Then,
they used a state-space model for estimation of angular velocity
from EMG  signal. Raj et al. [136] tried to estimate angular velocity
for three different speeds and angles of the forearm from EMG  sig-
nals by using multi-layered perceptron neural network and radial
bases function neural network model. However, the accuracy of the
predicted parameter is not satisfactory.

3.1.2. Joint angle and position prediction
Since EMG  signal is directly related to muscle forces but not posi-

tions, its use to infer arm positions could be indirect. As a result, two
approaches have been used. The first approach is that acceleration
is predicted from force/torque, which is estimated from EMG  signal,
and this acceleration is used to predict joint angle/position [116].
The other approach is that EMG  signal is directly mapped to joint
angle/ position by using an artificial neural network model.

The  prediction of single joint angle or position is easier than
that of multiple joints, and better performance can be achieved. Yu
et al. [96] assumed that EMG  signal is quasi-stationary instead of
a non-stationary signal to obtain pre-angle values from the raw
synergistic EMG  signal and to estimate the joint angle through
normalization. They proposed a third-degree polynomial and opti-
mization algorithm to predict joint angle of human elbow in
real-time. Similarly, Zhang et al. [137] proposed a linear state-
space model to map  the muscle activity to joint motion of elbow
flexion-extension movement. Chen et al. [138] proposed a hierar-
chical projected regression method to predict elbow joint angles
from EMG  signal.

Pang  et al. [139] proposed an upper limb elbow joint prediction
method that uses only single-channel EMG  signals. EMG  signals
were first recorded from the biceps muscle and a discretized recur-
sive filter was implemented to calculate the muscle activation level.
Then, they implemented a modified Hill type muscular model to
predict the elbow joint angle from the muscle activation level. Tang

et al. [132] estimated the elbow angle based on a backpropagation
neural network to construct the EMG-angle model.

However, the simultaneous control of multiple DOFs move-
ments is challenging. Muceli et al. [140] proposed a method
to estimate wrist joint angles and hand closing based on mul-
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Table 1
Some  representative models and their performance in continuous motion intention prediction.

Paper Parameter to be estimated Model Performance measure Performance

[94] Joint angle estimation Third degree polynomial L2-norm error values 4.34
[111] 3D  arm Position State space model Correlation coefficient Cx = 0.93, Cy = 0.94Cz = 0.93
[128] Velocity State-space model Correlation coefficient 0.965 and 0.975

Root mean square error 0.055 rad/sec
[130] Elbow joint Physiological model Root mean square error RMSE = 6.53◦ (single cycle

movement)
RMSE = 22.4◦ (random cycle
movement)

[132] Elbow  angle
A back-propagation neural
network  (BPN)

Root mean square error and
Coefficient of determination

RMSE = 10.93
R2 =0.83

[133]
Angular displacement and velocity
of elbow flexion/ extension

State space model with Kalman
filter (EKF)

Root mean squared error 0.156 (rad/sec) and 0.142 (rad)
Correlation coefficient 0.876 and 0.991

[137]  Joint motion estimation State-space mode Root mean square error (RMSE) 8.3%
[138]  Elbow joint angle Hierarchical projection regression Root mean square error different for different loads

(<13.28◦)
[139]  Elbow joint Modified Hill type muscular model Root mean square error <10◦

[141] Wrist flexion/extension, radial/
ulnar deviation, forearm pronation/
supination, and hand closing

Artificial neural network Coefficient of determination 79%–88%

[141]  Shoulder abduction/adduction,
shoulder flexion/extension
shoulder pronation/supination and
elbow flexion/extension

Artificial neural network
(Multi-layer  perceptron)

Coefficient of determination 87%

[142]  Shoulder movements
(flexion/extension, vertical
abduction/adduction, horizontal

Back propagation neural network
(BPNN)

Mean square error 0.01615, 0.01667, 0.01897 and
0.01485
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abduction/adduction) and elbow
motion (flexion/extension)

[143] Shoulder, elbow and wrist angles AutoRegressive with exogen
inputs  (NARX)

ilayer perceptron neural network. Apart from multiple DOFs,
heir prediction model enables users to simultaneously con-
rol hand closing. Zhang et al. [141] simultaneously predicted
our joint angles across shoulder and elbow from EMG  signals
y using multi-layer perceptron neural network. Shoulder flex-

on/extension, shoulder abduction/adduction, shoulder rotation
nd elbow flexion/extension angles were estimated, although they
id not report the performance of their prediction algorithm. Sim-

larly, Aung et al. [142] used a back propagation neural network
o estimate the shoulder and elbow joint angles from the recorded
MG signals.

