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Abstract—With the availability of multiple rehabilitative inter-
ventions, identifying the one that elicits the best motor outcome
based on the unique neuro-clinical profile of the stroke survivor
is a challenging task. Predicting the potential of recovery using
biomarkers specific to an intervention hence becomes important.
To address this, we investigate intervention-specific prognostic
and monitory biomarkers of motor function improvements us-
ing quantitative electroencephalography (QEEG) features in 19
chronic stroke patients following two different upper extremity
rehabilitative interventions viz. Brain-Computer Interface (BCI)
and transcranial Direct Current Stimulation coupled BCI (tDCS-
BCI). Brain symmetry index was found to be the best prognostic
QEEG for clinical gains following BCI intervention (r = -0.80, p
= 0.02), whereas power ratio index (PRI) was observed to be the
best predictor for tDCS-BCI (r = -0.96, p = 0.004) intervention.
Importantly, statistically significant between-intervention differ-
ences observed in the predictive capabilities of these features
suggest that intervention-specific biomarkers can be identified.
This approach can be further pursued to distinctly predict
the expected response of a patient to available interventions.
The intervention with the highest predicted gains may then be
recommended to the patient, thereby enabling a personalised
rehabilitation regime.

Index Terms—Chronic stroke rehabilitation, Biomarkers, BCI,
tDCS, qEEG.

I. INTRODUCTION

Approximately 60% of stroke survivors experience motor
function impairments and require rehabilitation [1]. Hence,
many rehabilitative interventions have been developed for
the purpose of motor function restoration [2]–[8]. Although
numerous studies have validated the group level clinical ben-
efits of these interventions [9]–[11], at individual level, the
extent to which patient respond to them is highly subject-
specific[6], [12]. Therefore, it is necessary to identify the most
suitable rehabilitative intervention for a patient and to predict
the corresponding recovery. In literature, the heterogeneity in
the rehabilitation gains has been primarily attributed to the
unique neuro-clinical profile of the patient[3], [4], [13]–[18].
Studies have identified that individual factors such as age [19],
volume and location of initial infraction [20], extent of injury
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to corticospinal tract [13], [18], [21], presence of motor evoked
potential [12], [13], [22], and other functional and structural
neuroimaging factors [3], [16] affect the patient’s response to
the intervention and the overall potential of recovery. However,
while determining patients’ response, other than neuro-clinical
profile, the type of intervention in itself is another crucial
factor, which is often ignored. Many studies have highlighted
that different rehabilitative interventions facilitate the recovery
of the damaged brain in a unique manner [8], [23]–[28].
A direct consequence of these intervention-specific recovery
mechanisms is that patient responds differently to interventions
[15]. Hence, the process of rehabilitation should be treated as
an interaction between the patient and the given intervention.

The previous approach of prognostication, which is solely
based on the neuro-clinical profile of the patient, does not ac-
count for this interaction effect. Therefore, considering rehabil-
itation from an interaction viewpoint, we propose the existence
of intervention-specific prognostic biomarkers. We hypothesise
that these biomarkers can encapsulate the interactions between
the intervention and the patient, and can uniquely predict the
clinical efficacy of the given intervention. More importantly,
identification of these prognostic biomarkers can be further
pursued to distinctly predict the expected response of a patient
to all available interventions. The intervention with the highest
predicted gains may then be recommended to the patient,
thereby enabling a personalised rehabilitation regime. Fur-
thermore, since the mechanisms of neuronal recovery elicited
by different interventions are not identical, we hypothesize
that these mechanisms can be encapsulated using intervention-
specific monitory biomarkers. The change in these biomarkers
can then be used to monitor the evolution of neuronal recovery
providing a finer scale to monitor patients’ progress. To test
these hypotheses, this study investigates between-intervention
differences in prognostic and monitory biomarkers of post-
stroke recovery. For this purpose, we study the data of chronic
stroke patients undergoing upper extremity (UE) motor reha-
bilitation using a brain-computer interface controlled robotic
paradigm (BCI group) and transcranial direct current stimula-
tion (tDCS) coupled BCI paradigm (tDCS-BCI group).

Motor-imagery (MI) based BCI is a promising intervention
in the field of UE motor rehabilitation [29], and has been
reported to be extremely beneficial particularly to patients
with moderate to severe impairments, where active voluntary
movement is difficult [10], [30], [31]. MI-BCI controlled
robotic system, such as the one used in this study, conducts a
passive movement of the affected hand upon the detection of
MI performed by the patient, thereby bridging the gap between
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movement intention and execution. This time-locked feedback
sequence stimulates the neuronal processes associated with the
normal closed loop motor activity and promotes recovery of
the lesioned brain network based on the principles of the motor
learning and Hebbian plasticity [30], [32].

tDCS is another novel intervention proposed to facilitate
the recovery of motor functions after stroke [11], [33]. It
involves non-invasive stimulation of brain areas by application
of weak direct current using anode and cathode placed at the
specific location on the scalp [34]. tDCS has been shown to
modulate the cortical activations by changing the resting state
membrane potentials of the neurons, with anodal stimulation
resulting in enhanced activations and cathodal stimulation
exerting suppressive effect [33], [34]. In the field of motor
recovery, tDCS aims to target reduced ipsilesional primary
motor cortex (M1) activations and increased inter-hemispheric
inhibition, which are common effects of stroke [35]. Clinical
studies have shown that multi-session tDCS with anode placed
over ipsilesional M1 and/or cathode over contralesional M1
may promote the recovery of lost motor functions [11], [36].
Apart from the stand-alone effects, by taking advantage of
activated state of the brain following tDCS, studies suggest that
a combination of tDCS with other therapies could result in syn-
ergistic effects achieving better clinical gains [33]. Although,
few studies have investigated the clinical benefits of BCI
[10] and tDCS-BCI intervention [37] further understanding of
neuronal recovery following these interventions is necessary.
Hence, we investigate the exact neuronal mechanisms of motor
recovery elicited by these interventions in this study.

