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Abstract— Objective: This single-arm multisite trial 
investigates the efficacy of the Neurostyle Brain Exercise 
Therapy Towards Enhanced Recovery (nBETTER) system, an 
Electroencephalogram (EEG)-based Motor Imagery Brain-
Computer Interface (MI-BCI) employing visual feedback, for 
upper-limb stroke rehabilitation, and the presence of EEG 
correlates of mental fatigue during BCI usage. Methods: Thirteen 
recruited stroke patients underwent thrice-weekly nBETTER 
therapy coupled with standard arm therapy over 6 weeks. Upper-
extremity Fugl-Meyer Motor Assessment (FMA) scores were 
measured at baseline (Week 0), post-intervention (Week 6) and 
follow-ups (Weeks 12 and 24). In total, 11/13 patients (mean age 
55.2 years old, mean post-stroke duration 333.7 days, mean 
baseline FMA 35.5) completed the study. Results: Significant 
FMA gains relative to baseline were observed at Weeks 6 and 24. 
Retrospectively comparing to the standard arm therapy (SAT) 
control group and BCI with haptic knob (BCI-HK) intervention 
group from a previous similar study, the SAT group had no 
significant gains whereas the BCI-HK group had significant 
gains at Weeks 6, 12 and 24.  EEG analysis revealed significant 
positive correlations between relative beta power and BCI 
performance in the frontal and central brain regions, suggesting 
that mental fatigue may contribute to poorer BCI performance. 
Conclusion: nBETTER, an EEG-based MI-BCI employing only 
visual feedback, helps stroke survivors sustain short-term FMA 
improvement. Analysis of EEG relative beta power indicates that 
mental fatigue may be present. Significance: This study adds 
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nBETTER to the growing literature of safe and effective stroke 
rehabilitation MI-BCI, and suggests an additional fatigue-
monitoring role in future such BCI. 
 

Index Terms—Brain Computer Interface, EEG, Fatigue, FMA, 
Motor Imagery, Stroke Rehabilitation 
 

I. INTRODUCTION 
TROKE is a major cause of mortality and neuro-disability 
[2]. It causes much economic and social burden, and is 

exacerbated by aging population, globalization and 
urbanization [3]. In Singapore, stroke is the 4th leading cause 
of death and among the top causes of hospitalization [4]. 
Nearly half of the stroke survivors remain permanently 
disabled and have a poorer quality of life. Current 
interventions for stroke survivors range from traditional 
physical therapy, neuropharmacology, robotic aided therapies, 
and virtual reality enabled therapies, to use of technology such 
as Brain-Computer Interface (BCI) [5]. Preliminary studies 
have shown that stroke patients are able to operate non-
invasive Electroencephalogram (EEG)-based Motor Imagery 
(MI) BCI as effectively as healthy subjects [6], [7], [8]. MI, 
the mental practice of movements, has been shown to activate 
similar cortical patterns as actual movements [9], [10] and is a 
potential facilitator of neuroplasticity [11], [12], [13]. MI-BCI 
may also be used for patients with severely compromised 
motor control or residual motor abilities [14], [15]. MI-BCI is 
not complete without a form of feedback for the user to 
regulate their brain activity; feedback can be visual or 
kinesthetic [16]. 

While many studies have employed MI-BCI with an 
orthosis attachment for kinesthetic feedback, few have studied 
the effect of MI-BCI with just visual feedback. Thus far, 
Prasad et al. [17] and Pichorri et al. [18] have shown positive 
results in this area. It is hence worthwhile to continue this 
research, in order to understand the effects of using BCI 
without the confounding effects of physical therapy from 
orthosis attachments [19]. 

Another caveat of using MI-BCI that has largely been 
unexplored in the stroke rehabilitation setting, is the mental 
fatigue that is induced due to performing mental tasks 
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repetitively [20]. Mental fatigue can be detected in EEG [21], 
but as far as we know, no study has investigated EEG for the 
presence of mental fatigue induced in stroke survivors during 
EEG-based MI-BCI therapy. An EEG-based MI-BCI system 
that detects or predicts mental fatigue objectively from EEG 
will be beneficial to stroke survivors, as the rehabilitation can 
then be personalized to their current state of mind for greater 
effectiveness. 

The objective of this study is two-fold; firstly, to investigate 
the efficacy of using the Neurostyle Brain Exercise Therapy 
Towards Enhanced Recovery (nBETTER) system together 
with standard occupational therapy for upper-limb 
rehabilitation of subacute and chronic hemiparetic stroke 
survivors. The nBETTER is a non-invasive EEG-based MI-
BCI employing visual feedback intervention. Efficacy is 
measured by the Fugl-Meyer Motor Assessment (FMA) score 
[22] as it is the primary outcome measure of this study and a 
reliable assessment of stroke patients’ upper extremity 
strength [23]. Also, a retrospective comparison will be done 
with an intervention and control group from Ang et al.’s study 
[1] which has similar protocol. Secondly, we aim to 
investigate the EEG correlates of mental fatigue present in this 
EEG-based MI-BCI stroke rehabilitation intervention and the 
impact on BCI performance. 