Liu  et al. [143] decoded shoulder, elbow, and wrist move-
ents by using a non-linear autoregressive exogenous model.

heir proposed approach is capable of simultaneously and con-
inuously decoding multi-joint movements. Usually, developing a

odel to predict multiple human joint motions is complex due
o the complex nature of neuromusculoskeletal systems. Mon
t al. [144] estimated the angle of shoulder flexion/ extension and
bduction/adduction movements by using back propagation neural
etwork from EMG  signals.

Artemiadis et al. [111] proposed a state-space model that was
sed to enable the user to control in real time an anthropomorphic
obot arm trajectory in 3-D space. Their analysis included random
rm motions in the 3-D space with variable hand speed. They were
ble to decode random arm motions efficiently from EMG  signal.
ince EMG  signals are not stationary, EMG  recordings for the same
otion change over time. This characteristic affects the accuracy

f motion prediction from the signal. However, in their work, they
uilt a method to incorporate these signal changes into the motion
ecoding scheme. Table 1 shows some of the representative models
nd their performance in continuous motion intention prediction.
.2.  Performance measurement

The  measurement of accuracy is usually used to validate the
erformance of a given model. However, several factors (such as
Variance accounted for (VAF) > 98%

computational cost) should also be considered. Computationally
expensive algorithms/ models may  deter the fast response of a sys-
tem, which is undesired behavior, during a real-time application.
The accuracy of prediction is not only dependent on the models and
algorithms employed, but also on the EMG  signal processing tech-
niques, such as the number of channels and features. The accuracy
of a proposed model is first measured offline for a desired perfor-
mance, and we categorized such metrics as error metrics. After that,
the model is tested offline and achieved a desired performance.
Finally, the whole system is constructed and evaluated in real-time.
We categorized such measurement as system performance metrics.

These measurement categories in EMG-based continuous
motion intention prediction have different metrics. However, some
of the error metrics, such as root mean square error (RMSE), can also
be used in the real-time evaluation of the complete system.

3.2.1.  Error metrics
Root  mean square error (RMSE) is widely used as a performance

measure in continuous motion prediction. It measures the aver-
age difference of the actual data points from the predicted values,
and the difference is squared to avoid the cancelation of positive
and negative values, while they are summed up. Mean square error
(MSE) is also a similar performance measure to RMSE. However, it
has a squared unit. Normalized root mean square error is another
widely used performance metric in continuous motion prediction.
It is a non-dimensional form of the RMSE and it is useful to compare
RMSE with different units. Moreover, it can be used to compare
models and algorithms of different scales. Correlation coefficient
(R), which compares the strength of association between the actual
and predicted values, and coefficient of determination (R2), which

is a measure of how well the prediction/ regression line represents
the data, are also used. Other performance measures include L2-
norm error values and variance accounted for (VAF). Table 2 shows
the equation for the commonly used offline performance metrics
in continuous motion prediction.
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Table  2
The  commonly used offline performance metrics for continuous motion estimation.

Performance Metrics Equation of the metrics

Root mean square error
(RMSE)

RMSE  =

√
n∑
i=1

(ŷt−yt)2

n

Where,yt is the actual value at data pointt,ŷt is
the  estimated value at data pointt, and n is the
total number of data points.

Mean  square error
(MSE)

MSE  =
n∑
i=1

(ŷt−yt)2

n

Where,yt is the actual value at data pointt,ŷt is
the  estimated value at data point t, and n is the
total number of data points.

Normalized  root mean
square  error
(NRMSE)

NRMSE  = RMSE
ymax−ymin

Where, RMSE is root mean square error, y max is
the maximum of the actual value, and y min is
the minimum of the actual value

Correlation coefficient
(R)

R  =

n∑
i=1

(xt−x̄)∗(yt−ȳ)

√
n∑
i=1

(xt−x̄)2∗

n∑
i=1

(yt−ȳ)2

Where, yt is the actual value at data pointt, ȳis
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the mean of the actual valuextestimated value
at  data pointt,x̄is the mean of the actual value,
and n is the total number of data points.