To quantify the neuronal changes induced by the tDCS-
BCI and BCI interventions, and to predict clinical gains, we
used quantitative electroencephalographic (Q-EEG) features.
Compared to other neuroimaging modalities, EEG is a low
cost and versatile technique which provides information about
electrodynamic activations of the brain with high temporal
resolution. EEG, commonly perceived in rhythmic form, is
highly sensitive to the changes in the Cerebral Blood Flow
(CBF) that occur in acute stage of the stroke [38]. Con-
sequently, many acute stroke studies have demonstrated the
usefulness of QEEG features. The features based on the power
spectrum analysis of resting state EEG have been found to
be particularly effective for monitoring of stroke progression
as well as for prediction of sub-acute motor status[39]–[43],
[43]–[46]. Specifically, the relative power in classical EEG
frequency bands [38], [40], [44], the ratio of power in slow v/s
fast frequency bands (Power Ratio Index: PRI) [43], [45], [46]
and delta to alpha power ratio (Delta Alpha Ratio: DAR) [43],
[45], [46] have been observed to be informative in acute stage.
In these studies, high relative power in slower frequencies
and consequently high values of PRI and DAR have been
normally associated with bad motor status and poor prognosis.
Furthermore, since, stroke most frequently results in inter-
hemispheric imbalance of activations, features quantifying this
inter-hemispheric brain asymmetry (Brain Symmetry Index:
BSI) namely revised BSI, and pairwise derived BSI (pdBSI)
have also shown the predictive and monitory capabilities in
motor rehabilitation [47]–[49]. Despite their effectiveness in
acute and sub-acute stages, very few chronic stroke rehabilita-

tion studies have evaluated the prognostic and monitory value
of these QEEG features [27], [50]–[53] and to the best of
the authors’ knowledge, no study other than our preliminary
analysis [54], [55] has explored the neuroplasticity following
BCI and tDCS-BCI intervention using QEEG.

To address this gap, this study investigates the prognostic
and monitory capability of resting state QEEG features for
the same intervention. Moreover, the MI task state activations
can be presumed to be more relevant especially in the field
of motor rehabilitation and hence they can provide unique
information absent in rest state [28]. Therefore, this study
also provides comparative insights about the efficacy of using
rest and task state QEEG for prediction and monitoring of
BCI and tDCS-BCI rehabilitation. Importantly, we investigate
the between-intervention differences in the prognostic and
monitory capabilities of QEEG features with an aim to identify
intervention-specific signature biomarkers.

II. METHODS AND MATERIALS

A. Ethics Statement

The experimental procedures involving human subjects de-
scribed in this study were approved by the Domain Specific
Review Board of the National Healthcare Group, Singapore
and were in accordance with the Code of Ethics of the World
Medical Association.

B. Patients

The clinical trial was designed as a participant and outcomes
assessor blinded (double blinded), Randomized Controlled
Trial (RCT) with parallel assignment and was conducted
from January 2011 to January 2014 at National University
Hospital, Singapore. The trial is registered with U.S. National
Institutes of Health and detailed protocol is available at clini-
caltrials.gov with Clinical Trial Registration Unique Identifier:
NCT01897025 (date of registration: July 8, 2013). The sample
size was determined by our preliminary results and other
studies that used similar endpoints. The study targeted patients
with moderate to severe unilateral UE motor impairments who
had fewer other therapeutic options available owing to their
greater difficulty in movement execution. The pre-intervention
degree of impairments was assessed with UE motor part
of Fugl-Meyer assessment (FMA) [56], and patients aged
between 21 to 70 who had their first ever-stroke unilateral at
least 9 months before enrolment with FMA score between 11
to 45 were considered for the study. 42 patients showed interest
in this RCT and were assessed with the inclusion criteria
and BCI performance criteria [37]. 16 patients were excluded
because they did not meet the criteria and another 7 declined to
participate. The remaining 19 eligible patients provided written
informed consent and participated in the intervention.

C. tDCS-BCI and BCI intervention

The recruited 19 patients were randomly assigned to the
tDCS-BCI (n=10) or BCI (n=9) interventions All the recruited
patients received BCI rehabilitation for two weeks, which
consisted of ten sessions lasting one hour each. The BCI



1534-4320 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2019.2924742, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

3

Fig. 1. Rehabilitation system, and protocol. a. Setup of Brain Computer
Interface (BCI) system for upper extremity rehabilitation. In a trial based
setting patients were instructed to perform imagination of moving their
affected arm. This motor imagery (MI) was detected in real-time by a patient
specific Filter Bank Common Special Patterns (FBCSP) [57] algorithm using
the EEG data. The robot performed passive movement of the strapped hand
upon the successful detection of MI and this was accompanied with the visual
Feedback. b. The timeline of BCI rehabilitation trial. Every run started with
preparation cue. The MI cue was presented 2s after the preparation cue and
following MI cue patients performed MI for 4s. The EEG data collected during
0.5 to 4.5 seconds form the MI cue was processed online to detect MI. In
this offline study, the 0s to 2s pre-cue resting state data and 2s to 6s MI task
state data have been analysed.

rehabilitation involved BCI triggered robotic movement of the
paretic hand upon the detection of motor imagery (MI). In a
trial-based setting, patients performed MI of the reaching task
with the paretic hand; which was identified online using EEG
and successful detection of MI was rewarded by immediate
passive movement of the paretic hand using the Inmotion MIT-
Manus robot. Each rehabilitation session involved four therapy
runs with 40 such trials in each run constituting, in total, 160
repetitions. The design of the trial is presented in Fig. 1 a,b.
Detailed description of BCI rehabilitation protocol is presented
in [37]. In addition to the BCI rehabilitation, the patients in
tDCS-BCI group received 20 minutes of 1 mA bi-hemispheric
tDCS (the anode over the ipsilesional M1 and the cathode
over the contralesional M1) before the start of every session.
The M1 positions for tDCS electrodes were approximately
determined as locations of the C3 and C4 electrodes in the
international 10-20 EEG montage. To ensure the randomized
blinding, the BCI group also received a similar but sham-tDCS
where the current was applied only for the first 30s.