II. RELATED WORKS 

A. Clinical Trials on EEG-based MI-BCI Interventions for 
Upper-Limb Rehabilitation 

A number of randomized controlled trials (RCT) involving 
various EEG-based MI-BCI systems have been conducted in 
recent years (their details are tabulated in Supplementary 
Material Section I) [1], [24], [25], [26], [27], [18], [28], [29], 
[30]. These BCI systems are coupled with other interventions 
such as orthosis and stimulations. Few investigate the effect 
from the BCI component with just visual feedback. Prasad et 
al. first showed that for 5 chronic stroke patients, EEG-based 
BCI visual neurofeedback with physical practice was able to 
help improve functional outcome measures [17]. 
Subsequently, Pichiorri et al. showed that for 1 chronic and 13 
subacute stroke patients at post-intervention, BCI-supported 
MI training resulted in significantly better outcomes than 
performing MI without BCI support [18]. Both studies lacked 
follow-up assessment though it would be interesting to see if 
there were any differences in motor scores as time passed.  
Hence it is worthwhile to investigate the effects of MI-BCI 
with engaging visual feedback post-intervention and at follow-
ups. 

B. Gap in MI- BCI Stroke Rehabilitation 
A recent interest in BCI research but not in stroke 

rehabilitation is the detection of mental states. When healthy 
subjects use BCI, they seldom maintain the same mental state 
throughout. Fatigue, frustration and attention are a few of the 
mental states that were reported to be closely related to BCI 
performance [20]. BCI systems should therefore be 
psychologically adaptive in order to perform well even when 

the subjects’ mental states change [20]. In the case of stroke 
rehabilitation, it is all the more important to detect such mental 
states, as stroke survivors are less likely to be able to maintain 
the same mental state throughout the session. Specifically, 
fatigue is a mental state that cannot be ignored for stroke 
patients. An anecdotal example is in Frolov et al.’s study 
where inter-trial or inter-session intervals were increased due 
to the patient’s fatigue [30]. An EEG-based MI-BCI that 
adapts to fatigue as detected from the patient’s EEG can 
provide a better rehabilitation experience, by customizing 
break-times accordingly for example [30]. However, most BCI 
stroke rehabilitation studies do not investigate or report the 
effect of fatigue on their subjects. One study that did so used 
the visual analog scale (VAS) to assess fatigue in the patients 
subjectively and reported the trend that greater VAS fatigue 
scores seemed to correspond with larger BCI performance 
variability [17]. Another study reported that though patients 
experienced fatigue after 20-30 minutes of training, they 
attributed it to concentration of attention and took it positively 
instead of dropping out [30]. An earlier study made passing 
remarks that there might be a link between fatigue and a 
session’s cross-validation results based on the subjects’ 
subjective qualitative report of being fatigued [31]. 

C. EEG Correlates of Mental Fatigue 
Studies have found that there are EEG correlates of mental 

fatigue, as evidenced by their correlation with behavioral 
indicators of fatigue, such as Perclos (percentage of eyelid 
closure) in a mental task experiment [32], reaction time to 
driving simulation events [33] and driving error in a simulated 
driving experiment [34]. Increases in theta activity [33] and 
decreases in beta activity [35], [36], [37], [38] have been 
reported as indicators of the presence of fatigue but the 
changes in alpha activity are not consistently reported [21]. 
For instance, Zhao et al. found an increase in alpha rhythm 
[35] whereas Jap et al. reported that alpha activity decreased 
[36], though both studies involved a similar monotonous 
driving simulation to induce fatigue. Lal and Craig described 
instead an anteriorization of alpha activity; a decrease in alpha 
rhythm in the occipital and parietal regions accompanied by an 
increase in the frontal area [39]. The role of theta rhythm is 
also in question as it may reflect compensatory mechanisms 
that one undertakes when undergoing a fatiguing task [40]. 
Instead, it is generally agreed that beta activity is associated 
with the brain arousal level, and thus when fatigued, the 
arousal level is lowered as indicated by decreasing beta 
rhythms [35], [36], [37], [38]. 

III. MATERIALS AND METHODS 

A. Ethics Statement 
This study obtained ethics approval from the Institution’s 

Domain Specific Review Board, National Healthcare Group, 
Singapore. The trial is registered under NCT02765334 in 
ClinicalTrials.gov. Before study enrollment, participants gave 
their informed consent. 
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B. Subject Inclusion and Exclusion Criteria 
This study included subjects aged 21-80 years old with 

first-ever clinical stroke, either ischaemic or haemorrhagic, 
diagnosed on CT or MRI brain imaging, stroke duration of 3 
to 24 months, a FMA score of 10–50 for their affected upper 
limb, and the ability to pay attention and maintain supported 
sitting for 1.5 hours continuously. Subjects also had to be able 
to give their own consent and understand simple instructions. 
Finally, subjects were to achieve a BCI accuracy above the 
chance level of 57.5% in the screening MI-BCI experiment 
[1]. The chance level was calculated based on the inverse 
binomial cumulative distribution with a 95% confidence 
estimate [7]. The screening session is further described later in 
Section III.G. 