There are some limitations while validating the performance of
ifferent models/algorithms in continuous motion prediction. Most
alidation of the model has been conducted offline. Although there
s no problem with such approaches, it cannot give the complete
isualization of the system performance in real-time applications.
oreover, most studies have used healthy subjects to validate their
odels, whereas their system is anticipated for disabled or weak

sers. Some factors (e.g., arm position [145]), which affects the
recision of motion estimation for healthy subjects, may  not have
imilar effects on disabled ones. The signal intensity of healthy and
isabled individuals can also be different. Therefore, a thorough
nalysis should be made on such factors, while inferring a system
erformance from healthy subject to unhealthy subjects.

.2.2.  System/task based performance metrics
Different from error metrics, system performance metrics mea-

ures the accuracy of the complete system in real-time situations.
he accuracy of execution of the intended task by the system is
valuated against established metrics in the actual or simulated
nvironment. Therefore, they are a more reliable measure. The met-
ics are based on Fitts’s law, which is a predictive model that can
e used to measure the target performance of the designed inter-
ace [146]. These performance metrics include task completion rate,
ask completion time, and execution efficiency [147–149]. How-
ver, RMSE can also be used in real-time prediction to measure
he accuracy of trajectory. Table 3 shows the commonly used per-
ormance metrics for real-time continuous motion prediction of a
ystem. In order to make the performance model comprehensive
ser comfort or satisfaction should also be evaluated.

. Discussion and conclusion
EMG  signals can be a reliable method for intention prediction
f human motion in human-robot collaboration systems because
hey require little attention and motor skills from users and are
lightly sensitive to disturbance from the environment. Moreover,
rocessing and Control 51 (2019) 113–127 121

they  are physiologically obtained from human body so that they can
establish a natural way  of communication between a human and
robot. The research and development of EMG-based human motion
intention prediction have attracted a great deal of attention. In this
paper, we focused on EMG-based continuous motion prediction
from human upper limb and presented a comprehensive review
of the complete systems, the models and approaches used in con-
tinuous motion estimation, the motion parameters estimated from
EMG  signal, and the performance metrics utilized for system vali-
dation. We  reviewed the application of EMG-based human-robot
collaboration systems from the perspective of both healthy and
disabled users.

Many  researchers have developed human-robot collaborative
systems by using a continuous motion intention prediction from
EMG signals of a human upper limb. However, there are several
challenges associated with EMG  signal acquisition, signal process-
ing, and intention prediction to accurately and robustly predict
continuous motion intention. In order to cope up with these chal-
lenges, several techniques, models, and assumptions have been
proposed. However, some problems still remain to be addressed
adequately to improve the performance of EMG-based motor inten-
tion prediction, develop a robust collaborative system, and expand
its scope of application. In the subsequent sections, we  will first dis-
cuss the challenges and then current solutions and future research
directions.

4.1. Current challenges

1)  Signal acquisition devices and methods: In the wet-electrode
method of EMG  signal acquisition, it is required to first clean and
shave  any excess hairs, and then to apply a gel to muscle posi-
tion,  from which the signal is collected. This procedure helps
to  ensure that there is a steady electrical connection between
the  muscle and electrode, resulting in good signal quality. How-
ever,  the process requires expertise and a relatively long setup
time.  In addition, the comfort of the user could be impaired
because many of the devices associated with this acquisition
technique are bulky and several cables are attached to arms of
users.  Currently, there is a progress in the development of wear-
able  devices [150,151], which are based on the dry-electrode
technique. These wearable devices are comfortable to users.
Also,  they do not need skin preparation, resulting in the reduced
setup  time. However, compared to the wet-electrode technique
(especially the Ag/AgCl method), the wearable EMG  signal has a
lower signal to noise ratio. Hence, improving signal quality is a
challenge in wearable devices.

The other challenge is that, during the real-time operation,
the  electrodes could shift from the target muscle or loose skin
contact,  which can distort the EMG  signals. Besides, electrode
shift  from the target is one of the causes of crosstalk. As a result,
there  is a low quality of signals from such electrodes, which can
decrease  the accuracy of intention prediction from the signals.

2) Noise and artifacts: Noise and artifacts from several sources
(including electric devices, power line, and physiological fac-
tors)  affect the quality of EMG  signals, which may result in
a  wrong interpretation of the data or inaccurate prediction of
motion  parameters. Even though it is difficult to acquire noise-
and-artifact-free signals, it is possible to minimize the effects
of  noise and artifacts. Progresses have been made towards the
sensors  [152–154], amplifiers [155,156], filters [81], and pre-
processing  tools to minimize the effects. However, noise and

artifacts  are still a challenge in continuous motion prediction.