D. Clinical evaluation

The UE motor part of FMA (range 0-66) was used to
assess the clinical recovery of the motor functions, and it was
conducted at three time points: 1. Pre-intervention (FMAT 0), 2.

Post-intervention: immediately after the intervention (FMAT 2),
and 3: Follow-up: at a two weeks follow-up after the in-
tervention (FMAT 4). The intervention gain ∆FMA(0,2) was
calculated as the difference between pre-intervention and post-
intervention FMA (FMAT 2 - FMAT 0). Also, ‘intervention
+ follow-up’ gain ∆FMA(0,4) was calculated as the differ-
ence between pre-intervention and follow-up FMA (FMAT 4 -
FMAT 0).

E. EEG data acquisition, preprocessing and feature extraction

During all the rehabilitation sessions, BCI system continu-
ously captured the brain activity using the Neuroscan Nuamps
EEG amplifier with 27 unipolar channels with a sampling
frequency of 250Hz [37]. With impedance kept below 5kΩ, the
electrodes were positioned according to the international 10/20
system and were referenced to the ear electrode. For the offline
analysis, as done in the previous study [55], the continuous
EEG data was cleaned for the line noise and zero-phase FIR
filtering with hamming window function was performed to
bandpass filter the data between 0.5 - 45Hz. The first six
seconds of single trial data was extracted from this filtered
data and an expert user discarded noisy trials and channels
(along with their homologous channels) with the help of PREP
[58] and FASTER [59] toolbox. Following this, the common
average referencing was performed and eye blink and muscle-
related artefacts were removed using Independent Component
Analysis (ICA). Expert user removed artefactual components
with the help of SASICA [60] toolbox. Finally, from this clean
data, a 2s pre-cue resting state EEG and 4s post-cue task
state MI data were separately extracted from each trial for
the analysis.

From the above data, the single trial Power Spectral Density
(PSD) was computed using Welch’s periodogram for every
channel. This single trial PSD was averaged over all the trials
and was summed across 1.0-4.0 Hz, 4.0-7.5 Hz, 7.5-12.5 Hz,
and 12.5-30.0 Hz bands to obtain absolute band power in
delta (δ ), theta (θ ), alpha (α), and beta (β ) power bands
respectively. Moreover, the relative band power was calculated
by dividing the absolute band power in each band with the total
power in 1-30Hz. This relative power at each channel was
then averaged over the scalp to obtain global relative power
features: rδ , rθ , rα , and rβ . The absolute band power at
all the channels was also averaged over the scalp to obtain a
global absolute band power in δ , θ , α , and β power bands
and it was used to calculate the five global power ratio based
features:

Power Ratio Index, PRI =
δ +θ

α +β
(1)

Delta Alpha Ratio, DAR =
δ

α
(2)

Theta Beta Ratio, TBR =
θ

β
(3)

Theta Alpha Ratio, TAR =
θ

α
(4)

Theta Beta Alpha Ratio, TBAR =
θ

α +β
(5)
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Finally, the trial averaged absolute PSD at all channels was
used to compute pairwise-derived Brain Symmetry Index
(pdBSI) [48] and revised Brain Symmetry Index (rBSI)[61].
Using the averaged activations over two hemispheres, rBSI
encapsulates the global inter-hemispheric asymmetry whereas
pdBSI is a more localized measure of asymmetry and quan-
tifies the activation imbalance between the homologous chan-
nels pairs (left v/s right). As done in the previous studies [27],
the rBSI and pdBSI between 1-25Hz were calculated as:

rBSI =
1
N

N

∑
i=1
|Ri−Li

Ri +Li
| , Ri =

1
M

M

∑
j=1

ri j (6)

pdBSI =
1

MN

M

∑
j=1

N

∑
i=1
|
ri j− li j

ri j + li j
| (7)

Here, ri j and li j represent the trial averaged PSD from
right and left homologous channel pairs (at channel pairs
j= 1,2,...,M) at frequency i= 1,2,...,N. Ri and Li (similarly
calculated) are the average power over all the channels on the
right and left hemispheres at frequency i.

Considering these two brain symmetry features and nine
band power features, in total eleven QEEG features were
extracted for each subject from the first (pre-intervention:
EEGT 0) and the last (post-intervention: EEGT 2) rehabilitation
session from both the rest and task state EEG data.

F. Group-level correlation analysis and statistical tests

The usefulness of above-mentioned EEG features as re-
habilitation biomarkers was investigated by examining their
correlation with the FMA scores. Owing to the non-normal
distribution of the data, a non-parametric statistical analysis
was performed, and hence the relationship between EEG
features and the clinical outcome was assessed using Spear-
man’s rank correlation. The correlation was computed for the
following combination of times points.
• Prognostication: Pre-intervention values of biomarkers

(EEGT 0) vs. two- and four-week change in the FMA
score (EEGT 0 vs. ∆FMA(0,2), EEGT 0 vs. ∆FMA(0,4)).
These correlations indicate whether the EEG-features can
predict the functional outcomes and aid in intervention
prognosis.