Subjects were excluded if they had recurrent clinical stroke, 
or other conditions that were likely to affect their participation 
in the experiment such as severe aphasia or inattention; 
unresolved sepsis; postural hypotension; end stage renal 
failure; a life expectancy of less than a year due to malignancy 
or neurodegenerative disorder; and a history of epilepsy, 
severe depression or active psychiatric disorder and 
hemispatial neglect, or visual impairment. Other exclusion 
criteria included contraindications to transcranial magnetic 
stimulation (TMS) such as pregnancy, orthodontics, cardiac 
pacemakers, metal implants, cranial surgery; repetitive arm 
training contraindications such as severe spasticity with 
modified Ashworth scale (MAS) [41] >2 in any region, pain 
with visual analog scale (VAS) [42] > 4/10, fixed joint 
contractures; and poor skin conditions. Subjects were also 
excluded if they had skull defects or prior cranial surgery 
affecting the fit of the EEG cap. 

C. Clinical Protocol 
This study’s clinical protocol is designed closely to that of 

Ang et al.’s study [1], as it is an extension of that work. Thus, 

similar to the BCI with haptic knob (BCI-HK) intervention 
group in Ang et al.’s study, there are 60 minutes of BCI 
intervention and 30 minutes of standard arm therapy per 
session. Furthermore, Ang et al.’s control group, called the 
standard arm therapy (SAT) group, which underwent 90 
minutes of standard arm therapy per session, is used as a 
historical control group for this single-arm study. 

In this study, subjects who fulfilled the clinical inclusion 
criteria, detailed in Section III.B, underwent the 40-minute 
MI-BCI screening session, and those who achieved a BCI 
accuracy above 57.5% were recruited into the study. They 
then completed a 40-minute MI-BCI calibration session that 
was identical to the screening session. This was followed by 6 
weeks of intervention. The intervention consisted of thrice-
weekly rehabilitation sessions supervised by an occupational 
therapist and bioengineer. Each of the 18 rehabilitation 
sessions consisted of a 60-minute nBETTER supervised and 
therapy session, and a 30-minute standard arm therapy session 
with appropriate rest breaks. The details of all these MI-BCI 
sessions are covered in Section III.G. No therapy is conducted 
after Week 6. 

As the FMA score is commonly used to measure clinical 
efficacy, it is measured at 4 time points: at baseline (Week 0), 
post-intervention (Week 6), and also at follow-up weeks 
(Week 12 and Week 24). There were secondary outcomes 
measured at the same time points as well: the total Action 
Research Arm Test (ARAT) score [43], Frenchay Arm Test of 
Function (FAT) score [44], and grip strength [45].  

D. Patient Enrollment 
The multisite clinical trial was conducted over ∼1.5 year 

period from February 2016 to September 2017, involving 
stroke survivors from Tan Tock Seng Hospital and National 
University Hospital. Fig. 1 shows a flow chart of the trial. In 
total, 13 stroke patients were recruited, 7 from Tan Tock Seng 
Hospital, and 6 from National University of Singapore. Out of 
the 13 recruited subjects, 2 dropped out and 11 completed the 
study. A subject dropped out due to social reasons prior to 
starting the study interventions, and the other dropped out due 
to a second stroke occurring 2 days after his 5th nBETTER 
training session (Fig. 1). This was deemed not to be directly 
related to the nBETTER MI-BCI training. Thus, a total of 11 
subjects underwent the calibration session and the nBETTER 
sessions. 

The demographics and baseline characteristics of the stroke 
survivors are tabulated in Table I, along with the BCI-HK and 
SAT groups in Ang et al.’s study [1], with the latter’s cohorts 
used for retrospective comparison. All groups underwent MI-
BCI screening. The nBETTER and BCI-HK group then 
performed MI-BCI calibration before undergoing 18 sessions 
of nBETTER and BCI-HK intervention respectively over 6 
weeks. The SAT group did not perform MI-BCI calibration 
but had 18 sessions of SAT intervention over 6 weeks. In each 
session, the BCI intervention groups used the BCI systems for 
an hour, followed by 30 minutes of arm therapy. On the other 
hand, the SAT group had 90 minutes of arm therapy in each 
session. These similarities and differences are reflected in 
Table 1 as well. 

 
 
Fig. 1. CONSORT diagram showing the flow of the study from enrollment to 
analysis. 
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Using one-way ANOVA, no significant intergroup 
differences in the demographics and baseline characteristics 
were found: age (F(2,21) = 0.16, p = 0.86), gender (F(2,21) = 0.11, 
p = 0.90), stroke type (F(2,21) = 1.45, p =0.26), paresis side 
(F(2,21) = 0.79, p = 0.47), stroke nature (F(2,21) = 0.51, p = 0.61), 
stroke period (F(2,21) = 1.26, p = 0.30), post-stroke duration 
(F(2,21) = 2.64, p = 0.10), FMA score (F(2,21) = 1.61, p = 0.22), 
ARAT score (F(2,21) = 2.09, p = 0.15), FAT score (F(2,21) = 
1.30, p = 0.29), and grip strength (F(2,21) = 0.19, p = 0.83). 

