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Abstract—We present a feature-based image registration
method, the stepwise image registration (SIR), with a closed-form
solution. Our SIR creates an inlier pool and a candidate pool as
the initialization, and then gradually enriches the inlier pool and
refines the transformation. In each step, the enriched correspon-
dence exclusively tunes the transformation coefficient within the
confirmed inlier pairs, instead of updating the mapping using the
complete putative set. In turn, the refined transformation prunes
inconsistent mismatches to alleviate the incoming matching am-
biguity. The context-aware locality measure (CALM) is designed
for dissimilarity measure. The capability of the CALM can be
enhanced by the progressive inlier pool enrichment. Finally, a
retrieval process is performed based on the finest CALM and
alignment, by which the inlier pool is maximized. Extensive
experiments of enrichment evaluation, feature matching, image
registration, and image retrieval demonstrate the favorable per-
formance of our SIR against state-of-the-art methods. The code
and datasets are available at https://github.com/sucv/SIR.

Index Terms—Feature matching, registration, dissimilarity
measure, non-rigid.

I. INTRODUCTION

FEATURE-based image registration [1] is the process of
geometrically aligning the sensing image onto the refer-

ence image by recovering the correspondence of the image
feature sets, where each feature is usually referred to as a
discrete point. It has been widely used in many fields, such
as computer vision, remote sensing, medical image analysis,
image retrieval, and image mosaic.

The performance of this framework includes (i) putative
correspondence establishment, (ii) mismatch removal, and
(iii) image transformation, which can be affected by two
issues. The first issue is the irreconcilable conflict between
the sufficiency and correctness of the initially established pu-
tative correspondence. The nearest neighbor and distance ratio
(NNDR) algorithm working on the feature descriptors, e.g.,
the scale-invariant feature transform (SIFT) descriptors [2],
requires that a match is accepted only if the ratio of the nearest
and second-nearest descriptor distances satisfies a threshold τ
[3]. On the one hand, a loose threshold allows more features
to be identified as putative inliers. Therefore, the subsequent
processes are possible to preserve sufficient true inliers, and
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further model a fine image transformation. On the other hand,
a strict threshold guarantees that the outlier ratio of the putative
inliers will not exceed the tolerance of the mismatch removal
methods, and also renders computational burden reasonable.
Methods chosen to maintain sufficiency will then face the
second issue, namely the matching ambiguity caused by outlier
contamination and non-rigid distortion, which becomes worse
when images suffer from low overlap ratio or large viewpoint
changes. The ambiguous correspondences and unnecessary
computation consumed by egregious outliers may deteriorate
the mismatch removal process and make the complexity in-
tractable.

To address the two issues mentioned above, we present a
robust and efficient image registration method by exploiting
the reciprocity between distinctive and ambiguous features.
The following observations are the basis of our method. On
the one hand, the alignment of inlier pairs with high certainty
should reduce the measure ambiguity geometrically for other
pairs. On the other hand, the inherent consistency enables
the inliers to play as structure descriptors. Such descriptors
will have more distinctiveness if they can locally surround
a candidate, instead of locating far apart to the candidate.
Accordingly, our method seeks to establish the alignment
using the reliable inliers, and gradually enrich the inlier set
to improve the dissimilarity measure.

Image pair

Initialization Inlier pool
enrichment

Candidate pool
bifurcation Inlier retrieval

Transformed image
CALM

Figure 1: The flowchart of SIR. The double-headed arrows highlight
the stepwise process. The main idea of our SIR is to interpret the
image registration as a stair-climbing fashion, where the ground is
the putative inliers, and the yield from the n-th stair can strengthen
the capability of the CALM estimator, resulting in a more accurate
measure for the next attempt.

More specifically, our method alternatively enriches the
inlier pool and bifurcates the candidate pool in a stepwise man-
ner, as shown in Fig. 1. During the initialization, a universal
set for guaranteeing the sufficiency, and its subset with reliable
correspondences, are obtained to build the candidate pool and
the inlier pool, respectively. A robust dissimilarity measure
named context-aware locality measure (CALM) is used to
drive the stepwise process. It estimates a regularized mixture
of neighborhood relationship, inter-neighborhood distance, and
context information. The inlier pool is gradually enriched by
candidates that are preserved by the CALM. Therefore its
availability for neighborhood construction is enhanced owing

https://github.com/sucv/SIR
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to the more reasonable and abundant spatial distribution. A
transformation modeled using the known inliers is applied
to the candidate pool. Therefore the latter is bifurcated with
reduced matching ambiguity. Finally, a retrieval process is
performed to maximize the inlier pool based on the finest
CALM and alignment.