• Monitoring: FMA score vs. values of biomarkers at pre
and post-intervention time points (EEGT 0 vs. FMAT 0,
EEGT 2 vs. FMAT 2), as well as intervention-induced
change in biomarkers vs. change in FMA (∆EEG(0,2)
vs. ∆FMA(0,2)). These regressions represent the utility
of biomarkers for evaluation of recovery and may aid in
monitoring the patients’ progress.

The small sample size of the study and performing mul-
tiple correlations simultaneously increases the likelihood of
overestimation of statistical significance and chance of false
discoveries. Hence, for the proper estimation of statistical
significance of correlations, as done in the previous studies
[28], the method of non-parametric permutation testing was
employed [62]. Permutation testing involves repeated shuffling
of labels across subjects and recalculation of correlation coeffi-
cient (ρ) for each arrangement. Random shuffling destroys any

relation between two variables, and hence these calculated ρ

values represent a distribution of the null hypothesis that there
is no relationship between the two variables. The distribution
can be approximated to the normal distribution and using it the
statistical significance of the original observed correlation is
calculated by two-tailed z-test, testing the hypothesis that the
observed ρ lies at extreme tails of this distribution [62]. In
our analysis, clinical parameters in the correlation (FMAT 0/
FMAT 2/ ∆FMA(0,2)/ ∆FMA(0,4)) were randomly shuffled
5000 times to obtain null distribution. This procedure provides
a robust estimation of statistical significance reducing the
Type-I errors, at the same time preserves the power of the
study limiting Type-II errors. Finally, assuming Spearman’s
rank correlation coefficient of 0.6, the sample size of the study
was just enough (n≥9) to achieve a statistical power of 80%
with a significance level of α = 0.05.

To investigate the possibility of intervention-specific
biomarkers, the inter-intervention difference in the strength of
relation between any EEG biomarker and FMA feature was
examined by statistical comparison of their correlation coeffi-
cients (CC) using Fisher Z-transformation [63]. This method
allows statistical testing of whether a particular EEG feature
has a rather strong relationship with the clinical features in
one particular group and no/weak relationship with the other
group, making that feature an intervention-specific biomarker
of recovery. In addition, we analysed the differences in the
relationship of pre-intervention EEG features with two vs. four
week clinical gains using Dunn’s z-test [64]. This analysis
was performed to understand the effect of prediction duration
on the prognostic capabilities of EEG features. Moreover, to
encapsulate the mechanism of recovery, the change in EEG
features during the intervention was assessed using Wilcoxon
signed-rank test. Finally, the inter-intervention differences in
the features were tested using Wilcoxon rank sum test.

III. RESULTS

A. Clinical outcomes
The demographic and clinical details of the patients are

listed in Table I. No significant difference was observed
between tDCS-BCI and BCI group in terms of age (p =
0.508), post-stroke time (p = 0.720), and baseline FMA (p
= 0.6475). Both the groups showed improvements in the
FMA scores immediately after the training (tDCS group:
0.9±3, BCI group: 2.8±4) as well as at follow-up assessment
(tDCS group: 5±4.4, BCI group: 5.4±5.7). However, only the
improvement till the follow-up assessment was statistically
significant (tDCS-BCI group: p = 0.006, BCI group: p =
0.021). Importantly, no significant inter-intervention difference
was observed in the clinical improvements at any time-point
(T2: p = 0.250, T4: p = 0.793). Furthermore, both in the
tDCS-BCI and BCI group, the 2 and 4 week clinical im-
provements did not display any significant correlation with the
pre-intervention FMA, age, and post-stroke time (all p>0.4).
Therefore, demographic variables did not present any prog-
nostic value. Finally, the correlation between ∆FMA(0,2) and
∆FMA(0,4) was significant in BCI group (p = 0.018) but was
not significant in tDCS-BCI group (p = 0.059) indicating better
sustenance of recovery in the BCI group.
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TABLE I
CLINICAL AND DEMOGRAPHIC DETAILS OF THE PATIENTS. (MEAN ± STD)

Patient Sex Age Lesion
side Type Nature Post stroke time

(months)
FMA Score

FMAT0 FMAT2 FMAT4

tDCS-BCI group
P1 M 29 R I SC 45.2 51 50 51
P2 M 54 L I SC 23.3 29 34 42
P3 F 38 R H SC 24.3 38 41 42
P4 F 60 R H SC 50.1 26 22 31
P5 F 48 L H SC 49.1 39 42 46
P6 M 59 L I SC 16.0 31 28 31
P7 M 65 L I SC 29.5 41 45 48
P8 F 57 L H SC 12.9 40 40 44
P9 M 47 R I C 11.0 30 31 40

P10 M 64 R I SC 89.6 28 29 28

6M/4F 52.1±11.6 5R/5L 4H/6I 1C/9SC 35.1±24.1 35.3±7.8 36.2±8.8 40.3±7.8
BCI group

P12 M 51 R I SC 41.9 33 42 45
P13 M 39 L I SC 22.7 36 42 39
P14 M 59 R H SC 51.8 41 46 57
P15 F 70 R I SC 19.6 23 25 26
P16 M 59 R I SC 51.8 29 24 28
P17 M 58 L I SC 30.7 28 32 37
P18 M 47 L I SC 10.4 40 40 40
P19 M 58 R H SC 27.0 20 22 24
P20 M 66 R I SC 50.6 43 45 46

8M/1F 56.3±9.5 6L/3L 2H/7I 9SC 34±15.5 32.6±8.1 35.3±9.6 38±10.7

B. BCI training parameters

The subject-specific FBCSP model used for the BCI train-
ing may have a potential influence on patients’ clinical and
neurological evolution. Therefore, inter-group differences in
spectral and spatial features selected by the FBCSP algorithm
were investigated. Spectral analysis indicated that there was no
significant difference in the selected filter bands between the
two groups (Fisher’s exact test, p = 0.523). Moreover, quali-
tative analysis of selected CSP filters displayed no between-
group difference in the spatial features. MI detection accuracy
during rehabilitation runs was also not different between the
two groups (tDCS-BCI = 83.7%, BCI = 86.3%, p = 0.523).