E. EEG Data Acquisition 
In this study, EEG data was collected using the Neurostyle 

acquisition hardware1 with 24 unipolar Ag/AgCl channels 
placed in the international 10-20 system positioning: F3, F4, 
FC3, FC4, C3, C4, CP3, CP4, P3, P4, FT7, FT8, T3, T4, TP7, 
TP8, Fz, Oz, FCz, Cz, CPz, Pz, A1 and A2. The EEG was 
digitally sampled at 256Hz with a resolution of 24 bits for 
voltage ranges of ±300mV. The impedance level was ensured 
to be below 5 kΩ before proceeding with the experiment. 

 
1 Neurostyle Ptd Ltd, http://neuro-style.com/ 

F. The nBETTER System 
The nBETTER system is a portable, internet-connected 

device that detects the imagination of movement of the stroke-
affected limb. It is an EEG-based MI-BCI that provides 
visually engaging feedback for exercising the brain towards 
better recovery after stroke. Fig. 2a shows a subject using the 
nBETTER application. A more detailed description and 
images are in the Supplementary Material Section II. 

G. MI-BCI Sessions 
For all MI-BCI sessions, for MI trials, subjects were 

instructed to perform upper-arm kinesthetic MI of their 
affected side; they were to “imagine to move” the stroke-
affected arm and hand forward to repeatedly reach for an 
imaginary target in front of them. They were also advised to 
keep still and minimize any body movements. If the Idle task 
was to be performed, the subjects were instructed to relax, 
keep still and stare straight at the computer screen.  

The MI brain signals were detected using the Filter Bank 
Common Spatial Pattern (FBCSP) algorithm, described in 
detail in [46]. In brief, it band passes the EEG signal into 
several frequency bands within 4 to 40 Hz. This removes eye 
artifacts which are maximal at frequencies below 4 Hz [47]. 
The common spatial pattern (CSP) algorithm is used to detect 
the event-related desynchronization/synchronization that 
occurs when MI is performed. Subsequently, m pairs of the 
computed CSP features for each frequency band are used in 
the next step. The best k CSP features with their corresponding 
pairs are then selected by mutual information methods to build 
a subject-specific model. As in [46], m = 2 and k = 4 are used. 
Finally, a fisher linear discriminant classifier is used to obtain 
the accuracy of model. The BCI accuracy is thus the 
classification accuracy output of the FBCSP in detecting MI. 

The various MI-BCI sessions and standard arm therapy 
sessions in the clinical protocol are detailed below: 

 
1) MI-BCI screening and calibration sessions 

The screening and calibration sessions are identical. 
Subjects performed MI and Idle tasks as cued by the screen. In 
each session, subjects completed a total of 4 runs, each 
consisting of 20 MI trials and 20 Idle trials. Each trial lasted 
about 12s (Fig. 2b). Accuracies of these sessions are obtained 
via a 10 by 10-fold cross validation. The purpose of the 
screening session was to ensure that the subject was able to 
perform kinesthetic MI that the system was able to detect. 
Thus, as per Ang et al.’s study [1], only those whose 
accuracies were above chance level of 57.5% were recruited. 
The calibration session was then used by the system to train a 
subject-specific model for subsequent sessions, to detect the 
subject performing MI. 

 
2) nBETTER supervised session 

In the nBETTER supervised session, subjects performed 
both the MI and Idle tasks but with the nBETTER interface 
which provided visually engaging feedback; as subjects 
successfully performed MI, a picture was slowly revealed. In 
this session, subjects completed 1 run consisting of 20 MI and 
20 Idle trials. Each trial lasted about 13s, including 1s of game 
play providing engaging visual feedback (Fig. 2c). The 

 
TABLE I 

DEMOGRAPHICS, BASELINE CHARACTERISTICS AND INTERVENTION OF 
PARTICIPANTS 

 nBETTER 
Group 

SAT Group 
[1] 

BCI-HK 
Group [1] 

N 11 7 6 
Age (years) 55.2 ± 11.0 58.0 ± 19.3 54.0 ± 8.9 
Gender, N (%)  
Male 6 (54.5%) 4 (57.1%) 4 (66.7%) 
Female 5 (45.5%) 3 (42.9%) 2 (33.3%) 
Stroke Type, N (%)  
Infarction 8 (72.7%) 5 (71.4%) 2 (33.3%) 
Hemorrhagic 3 (27.3%) 2 (28.6%) 4 (66.7%) 
Paresis Side, N (%)  
Right 8 (72.7%) 3 (42.9%) 4 (66.7%) 
Left 3 (27.3%) 4 (57.1%) 2 (33.3%) 
Stroke Nature, N (%)  
Cortical 3 (27.3%) 3 (42.9%) 1 (16.7%) 
Subcortical 8 (72.7%) 4 (57.1%) 5 (83.3%) 
Stroke Period, N (%) 
Subacute (1-6 
months post-stroke) 

2 (18.2%) 0 (0.0%) 0 (0.0%) 

Chronic (>6 months 
post-stroke) 

9 (81.8%) 7 (100.0%) 6 (100.0%) 

Post-stroke duration 
(days) 