The contributions of our work are twofold. First, a math-
ematical model is introduced to parameterize the stepwise
process. The closed-form solution is obtained with reduced
ambiguity. Second, a robust dissimilarity measure CALM is
designed to remove mismatch based on the regularized mixture
of neighborhood relationship, inter-neighborhood distance, and
context information. With its capability being further enhanced
by the inlier pool enrichment, the CALM ensures the desired
functionality of the stepwise process. Extensive experiments
on enrichment evaluation, feature matching, image registra-
tion, and image retrieval manifest that our method can yield
better results comparing to state-of-the-art methods with the
tractable time cost. Since the enrichment process goes like
walking up stairs intuitively, we name the proposed method
as stepwise image registration (SIR).

II. RELATED WORKS

Methods for feature-based image registration can be roughly
categorized as traditional (non-deep learning) and deep learn-
ing based. In this section, we briefly review these existing
methods that are relevant to our SIR.

The traditional methods using hand-crafted features usually
recast the image registration as a re-sampling, graph matching,
non-parametric interpolation, or point set registration problem.
The random sample consensus (RANSAC) [4] and its variants,
such as the maximum likelihood estimation sample consensus
(MLESAC) [5], progressive sample consensus (PROSAC) [6]
and randomized RANSAC [7], [8], are the representatives for
the re-sampling approaches. These methods aim to obtain the
smallest possible outlier-free subset by trials of re-sampling,
they are vulnerable to outliers locating within the decision
margin, or the non-rigidity violating the employed parametric
model, e.g., the affine or homogeneous model. In the field
of graph matching methods, representative studies such as
spectral matching [9], dual decomposition [10], graph shift
(GS) [11], and deformable graph matching (DGM) [12] have
been presented. Graph matching methods mainly suffer the
NP-hardness despite the robust matching and recognition
performance. Recently, locality preservation matching (LPM)
[13], [14] and its variant, the guided locality preservation
matching (GLPM) [15] are presented. They have achieved
promising results on mismatch removal with linearithmic time
and linear space complexities. Non-parametric interpolation
methods, such as identifying correspondence function (ICF)
[16], bounded distortion (BD) [17] and vector field consensus
(VFC) [18], commonly model a slow-and-smooth motion field
[19] as the prior condition for interpolation. Point set registra-
tion methods remove mismatches by first aligning the feature
point sets, and then obtaining the true matches according
to the affinity matrix or distance threshold. Representative
methods include iterate closest point (ICP) [20], thin-plate

spline robust point matching (TPSRPM) [21], coherent point
drift (CPD) [22], and global-local mixture distance (GLMD)
[23], etc. Both of the non-parametric interpolation and point
set registration methods are featured by the cubic complexities.
Technically, our work belongs to the category of point set
registration method.

The great success shown by deep learning [24] in various
computer vision fields also motivates us to model the regis-
tration problem using deep learning framework. Great efforts
have been made on 2-D image [25], 3-D Volumetric image
[26] matching, and transformation estimation [27], [28], [29].
Other than feeding the regular 2-D pixel or 3-D voxel grids
data to the deep net architecture, methods working directly
on point sets with irregular format are recently proposed,
which include but not limited to PointNet [30], PointNet++
[31], pointwise CNN [32] and ShapeContextNet [33]. Though
the deep learning-based methods can yield promising results,
they are demanding on the computational power, or usually
required to be trained on a massive amount of data. Their
interpretability [34] is still a topic of active research.

It is worth noting that the stepwise strategy typically utilized
in traditional registration methods have multiple interpretations
conceptually. The refinement interpretation is embedded by a
coarse-to-fine insight. It starts with the whole point sets and
iteratively rejects outliers in the alternating correspondence
estimation and transformation updating, among which ICP
[20] and CPD [22] are two of the most famous works.
The uncertainty interpretation emerges from a probabilis-
tic/statistics point of view. It measures the confidence of a
solution given a particular set of parameters and conditions,
and accordingly preserves the candidates that best consist with
the applied constraints [35], [36], [37], [38], [39]. The fusion
interpretation enriches the initial putative correspondences by
combining different feature descriptors (e.g., the SIFT [2],
speeded up robust features (SURF) [40], local intensity order
pattern (LIOB) [41], etc.) that capture diverse visual evidences,
some of the outstanding works are reported by Hu et. al
[42], [43]. The propagation interpretation, to which our SIR
belongs, initializes a small reliable set and then gradually
grows the seeds by adding the remaining candidates under
certain criteria. PROSAC [6] and sequential correspondence
verification (SCV) [44], [45] are some of the outstanding
works within this context.

Technically, the GLPM [15] is the published work most
relevant to our SIR. The GLPM establishes the neighborhood
in the view of graph matching [46] using a small and reliable
set, and then removes outliers by comparing the neighborhood
consistency of each pair from the universal set in one-shot.
As a descriptor, however, the established neighborhood fea-
turing limited and fixed distribution may not be sufficiently
distinctive. This issue can be further escalated by the binary
distance used for dissimilarity measure since it overlooks the
spatial consistency. Our SIR can be taken as a gradually
generalized version of the GLPM with an improved continuous
dissimilarity measure.
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III. STEPWISE IMAGE REGISTRATION (SIR)

Our SIR aims to realize image registration in a stepwise
manner (see notation1). In this section, we first formulate
the problem and derive the closed-form solution. We then
elaborate the context-aware locality measure (CALM) and
candidate bifurcation and finally provide the main process and
pseudo-code.