C. Prognostication

Many pre-intervention rest and task state QEEG features
presented significant prognostic capabilities and Table II
presents these results. In the tDCS-BCI group, the two weeks
FMA gains (∆FMA(0,2)) showed significant negative corre-
lation with relative delta power (rδT 0, p = 0.028), PRI (PRIT 0,
p = 0.004), and TAR (TART 0, p = 0.049) in the resting state.
The task state relative delta power (rδT 0, p = 0.063) as well
as TAR (TART 0, p = 0.077) also displayed similar correlations
but only the negative correlation of ∆FMA(0,2) with task state
PRI (PRIT 0, p = 0.001) was significant. In a similar manner,
significant negative correlation was found between four weeks
FMA gains (∆FMA(0,4)) and relative delta power (rδT 0, prest
= 0.007, ptask = 0.011), PRI (PRIT 0 prest = 0.038, ptask =
0.039), and DAR (DART 0, prest = 0.036, ptask = 0.035) in both
resting and task state data. These relationships are illustrated
in Fig. 2. Importantly, the strength of relationship between
many QEEG features and ∆FMA(0,2) vs ∆FMA(0,4) was
very different and Dunn’s z-test revealed that this difference

was statistically significant for resting state PRIT 0 (p = 0.019).
Finally, both resting and task state EEG features demonstrated
very similar correlations with functional improvements in the
tDCS-BCI group.

In the BCI group, the pdBSI (pdBSIT 0, p = 0.024) and rBSI
(rBSIT 0, p = 0.028) calculated from the resting state EEG were
significantly correlated with the two weeks FMA gains. The
same two features were also correlated with the four weeks
motor gains (pdBSIT 0, p = 0.022; rBSIT 0, p = 0.024). On
the other hand, in the task state features, only the significant
correlation was only observed between the ∆FMA(0,4) and
pdBSI (pdBSIT 0, p = 0.025). These significant relationships
are illustrated in Fig. 2. Noticeably, no significant correlation
was observed between intervention gains and any EEG power
ratio features in the BCI group.

From Table II, it can be noted that the EEG features showing
prognostic capabilities in tDCS-BCI and BCI groups are dif-
ferent. The outcomes of tDCS-BCI rehabilitation are strongly
correlated with power ratio features whereas brain asymmetry
features display strong relation with the clinical gains in
the BCI rehabilitation. Statistical comparison confirmed these
evident differences and it was observed that inter-intervention
differences in the predictive capabilities of resting state PRIT 0
(p = 0.014), rδT 0 (p = 0.016), pdBSIT 0 (p = 0.047), and
rBSIT 0 (p = 0.006) features are statistically significant. This
comparison supports the observation that resting state PRIT 0,
rδT 0 are significantly better predictors of recovery following
the tDCS-BCI intervention whereas resting state pdBSIT 0,
rBSIT 0 have stronger relationship with the intervention gains
following the BCI intervention. The differences in task state
features did not reach statistical significance. Also, in both
the groups, the difference in the prognostic capabilities of any
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TABLE II
CORRELATION ANALYSIS: PRE-INTERVENTION EEG FEATURES (EEGT 0) AND CLINICAL IMPROVEMENT (∆FMA(0,2), ∆FMA(0,4))

EEG
Features

tDCS-BCI BCI

∆FMA(0,2) ∆FMA(0,4) ∆FMA(0,2) ∆FMA(0,4)

Rest Task Rest Task Rest Task Rest Task

rδT 0 *-0.74 -0.62 **-0.90 **-0.84 -0.22 0.12 -0.25 -0.08
rθT 0 -0.11 -0.32 0.49 0.29 -0.22 -0.49 -0.02 -0.25
rαT 0 0.42 0.42 0.49 0.63 0.27 -0.05 0.37 0.20
rβT 0 0.42 0.49 0.06 0.13 0.68 0.42 0.46 0.10
PRIT 0 **-0.96 **-0.86 *-0.70 *-0.70 -0.59 -0.24 -0.47 -0.46
DART 0 -0.54 -0.43 *-0.70 *-0.71 -0.22 0.15 -0.41 -0.24
T BRT 0 -0.51 -0.55 0.02 0.03 -0.46 -0.46 -0.2 -0.20
TART 0 *-0.66 -0.59 -0.39 -0.41 -0.44 -0.24 -0.36 -0.29
T BART 0 -0.58 -0.60 -0.10 -0.04 -0.51 -0.51 -0.25 -0.25

pdBSIT 0 -0.35 0.03 -0.20 0.03 *-0.80 -0.56 *-0.81 *-0.80
rBSIT 0 0.07 0.24 0.30 0.49 *-0.76 -0.39 *-0.80 -0.64

correlation coefficients, * implies p < 0.05 and ** implies p <0.01

Fig. 2. Statistically significant relationships for the prediction of intervention gains. Significant correlation between pre-intervention EEG features and two-
week FMA gains for the tDCS-BCI group are presented in panels (a)-(c), whereas panels (d)-(e) represent the same relationship for the BCI group. Similarly,
significant association between four-week FMA gains and pre-intervention EEG features is displayed in panels (f)-(h) for the tDCS-BCI group and panels
(i)-(j) for the BCI group.