3) Subject-specific and non-stationary characteristics of EMG  signals:
The  EMG  signals vary from person to person, and even for the
same  person, they are different at different recording time. In
addition,  the change of electrode position with reference to the
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Table 3
The  commonly used real-time/task-based performance metrics for continuous motion estimation.

Performance metrics Equation of the metrics Description of the metrics

Throughput (TP)
TP = TD

Tc It is defined as the ratio of the task difficulty index
of each target to the completion timeWhere, TDis the difficulty of a task, Tcis the completion time to

acquire the target condition.

Completion rate (CR)
CR = NCT

NAT
It is defined as the ratio of the acquired targets
(completed tasks) to the total number of attempted
tasks.

Where,NCT is the total number of completed tasks andNAT is
the  total number of attempted tasks.

Path Efficiency (PE)
PE = 100% ∗ SPD

DT
It measures the control quality and is defined as the
ratio  of the shortest distance to the target to theWhereSPD is the shortest possible distance andDT is the

the co

4

5

4

1

distance  travelled.

Speed (�)
� = TL

Tc

WhereTL  is the trajectory length and Tcis 

active muscle fibers, the change in electrode-skin impedance,
and  muscle fiber lengthening and shortening impair the sta-
tionarity  of EMG  signals. In some cases, EMG  signals are not
always  readily available for all users or might not be sensi-
tive  enough for interpretation (i.e., the change in the amplitude
of  the signals may  not reflect the actual increment of mus-
cle  activity). The non-stationary characteristics of EMG  signals
impair  the performance and robustness of motion intention
prediction.

)  Offline vs. online processing and performance evaluation: Some
EMG-based  human intention prediction systems have been con-
ducted offline and promising results are reported. However, the
model or system, which has good offline performance, does not
necessarily  have good online performance. For instance, Jiang
et  al. [157] reported that there is a weak correlation between
the  offline and online processing performance. The other issue
is  that healthy subjects were used to evaluate the performance
of  a system that is intended for disabled users. Similarly, it is
still  a challenging question whether good performance of an
EMG-based  system for healthy users necessarily means good
performance for the disabled population.

)  Unexplored application areas: Many EMG-based studies focus on
the prediction of a single joint motion parameter under the situ-
ation  of simple motion (such as reaching a target in a constrained
environment). There are a few researchers, who  considered
random motion and multiple joints. A single joint motion param-
eter  may  be enough for rehabilitation or assistive technology
because the goal can be to regain the motion of a particular joint.
However,  in practice, many of the daily activities from human
upper  limb motion involve complex motion and multiple joints.
Although  EMG  signals can be explored for wider applications of
human-robot  collaboration systems, the studies on upper limb
continuous  motion prediction from EMG  signals are centered
on  assistive and rehabilitation technology. Only a few studies
considered how to apply human intention prediction from EMG
signals  to other human-robot collaboration systems (e.g, robotic
manipulation [111,126]).

.2. Possible solutions and future research directions

) Improving EMG  signal acquisition devices and methods: EMG  sig-
nal  acquisition devices, especially for real-time and commercial
applications, should be simple and intuitive, portable, cheap,
durable,  safe, and robust. In this regard, the development in
the  wearable technology is promising. Since many of them are
based  on dry-electrode, the problem of electrode shift or lose

from  the target muscles needs critical investigation. The design
of  electrode–skin interface requires a thorough analysis of dif-
ferent  variables involved and how they affect the acquisition of
the  signal. The other most important issues are noise reduction
(especially power line noise) and motion artifacts of wearable
travelled distance

It is defined as the ratio of the trajectory length to
the  completion time.mpletion time.

devices [158]. Hence, progresses in appropriate electrodes, elec-
tronics,  and signal processing for such systems are expected.