333.7 ± 179.6 455.4 ± 109.6 285.7 ± 64.0 

Baseline Characteristics  (Week 0)  
FMA 35.5 ± 12.6 23.4 ± 14.0 30.7 ± 17.2 
ARAT 13.4 ± 17.7 6.6 ± 6.5 22.2 ± 21.1 
FAT 0.4 ± 0.9 0.6 ± 1.0 2.2 ± 2.1 
Grip strength 6.2 ± 2.6 6.6 ± 2.9 6.8 ± 1.6 
Pre-Intervention 
MI-BCI Screening √ √ √ 
MI-BCI Calibration √ - √ 
Intervention Session 
Session frequency 3 sessions per 6 consecutive weeks 
Classifier adaptation  √ - - 
60 minutes of 
intervention 

nBETTER: 
160 MI trials 
with visual 
feedback 

SAT: 
repetitive task 

training 

BCI-HK: 
120 MI trials 
with haptic 
feedback 

30 minutes of 
physical therapy Therapist-assisted arm mobilization 
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purpose of the supervised session was to tune the subject-
specific model built during the calibration session. Fig. 2d 
illustrates how the model is updated for each subject; after 
each supervised session, the model is retrained with all 
collected data from that supervised session as well as previous 
sessions. Further details and analysis of this adapted model 
can be found in Zhang et al.’s paper [48]. An analysis of the 
features selected each time the model is adapted is included in 
Section III of the Supplementary Material. 

 
3) nBETTER therapy session 

The nBETTER therapy session is similar to the nBETTER 
supervised session, except that subjects performed only the MI 
trials, and completed a total of 4 runs, each consisting of 40 
MI trials. The purpose of the nBETTER therapy session was 
to encourage neuroplasticity in the brain towards recovery of 
movement on the affected side. 

 
4) Standard arm therapy session 

The standard arm therapy session was modelled along 
neurodevelopmental techniques and included passive and 
active-assisted mobilization, abnormal tone management, 
functional reach and grasp-release training, and arm ergometer 
exercise. 

 

H. EEG Fatigue Correlates 
As mentioned in Section II.C, from the literature, beta 

activity decreases with fatigue [35], [36], [37], [38]. To 
understand how fatigue, if present, affected the BCI 
performance, 3-second pre-cue EEG relative beta power was 
correlated with the nBETTER supervised sessions’ accuracies.  

Before computing EEG beta activity, the raw EEG was pre-
processed to reduce muscle noise contamination in the EEG 
[49]. As Laplacian was not able to address muscle 
contamination at the circumferential electrodes adequately 
[50], other muscle artifact removal methods were used [51]. 
First, the EEG was processed channel-wise with Wang et al.’s 
fast ensemble empirical mode decomposition method [52] 
with noise level 0.4, 10 ensembles and 8 intrinsic mode 
functions, followed by canonical correlation analysis 
implemented with publicly available code [53] with default 
parameters (https://github.com/germangh/eeglab_plugin_aar). 
This is followed by a next-nearest neighbor Laplacian [50], 
[54] with the available channels. 

The beta activity was then computed as such:  A 3-second 
pre-cue EEG segment (see Fig. 2c) was extracted from each 
trial. The beta frequency (12-30Hz) band power was 
calculated for each trial and normalized by its total power in 4-
50Hz. The total power in 4-50Hz is chosen as it removes 

 

 
(a) A subject undergoing nBETTER intervention 

 
(d) Illustration of the subject-specific model update process, where the 

model is updated after every supervised session and used for the same day’s 
therapy session, and the subsequent supervised session. 

 

 
(b) A trial in the MI-BCI screening and calibration sessions. In each of these 

sessions, 4 runs, each consisting of 20 MI and 20 Idle trials, are performed. 

 

 
(c) A trial in the nBETTER supervised and therapy sessions. In each supervised 

session, 1 run of 20 MI and 20 Idle trials are performed. In each therapy 
session, 4 runs of 40 MI trials each are performed. 

 

Fig. 2. Subject using the nBETTER system, performing trials in the MI-BCI screening and calibration sessions, and in the nBETTER supervised and therapy 
sessions, with classifier updates after each nBETTER supervised session.  

https://github.com/germangh/eeglab_plugin_aar
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artifacts in the low and high frequency range. This relative 
beta power is thereafter expressed in decibels.  

Relative beta power was then averaged among the channels 
in each brain region [frontal (F3, Fz, F4), central (C3, Cz, C4), 
and parietal-occipital (P3, Pz, P4, Oz)]. To analyze the 
correlation between the relative beta power and BCI 
performance with consideration to each subject having 18 
supervised sessions, a repeated measures correlation [55] was 
computed for each brain region. 

I. Sample Size Statistical Analysis 
To estimate the sample size required for a statistical power 

of 80%, the mean and standard deviation gain in total FMA 
score from a previous study was used. Based on Ang et al.’s 
three-armed study SAT group, which had similar study 
inclusion criteria [1], the FMA score improved with a mean 
and standard deviation of 4.9 and 4.1 respectively. Using 
MATLAB® function sampsizepwr with a z-test and p-value of 
5%, the sample size required is calculated to be 6. 

J. Statistical Methods 
To test the normality of each group’s FMA scores, the 

Shapiro-Wilk test [56] is used. Öner and Deveci Kocakoç’s 
MATLAB® codes [57] were utilized. 