QEEG features during rest and task state was not significant.

D. Monitoring

To assess the ability of EEG features in characterization
of intervention-induced gains and for monitoring of recovery
evolution, a three-fold analysis was performed. First, the
association between pre-intervention motor status and pre-
intervention EEG features was investigated. Next, the rela-
tionship between the intervention-induced changes in the EEG
features and motor improvements was explored. Finally, the
correlation between post-intervention EEG features and post-
intervention motor status was studied. The entire analysis
was performed on the FMAT 0, and FMAT 2 features and the
FMAT 4 was not considered due to unavailability of week-4
EEG data.

1) Correlation between pre-intervention EEG features and
pre-intervention FMA: Initially, a separate group analysis

of the correlation between pre-intervention EEG features
(EEGT 0) and FMAT 0 was performed and it resulted in signif-
icant negative correlation of FMAT 0 with rest and task state
TBR (T BRT 0, prest = 0.033, ptask = 0.034) and significant
positive correlation with task state relative beta power (rβT 0,
p = 0.033), for the BCI group. In the tDCS-BCI group, only
task state features, specifically, relative theta power (rθT 0, p =
0.040), TBR (T BRT 0, p = 0.042), and TBAR (T BART 0, p =
0.019) displayed significant correlations with the FMAT 0. The
inter-intervention comparison of correlation coefficients was
performed to investigate the possibility of inter-intervention
difference in the monitory capabilities of any EEGT 0 features.
No such statistically significant differences in the correlation
as well as in the values of EEG features were observed (all
p>0.17) and hence, a combined group analysis (all subjects)
was performed. This correlation analysis considering all the
patients revealed significant relationship of FMAT 0 with task
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TABLE III
CORRELATION BETWEEN PRE-INTERVENTION EEG FEATURES (EEGT 0)

AND PRE-INTERVENTION FMA SCORES (FMAT 0).

EEG
Features

tDCS-BCI BCI All

Rest Task Rest Task Rest Task

rδT 0 -0.16 -0.10 0.13 -0.02 0.07 -0.13
rθT 0 -0.59 *-0.68 -0.68 -0.57 **-0.61 *-0.59
rαT 0 0.24 0.03 -0.25 -0.18 -0.02 0.01
rβT 0 0.22 0.60 0.55 *0.77 0.34 **0.64
PRIT 0 -0.21 -0.15 -0.40 -0.55 -0.18 -0.36
DART 0 -0.04 -0.03 0.12 0.05 0.06 -0.12
T BRT 0 -0.27 *-0.68 *-0.75 *-0.75 *-0.48 **-0.70
TART 0 -0.39 -0.39 -0.50 -0.53 -0.33 -0.38
T BART 0 -0.56 *-0.78 -0.60 -0.60 *-0.50 **-0.64

pdBSIT 0 -0.20 0.39 -0.45 -0.33 -0.38 -0.04
rBSIT 0 -0.50 -0.19 -0.33 -0.20 *-0.46 -0.18

correlation coefficients, * implies p < 0.05 and ** implies p <0.01

and rest state relative theta power (rθT 0, prest = 0.008, ptask
= 0.012), TBR (T BRT 0, prest = 0.043, ptask = 0.003), TBAR
(T BART 0, prest = 0.033, ptask = 0.006), rest state rBSI (rBSIT 0,
p = 0.046), and task state relative beta power (rβT 0, p = 0.007).
The complete list of correlation coefficient values is presented
in Table III.

2) Post-intervention change in the EEG features and their
correlation with the functional improvement: The statistical
analysis of pre and post-intervention EEG feature values re-
vealed that there was a significant intervention-induced change
in the relative theta band power (p=0.039) in the BCI group
during rest state. Also, although not significant, BCI group
displayed a marginal change in resting state TAR (p = 0.054)
and TBAR (p = 0.074). No significant intervention-induced
change was observed in task state EEG features in the BCI
group. In the tDCS-BCI group, resting state pdBSI (p=0.019)
and task state rBSI (p = 0.037) changed significantly during the
intervention. Although the EEG features displaying significant
changes in the tDCS and BCI group were mutually exclusive,
no statistically significant between-intervention difference in
change of EEG features was observed.

Following the identification of the EEG variables that
changed significantly, we investigated if this change correlated
with clinical improvements. The correlation analysis between
∆EEG and ∆FMA(0,2) revealed that there was a significant
negative correlation between ∆FMA(0,2) and resting state
∆rθ (p = 0.032), ∆TAR (p = 0.048), and ∆T BAR (p =
0.049) in the BCI group. Coherent with the resting state
features, the task state ∆rθ (p = 0.086), and ∆T BAR (p =
0.102) also demonstrated relationship with ∆FMA(0,2) in
the BCI group but only correlation with ∆TAR (p = 0.038)
was statistically significant. Despite the significant change,
resting state ∆pdBSI and task state ∆rBSI did not show
any significant correlation with ∆FMA(0,2) in the tDCS-BCI
group. Moreover, right-tailed Fisher z-test revealed that the
correlation between ∆FMA(0,2) and resting state ∆rθ , ∆TAR,
and ∆T BAR was marginally stronger in the BCI group than
the tDCS-BCI group (p = 0.064, 0.076, 0.079). In the analysis
of task state features, this trend was only observed for ∆rθ

(p = 0.076). Table.IV (A) reports the correlation between

all the ∆EEG features and ∆FMA(0,2). Also, the significant
correlations are presented in figure 3.