High-density surface EMG  has also evolved as a current signal
acquisition method. High-density surface EMG  may  reduce the
effect of electrode shift because it can detect almost the whole
muscle  skin surface. In addition, it is possible to reconstruct mus-
cle  activity maps from high-density EMG  when electrode failure
occurs  [80,159,160], by using methods, such as image inpaint-
ing  and surface reconstruction methods [79]. Signal processing
approach is the other issue that needs attention. Processing tech-
niques  are used to eliminate recorded noises and artifacts from
raw  EMG  signals. There are various pre-processing tools mainly
to  remove noise, such as the Bayesian filter [161], minimum
entropy deconvolution [162]. Improvements and progress on
processing  techniques are also expected.

2)  Decomposing EMG signals to motor unit action potentials (MUAP):
EMG  signals are a superposition of sequences of MUAP. Decom-
position,  which is the finding of MUAP from the EMG  signal,
provides the means to identify the neural drive to muscles
and  helps to understand neural control of movement. The sig-
nals  recorded from both intramuscular and surface EMG  can be
decomposed to MUAP. However, compared to the intramuscular
method, the decomposition of surface EMG signals is challeng-
ing,  because of its low resolution of a signal. Since the surface
EMG  has the advantage of noninvasiveness, the development of
appropriate  algorithms and techniques to decompose EMG  sig-
nals to the MUAP is valuable. In this regard, currently various
techniques have been developed, such as homomorphic decon-
volution  [163], blind source separation methods [164–166],
progressive fastICA peel-off [167], from surface EMG signals, and
the  progress in this direction is also expected.

3)  Fusion of EMG with other signals: The challenges of non-
stationarity and subject-specific characteristics of EMG  signals
could  be addressed by fusing it with other signals. In this
regard, fusing the signal with other signals, such as EEG [168],
near-infrared spectroscopy (NIRS) [169] could enhance the per-
formance and robustness of motion prediction and thus this
research  direction should be considered.

4)  Adaptive regression and improving online performance: Improving
the  EMG-based system performance or robustness is critical for
making EMG-based human-robot collaboration usable in real-
time  situations. One possible research direction is the online
adaptation of the regression models to drifts in the EMG  sig-
nals,  considering the change of EMG  signals over time and the
change  of muscle activity as the users develop new capabilities
with  experience. It is therefore important to develop a real-
time  learning scheme, in which both the user and machine learn

simultaneously to accomplish a given task. At the same time, it
is important to ensure that the proposed adaptive regression
approach is computationally efficient. In this regard, there are
some  efforts, including the work of Hahne et al. [170]. Moreover,
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to ensure the proposed system to be usable by the targeted (e.g,
disabled)  population, they need to be designed for and tested by
the targeted population.

) Explore the application of EMG  signal from the wider scope of
human-robot collaboration systems: Research on EMG-based
rehabilitation and assistive technology has achieved many sig-
nificant  results. However, there are limited efforts in the other
areas  of EMG-based human-robot collaboration systems (such
as  manufacturing, intelligent vehicles, and telerobots). Further
work  and success of research in these areas would lead to the
development of collaboration systems that can be used by the
wider  society, and thus improve productivity and quality of life.

Currently, there is a progress for simultaneous control of
ultiple DOFs based on muscle synergy motor control strategy

171–173]. To make the EMG-based motor intention prediction
ore practicable, multiple joints under complex motion situa-

ions should be paid significant attention. Furthermore, for wider
pplications, unlike rehabilitation, both the left and right arms of
perators may  need to move and often in different trajectories.
ence, how to use EMG  signals to predict the movement inten-

ion of one arm, while the other arm is also in motion, and how to
redict motion intentions of both arms at the same time, are rather
seful in practice and points to a new research direction.

From the perspective of shared control, some methods have
een proposed to combine the EMG  and robot intelligence to

mprove the overall performance of collaboration systems. The
hared control approaches can be used to compensate for the lim-
tations of EMG  signals. Shared control is intended to overcome
ome problems, such as dangerous situations and accidents, inac-
uracy of human control, as well as fatigue during a continuous
ontrol over a device. Due to the lack of human control capacities,
n addition to a human, intelligent controller can have an influ-
nce on a device controlled. Therefore, the development in shared
ontrol techniques and methods can also significantly improve the
MG-based human-robot collaboration systems.

Generally, since EMG  signal is a potential signal for intention
rediction, other areas of human-robot collaboration applications
such as human-robot collaboration for manufacturing, intelligent
ehicle [174], telerobots, and skill transfer [175]) can be explored.
nder the constraints of the limited and unstable performance
f EMG-based systems, finding ways to enhance and ensure the
verall system performance of human-robot collaboration is very

mportant.
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