As all groups’ FMA scores tested normal, a two-way 
mixed-design ANOVA was conducted to analyze the effects 
due to intervention and over time. Intervention was the 
between-subject factor with 3 levels (nBETTER, SAT, BCI-
HK), and time was the within-subject repeated measure factor 
with 4 levels (Weeks 0, 6 , 12 and 24). Subsequently, we 
performed post-hoc analysis for the time effect, on each 
group’s FMA score at time-points of Weeks 6, 12 and 24 
against that at baseline (Week 0). As the FMA scores were 
normal and this was a within-group comparison, one-sample 
paired t-tests with Bonferroni correction for multiple 
comparisons were used for the post-hoc analysis. These 
statistical tests were carried out in MATLAB®.  

IV. RESULTS 

A. Clinical Efficacy  –  FMA Score Gain 
A retrospective comparison was done with the SAT and 

BCI-HK groups in Ang et al.’s three-arm study [1]. All 
groups’ FMA scores at all time points were tested to be 
normal. The mean and standard deviation of each group’s 
FMA score gains relative to Week 0 are tabulated in Table II 
and the boxplot is displayed in Fig. 3. From the boxplot in Fig. 
3, the nBETTER and BCI-HK groups are shown to have an 
increasing FMA improvement median over the time points 
while the SAT group’s decreases. The nBETTER and BCI-HK 
groups also had smaller variance in FMA score improvement 
compared to the SAT group. 

Using a two-way mixed-design ANOVA, we found no 
significant interaction effect (F(6,63) = 1.59, p = 0.17). There is 
also no significant intervention effect between groups (F(2,21) = 
1.89, p = 0.18). However, there is a significant main effect 
within groups (F(3,63) = 20.25, p = 2.64x10-9), i.e. over time. 
Thus, we performed separate post-hoc analysis within each 

group with one-sample paired t-tests for time points Weeks 6, 
12 and 24 compared to Week 0. We used Bonferroni 
correction for the multiple comparisons. Relative to Week 0, 
the nBETTER group demonstrated significant FMA score 
gains at Week 6 [(M = 4.4, SD = 3.6), t(10) = -4.07, p = 
0.0068)] and Week 24 [(M = 5.8, SD = 5.6), t(10) = -3.46, p = 
0.019] but not Week 12 [(M = 3.5, SD = 6.7), t(10) = -1.72, p = 
0.35]. Relative to Week 0, the SAT group did not achieve 
significant FMA score gains at Week 6 [(M = 4.9, SD = 4.1), 
t(6) = -3.10, p = 0.063], Week 12 [(M = 3.6, SD = 5.5), t(6) = -
1.71, p = 0.42] and Week 24 [(M = 3.6, SD = 5.9), t(6) = -1.60, 
p = 0.48]. The BCI-HK group attained significant FMA score 
gains at Week 6 [(M = 7.2, SD = 2.3), t(5) = -7.58, p = 0.0019], 
Week 12 [(M = 8.2, SD = 2.9), t(5) = -6.83, p = 0.0031] and 
Week 24 [(M = 9.7, SD = 2.9), t(5) = -6.83, p = 0.0014]. All t-
test p-values reported above are Bonferroni-corrected.  

Performing the same two-way mixed-design ANOVA 
analysis on the secondary outcomes measures yielded also no 
significant interaction effect (ARAT: F(6,63) = 0.88, p = 0.52, 
FAT: F(6,63) = 1.77, p = 0.12, grip strength: F(6,63) = 1.16, p = 
0.34) and no significant intervention effect between groups 
(ARAT: F(2,21) = 2.24, p = 0.13, FAT: F(2,21) = 1.74, p = 0.20, 
grip strength: F(2,21) = 0.18, p = 0.83). There is a significant 
main effect within groups, i.e. over time (ARAT: F(3,63) = 
18.57, p = 9.64x10-9, FAT: F(3,63) = 6.31, p = 8.18x10-4, grip 

 
Fig. 3. Boxplot showing the improvement in FMA scores at post-intervention 
(Week 6) and follow-ups (Week 12 and 24) for the nBETTER, SAT and 
BCI-HK groups.  

TABLE II 
IMPROVEMENT IN FMA SCORE 

Group 
Baseline 

FMA 
(Week 0) 

Improvement in FMA score 
relative to Week 0 

Week 6* Week 12* Week 24* 

nBETTER 35.5 ± 12.6 4.4 ± 3.6* 3.5 ± 6.7* 5.8 ± 5.6* 
SAT 23.4 ± 14.0 4.9 ± 4.1 3.6 ± 5.5* 3.6 ± 5.9* 
BCI-HK 33.0 ± 16.2 7.2 ± 2.3* 8.2 ± 2.9* 9.7 ± 2.9* 

*significant improvement, p<0.05 
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strength: F(3,63) = 4.60, p = 0.0056). However, upon conducting 
post-hoc tests with Bonferroni correction, most secondary 
outcomes for the groups did not yield significant results over 
time (as reported in Section IV of the Supplementary 
Material). 

B. EEG Fatigue Correlates  
Fig. 4 shows the repeated measures correlations between 

relative beta power and BCI performance accuracies of 18 
supervised sessions per subject. Significant positive 
correlations were found in the frontal and central, but not 
parietal-occipital, brain regions [Frontal (F3, Fz, F4), R = 
0.251, p < 0.01; Central (C3, Cz, C4), R = 0.181, p < 0.05; 
Parietal-Occipital (P3, Pz, P4, Oz), R = 0.033, p > 0.05]. 