TABLE IV
CORRELATION BETWEEN CLINICAL IMPROVEMENT (∆FMA(0,2)) AND

INTERVENTION INDUCED CHANGE IN THE EEG FEATURES (∆EEG)

EEG
Features

tDCS BCI

Rest Task Rest Task

∆rδ 0.01 0.09 -0.02 0.15
∆rθ -0.16 0.09 *-0.76 -0.61
∆rα 0.24 0.37 0.37 0.46
∆rβ -0.64 -0.54 0.12 0.19
∆PRI 0.12 0.10 0.08 -0.17
∆DAR 0.13 0.10 0.05 0.14
∆T BR 0.05 0.19 -0.59 -0.54
∆TAR -0.07 -0.31 *-0.70 *-0.73
∆T BAR -0.06 -0.10 *-0.70 -0.58

∆pdBSI 0.27 0.25 -0.63 -0.66
∆rBSI -0.34 0.02 -0.54 -0.56

correlation coefficients, * implies p < 0.05 and ** implies p <0.01

TABLE V
CORRELATION BETWEEN POST-INTERVENTION FMA SCORE (FMAT 2)

AND POST-INTERVENTION EEG FEATURES (EEGT 2).

EEG
Features

tDCS BCI

Rest Task Rest Task

rδT 2 -0.22 -0.38 -0.25 -0.37
rθT 2 -0.26 -0.33 -0.61 -0.64
rαT 2 0.31 0.43 0.21 0.23
rβT 2 0.04 0.43 *0.82 **0.94
PRIT 2 -0.44 *-0.67 -0.55 -0.44
DART 2 -0.16 -0.35 -0.25 -0.16
T BRT 2 0.07 -0.41 *-0.76 *-0.83
TART 2 -0.52 -0.65 *-0.71 *-0.71
T BART 2 -0.39 -0.53 -0.66 *-0.69

pdBSIT 2 -0.05 0.09 -0.51 -0.55
rBSIT 2 -0.27 -0.01 -0.59 -0.54

correlation coefficients, * implies p < 0.05 and ** implies p <0.01

Fig. 3. Statistically significant relationships for monitoring the evolution of
intervention gains. All the panels represent the significant association observed
between two-week intervention gains and intervention-induced changes in the
EEG features in BCI group. No significant relationships where observed in
the tDCS-BCI group.

3) Correlation between post-intervention EEG features and
post-intervention FMA: The analysis of relation between
post-intervention clinical score (FMAT 2) and post-intervention
EEG features (EEGT 2) revealed that, in the BCI group,
FMAT 2 has statistically significant negative correlation with
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both task and resting state T BRT 2 (prest = 0.030, ptask = 0.018),
and TART 2 (prest = 0.041, ptask = 0.046) and a marginal
negative trend with rθT 2 (prest = 0.078, ptask = 0.072), and
T BART 2 (prest = 0.061, ptask = 0.048). Also, a strong positive
correlation was observed between rβT 2 and FMAT 2 (prest =
0.020, ptask = 0.008) in the BCI group. In tDCS-BCI group
only task state PRIT 2 was significantly correlated with EEGT 2
(p = 0.038). Complete correlation results are presented in
Table.V.

IV. DISCUSSION

Previous studies have demonstrated the utility of QEEG
features for post-stroke clinical prognosis and monitoring
in acute/sub-acute stages [65]. This study demonstrated that
QEEG features are informative in the chronic stage as well,
pointing their potential use as rehabilitation biomarkers. In the
BCI group, significant intervention-induced changes in resting
state relative theta power, and marginally significant change
in TAR, and TBAR were observed and these changes were
negatively correlated with clinical gains. The task state features
also resulted in similar negative correlations. These negative
correlations signify that improvement in motor functions is
associated with the reduction in power of low-frequency
oscillations, which is in accordance with the previous literature
[27], [65]. All these features have major involvement of theta
band power and in acute stroke; theta band has been asso-
ciated with the ischemic penumbra, a region with intact but
deactivated neurons[45]. Moreover, pre and post- intervention
FMA scores displayed positive correlation with the task state
beta power in the BCI group and it indicates that presence
of higher power in high frequency oscillations is associative
of better motor status which is also reported in the stroke
literature [27]. Hence, motor recovery in the BCI group can
be inferred to be facilitated by training-induced reactivation
of dysfunctional neuronal population. This inference is also
supported by a recent report of CBF analysis performed on
a subset cohort [24]. The restoration of CBF by perfusion
of ischemic penumbra is associated with the reactivation of
neuronal tissues, and a widespread change in CBF and its
positive correlation with FMA change has been reported for
the subset group, representing coherent conclusions from both
EEG and CBF analysis [24]. Very different from the BCI
group, significant changes in the resting and task state inter-
hemispheric brain asymmetry were characteristic of tDCS-
BCI intervention. This indicates that tDCS indeed resulted in
modification of hemispheric activations. Although, the obser-
vations are in accordance with the significant change in inter-
hemispheric CBF asymmetry observed in the tDCS-BCI group
alone[24], the changes were not correlated with the observed
motor gains. Therefore, it is difficult to establish any direct
relationship between brain asymmetry and functional motor
gains, and more investigation is necessary to understand the
exact mechanism of recovery following tDCS-BCI interven-
tion.

Notably, both the tDCS-BCI and BCI groups resulted in
similar clinical gains and despite the absence of any inter-
group differences in pre-treatment conditions and BCI training

parameters, the QEEG features which changed significantly
during these interventions were mutually exclusive. This in-
dicates that similar clinical recovery may be achieved by
different interventions through distinct mechanisms of neu-
ronal repair. This justifies the rationale behind intervention-
specific monitory biomarkers and their presence was validated
in this study. Also, in the BCI group, the pre and post-
intervention TBR showed significant correlation with the pre
and post-intervention motor status, respectively. The post-
intervention correlation was found to be specific to the BCI
group, which indicates that TBR changed only following the
BCI intervention and the final value of TBR was related to
the final motor status. Biomarkers of this type can be used
to assess patients’ progress on a neurological scale when they
are undergoing an intervention and can aid in recommending
the appropriateness of an intervention.

The unique mechanisms of recovery facilitated by rehabil-
itative intervention also suggest the presence of a distinct set
of intervention-specific prognostic biomarkers. In this study,
for the tDCS-BCI group, a strong negative correlation of
pre-intervention relative delta power, and PRI with two-week
motor gains was observed, which implies that the presence
of large value of slow oscillations is representative of poor
expected recovery. Furthermore, the prediction of four-week
gains in tDCS-BCI group also resulted in similar observations
with relative delta power, DAR and PRI displaying significant
negative correlations. These observations are consistent with
the previous literature, where a high value of relative delta
power, DAR and PRI has been associated with the poor
prognosis in acute/sub-acute stages [44], [45], [47], [50], [66]
and less intervention-induced motor recovery in the chronic
stage [27]. Since the presence of large delta oscillations
has been associated with severe ischemia and hypo-perfused
neuronal population in the acute stage [38], [40], [43], it can
be inferred that observed correlations may dictate the direct
relationship between the extent of affected neuronal population
and expected motor recovery. Distinct from the tDCS-BCI
group, the prognostic information in the BCI group was en-
tirely quantified using brain asymmetry features. A significant
negative correlation was observed between two, four weeks
clinical gains and pre-intervention pdBSI, rBSI; indicating that
symmetrical pre-intervention brain activation favours motor
recovery. This observation has been reported in the sub-acute
state [47], [66], and this study confirmed the same relationship
in the chronic stage as well. Importantly, a mutual exclu-
siveness in the significant prognostic features between two
interventions was observed and the difference in the strength
of prognostic correlation was statistically significant for resting
state PRI, relative delta power, pdBSI, and rBSI. These obser-
vations depict the existence of intervention-specific prognostic
biomarkers which distinctly predict the clinical gains from
a given intervention. These intervention-specific biomarkers
quantify the expected interaction between the intervention and
the patient thereby uniquely predicting the rehabilitation gains
following the given intervention. Following this approach, the
clinical gains from all available interventions can be predicted
and clinicians may then recommend the intervention with the
highest predicted gains to the patient, thereby achieving maxi-
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mum clinical recovery, better patient stratification and optimal
allocation of resources. Although a vast number of studies
have been conducted to investigate prognostic biomarkers of
intervention-induced post-stroke motor recovery [3], [8], [16],
[22], the lack of studies exploring same neurological features
as a predictor for different interventions and common practice
of reporting only positive results has made the task of iden-
tifying intervention-specific biomarkers difficult. Hence, more
investigation in this direction is necessary, and a systematic
review of prognostic biomarkers with a stratification based on
rehabilitative interventions may shed some light on this topic.

Next, for both the interventions, we observed a very similar
relationship of clinical features with both task and rest state
QEEG features. There was no statistically significant differ-
ence in the strength of prognostic and monitory correlations
between task and rest state data, which indicates that both
types of features provide coherent results. However, only
pdBSI and rBSI displayed considerable difference in the
relationship of clinical features with task vs. rest state features.
This difference can be mainly attributed to contralateral activa-
tion patterns associated the hand MI during the task state [67].
In our investigation, only resting state EEG features qualified
as intervention-specific prognostic biomarkers on the statistical
grounds. Yet, taking into account the absence of significant
differences between task vs. rest state relationships, both task
and rest features should be considered equally informative and
further studies with higher sample size may provide some
conclusive remarks.

Finally, there are few limitations to this study. The main
limitation is the small sample size from the statistical view-
point which was restricted by the complexity and length of the
rehabilitation protocol but it is at par with the other studies in
this field [10]. Despite this, remarkably coherent results from
both task and resting state data are observed, and these results
are consistent with the neuroimaging findings reported on the
subset cohort [24], indicating the soundness of the results.
Still, a confirmatory study with higher sample size will be
useful for verification of results of this study. Also, the primary
motivation of this study was to demonstrate the possibility of
intervention-specific prognostic and monitory biomarkers, and
QEEG features were selected for this purpose because of their
simplicity in calculations and interpretations. As the selected
QEEG features lacked spatial resolution, further complemen-
tary EEG features, such as those derived from the signal
and source space connectivity analysis may provide more
comprehensive insights into the brain dynamics during motor
recovery. Moreover, correlation analysis when accompanied
with causal inferencing may provide more robust neurological
interpretations of the observed results. Nonetheless, alone the
capabilities of QEEG features to uniquely predict and monitor
the intervention induced recovery as reported in this paper, are
highly relevant in clinical decision making.

V. CONCLUSIONS

In this study, it was found that the QEEG features can
act as prognostic and monitory biomarkers in the chronic
state post-stroke motor recovery following tDCS-BCI and BCI

rehabilitation. Despite similar clinical recovery, the mechanism
of neuronal recovery facilitated by these interventions were
very different. The relative theta power was observed to
be the signature monitory biomarker for BCI intervention
whereas the tDCS group was characterized by a change in
brain symmetry index. Also, pre-intervention relative delta
power and power ratio index were the best predictors of
clinical gains following tDCS-BCI intervention, whereas, the
clinical gains following BCI intervention were best predicted
using brain symmetry index. Consequently, prognostic and
monitory biomarkers of motor recovery were observed to be
significantly different between the two groups suggesting the
possibility of intervention-specific biomarkers. This approach
can be pursued to uniquely predict the expected response of a
patient to an intervention and the intervention with the highest
predicted gains may then be recommended to the patient,
thereby enabling a highly personalised motor rehabilitation.
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