V. DISCUSSION 

A. Clinical Efficacy of the nBETTER Intervention 
This single-arm multisite clinical study has investigated the 

clinical efficacy, in terms of FMA score improvement, of 
using nBETTER, an EEG-based MI-BCI system, for stroke 
rehabilitation. This clinical trial is performed similarly to a 
previous three-arm RCT where significant improvement in 
FMA scores were achieved using BCI with a haptic knob 
robotic feedback (BCI-HK) as compared to just using a haptic 
knob or undergoing only standard arm therapy [1]. Thus we 
aimed to investigate the efficacy of a BCI intervention with 
engaging visual feedback, and retrospectively compare it to a 
group which had no BCI intervention (the SAT group) and a 
group which had BCI intervention with orthosis attachment 
(the BCI-HK group). To our knowledge, there has been no 
study which investigated the effects of EEG-based MI-BCI 
with purely visual feedback with an 18-week follow-up period 
for chronic patients. While Prasad et al. [17] and Pichiorri et 
al. [18] did investigate the effects of EEG-based MI-BCI with 
visual feedback, the former study was with a small sample size 
of 5 chronic patients, the latter study was mainly with 
subacute patients, and both studies were without follow-up 
assessments. In our study, we have taken thus this 
investigation further by conducting it with a game for a more 
visually engaging interface, with chronic stroke survivors to 

see how MI-BCI could aid their rehabilitation, and with 
follow-up assessments to better understand the short-term 
effects of MI-BCI intervention.  

This preliminary explorative study showed that 18 sessions 
of therapist-supervised training over 6 weeks, using 60 
minutes of nBETTER followed by 30 minutes of conventional 
therapy, achieved significant short-term gains in terms of 
improved FMA scores. Retrospectively comparing with the 
SAT and BCI-HK groups in a previous similar RCT by Ang et 
al. in 2014 [1], no significant interaction between intervention 
and time was found. No significant intervention effects were 
found either, meaning that all groups performed comparably. 
The SAT group had no significant FMA score gains at all time 
points, whereas the nBETTER group had significant FMA 
score gain in Week 6 and it was sustained at Week 24 though 
not at Week 12. The lack of significant gains in Week 12 may 
be due to larger standard deviation of 6.7 amongst the subjects 
(see Table II), which may possibly have been caused by the 
lack of therapy after Week 6. By Week 24, subjects were 
possibly more stabilized and therefore had significant FMA 
gains.  

In Ang et al.’s BCI-HK group, there were significant FMA 
score improvement at Weeks 6, 12 and 24. The BCI-HK group 
had consistent and the greatest positive FMA score gains 
compared to the other two groups, and was the only group 
which reached the Minimal Clinically Important Difference 
(MCID) of 9-10 for subacute to chronic stroke [58] at Week 
24. Thus, the nBETTER group’s FMA scores had better 
sustainability than the SAT group, but lesser gains and 
consistency than the BCI-HK group. 

As this study was designed closely to that of Ang et al.’s 
[1], similar to its BCI-HK group, this nBETTER group was 
also paired with standard arm therapy. In addition, as both 
studies were designed generally for chronic stroke patients, 
information on subjects’ prior therapy regime was not 
collected. It might have been possible that prior therapy 
regimes or the standard arm therapy conducted in the BCI 
intervention groups (nBETTER and BCI-HK) influenced their 
FMA gains. However, the BCI intervention groups achieved 
superior and significant gains despite only having about 33% 

 

 
(a)  

(b) 
 

(c) 
Fig. 4.  Plot of repeated measures correlation of relative band power against BCI performance accuracy. Significant positive correlation of relative beta power with 
accuracy in frontal and central, but not parietal-occipital, brain regions were found. 
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of the SAT group’s conventional therapy duration. Thus, it is 
likely that the FMA gains are the result of the BCI 
interventions. 

The sustained FMA gains of the nBETTER group compared 
to the SAT group could imply brain priming through 
neuroplasticity driven processes occurring after mental 
imagery and visual feedback compared to limb practice. 
Varkuti et al., in a small study of 9 subjects undergoing BCI 
with kinesthetic feedback training followed by functional 
Magnetic Resonance Imaging (fMRI), suggested that there 
were changes in resting brain states [11]. Thus, this hypothesis 
on the brain priming effects of MI-BCI with visual feedback 
needs further validation by non-invasive brain imaging. 

It is also noted that the nBETTER group had similar 
intervention session duration as the BCI-HK group, but did 
not achieve greater FMA score gains. This is likely due to the 
lack of kinesthetic feedback in the nBETTER system 
compared to the BCI-HK system. This is in agreement with 
Ono et al.'s results that suggested kinesthetic feedback may be 
more effective than purely visual feedback [26], supporting 
our use of pairing nBETTER with arm therapy. 

We also report the EEG spatial filters of the nBETTER 
group in the Supplementary Material Section V. 

Overall, training on the nBETTER, an EEG-based MI-BCI 
with engaging visual feedback, with standard arm therapy, in 
stroke rehabilitation was effective and safe; there were no 
adverse events observed by research and medical personnel or 
self-reported by subjects. Further theoretical advantages of the 
nBETTER system include the possibility of treating stroke 
patients who may be excluded from robotic or intensive arm 
training protocols such as Constraint Induced Movement 
Therapy (CIMT) due to their lacking inherent minimal criteria 
in terms of postural or arm motor requirements and absence of 
significant pain and spasticity. Other advantages are that the 
nBETTER system is highly portable and accommodates a 
variety of supported postures.  

B. Mental Fatigue in EEG-based MI-BCI 
A major challenge in the use of EEG-based MI-BCI in 

stroke patients is the cognitive pre-requisite of sustained 
attention and potential fatigue induction during training, which 
may limit its suitability to the majority of stroke patients and 
reduce its efficacy. Thus in this study, we also aimed to 
investigate the presence of fatigue via an EEG correlate of 
fatigue, the relative beta power.  

We computed the repeated measures correlation between 
relative beta power and the classification accuracies across the 
18 supervised sessions for the frontal, central and parietal-
occipital brain regions. We found that relative beta power was 
significantly positively correlated to the BCI performance in 
terms of the BCI accuracy, at the frontal and central areas. 
From the literature, a lower beta activity may suggest lower 
brain arousal and the presence of fatigue [35], [36], [37], [38]. 
Thus, our result indicated that fatigue might be present and a 
cause of poorer BCI performance. This suggests a 
disadvantage of EEG-based MI-BCI systems in inducing 
fatigue due to the monotony of performing MI.  

In this study, a repeated measure correlation method was 
used in order to include within-subject effects. The analysis 
revealed, as shown in Fig. 4, that there was lower relative beta 
power in the frontal and central areas when subjects did not 
perform well in an nBETTER supervised session. However, 
while statistically significant, the correlation values are low. 
Furthermore, the parietal-occipital area does not show this 
correlation. Thus, it is not a strong indication of the presence 
of fatigue. This is a limitation of this study and thus, further 
investigation with larger number of subjects and trials per 
class per session is needed for more conclusive results. 
However, the preliminary analysis in this study presents the 
potential of BCI to play the additional role of fatigue or mental 
state monitoring to enhance the clinical efficacy and 
personalization of stroke rehabilitation for stroke survivors 
according to their detected or predicted fatigue or mental state.   

VI. STUDY LIMITATIONS AND FUTURE WORK 
One limitation of this study is the small sample size. 

Though it was not underpowered, it may not be representative 
of the whole stroke population, since some patients may not be 
able to operate BCI effectively. A non-trivial estimate of 15-
30% of BCI users are BCI-illiterate [59] and the value may be 
higher for stroke patients. Further research can be done for 
these BCI-illiterate users so that they too may benefit from the 
advantages of BCI interventions. 

This study was also not a true RCT as the SAT and BCI-HK 
groups from a previous study were used for retrospective 
comparison. The small and unequal sizes of the groups also 
warrant that we interpret this paper’s results with caution. For 
instance, the difference in the groups’ stroke duration might 
have affected the FMA analysis as it shows a trend (p = 0.1), 
though it was not significant possibly due to the small and 
unequal group sizes. Thus moving forward, a larger and more 
balanced RCT will be conducted in order to verify the efficacy 
of the nBETTER system with and without robotic haptic 
feedback, to better understand the effects of both visual and 
haptic feedback in EEG-based MI-BCI stroke rehabilitation 
systems.  

A limitation with this study’s EEG analysis is that only the 
relative beta power was used as an EEG correlate of fatigue. 
However, the correlation found may be indicative of other 
mental states instead. Thus, moving forward, we will apply 
other EEG mental state features to further investigate the 
presence of fatigue or other mental states in stroke survivors 
during EEG-based MI-BCI stroke rehabilitation. 

VII. CONCLUSION 
We conducted a single-arm multisite clinical trial with the 

nBETTER system, a non-invasive EEG-based MI-BCI system 
that provides visual feedback for stroke rehabilitation. We had 
the two-fold aim to investigate the clinical efficacy of using 
nBETTER as well as relationship between EEG correlates of 
fatigue and the BCI performance during the intervention.  

Clinical efficacy was measured using FMA score, and the 
results yielded significant improvements at Week 6 and Week 
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24 compared to baseline, though not reaching MCID. This 
suggested that the nBETTER intervention had positive short-
term effects compared to a previous study’s SAT group that 
did not  yield any significant FMA score improvements at any 
time points, while not exceeding the consistent significant 
FMA gains of the BCI-HK group at Weeks 6, 12 and 24 [1]. 
The presence of fatigue was investigated via the EEG relative 
beta power correlate. A significant positive repeated measures 
correlation with the nBETTER supervised sessions’ accuracies 
was found in the frontal and central areas. 

 This study demonstrated that nBETTER as an EEG-based 
MI-BCI, together with conventional therapy, was effective and 
safe for use in the subacute or chronic stroke population 
within a rehabilitation setting. Hence future larger clinical 
trials are warranted to verify its clinical efficacy and role in 
the rehabilitation milieu. The EEG fatigue analysis results also 
motivate further research to investigate and mitigate the 
effects of fatigue on EEG-based MI-BCI in stroke 
rehabilitation.  
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