A. Problem Formulation

Given Is and Ir the sensed and reference images, the
universal set S = {(xi,yi)}Ni=1 comprising the source point
sets X = {xi|i = 1, 2, ..., N} and the target point sets
Y = {yi|i = 1, 2, ..., N} is obtained using the SIFT extractor
and NNDR. Our goal is to obtain the transformed image Io by
recovering the geometrical transformation f : Ir = f(Is,θ∗)
registering Is onto Ir, where θ∗ is the unknown transforma-
tion coefficient.

A straightforward idea is to model f based on an inlier
set I∗ = argminI Q(I;S, λ), and the objective function is
therefore formulated as:

Q(I;S, λ) =
∑

i|xi,yi∈S

CS(xi,yi)− λ|I|, (1)

where CS is the global dissimilarity measure, penalizing any
pairs which do not preserve the point-to-point distance within
their own point set. The second term maximizes the inliers
with λ controlling the strength and | · | denoting the cardinality
of a set. Minimizing Q is equivalent to maximizing the number
of inlier pairs and minimizing their dissimilarity measure C.

To improve the correctness of the dissimilarity measure, Q
is rewritten based on the following considerations. First, the
rigidity (planar translation and rotation) favors the reliability
of CS , under which the consistency like the absolute distances
of points are preserved. However, if non-rigid deformation is
present, such preservation will not hold, especially for points
that are far apart [46]. A measure CN concerning only the
neighborhood structure is feasible since the local consistency
is reliable [46], [47]. Second, if the major components of
the neighborhood are outliers, an inlier pair might be falsely
rejected owing to the erroneously high cost. Hence the measure
CN⊂I should require that the neighborhood structure is built
only by neighboring inliers. Third, the distinctiveness of the
neighboring inliers may be problematic when the candidates to
be measured are distant. In this case, the measure is easier to
produce false positive as many distant candidates have similar
neighboring inliers. To address this issue, a stepwise feature
matching strategy should be adopted for progressive enrich-
ment of the inlier pool instead of the monolithic matching
based on a fixed yet limited inlier set. Hopefully, the sequen-
tially recovered inliers will pose evenly and thereby improve
the accuracy. Meanwhile, a continuous local dissimilarity

1S and I0: the universal correspondence set and putative inlier set
extracted from an image pair using the loosest NNDR threshold τ0 and
τ , respectively. All the pairs involving repetitive features are removed as a
pretreatment guaranteeing I0 ⊂ S. I: the inlier pool, which is the currently
known correspondences consisting of inliers. C: the candidate pool obtained
by a set difference operation S\I . The inlier pool will be gradually enriched
by a subset of the candidate pool that is preserved by the dissimilarity measure.

measure is also desired instead of the binary one [48], [13],
[14], [15]. Fourth, a transformation f can benefit the matching
process if it is modeled by the inlier pairs. As the stepwise
feature matching goes, the structural discrepancies of inlier
and outlier pairs from the candidate pool will be bifurcated,
resulting in the reduction of matching ambiguity. Suppose that
the stepwise matching process features M iterations, each of
which specifically finds a sub-inlier set Im, we can therefore
rewrite Q in the form:

Q(I;S, λ) =
M∑
m=1

 ∑
i|x̂i,yi∈Cm

CN⊂I(x̂i,yi)− λ|Im|

 ,

(2)
where CN⊂I implies that the dissimilarity measure is based
on the neighboring inliers, e.g., the K nearest inliers, and
x̂i = f(xi) is the transformed feature point. It should be noted
that both the neighboring inliers and the transformation f is
constructed based on the inlier pool obtained at the (m−1)-th
iteration, and when m = 1, they are acquired using the initial
inlier pool. Therefore they will not affect the optimization of
Q as unknown variables explicitly.

To find the closed-form solution of Q, let us introduce a
binary vector p = {pi ∈ 0, 1|i = 1, 2, ..., N} with each entry
indicating the matching correctness of the i-th point pair, and
then substitute |Im| by

∑
x̂i,yi∈Cm pi into Eq. 2 and obtain:

Q(p;S, λ) =
M∑
m=1

 ∑
i|x̂i,yi∈Cm

pi
(
CN⊂I(x̂i,yi)− λ

) .

(3)
It is obvious that any measures smaller and larger than λ will
result in negative and positive terms, respectively, wherein the
tradeoff λ is analogous to a threshold. Therefore, the closed-
form solution p, which minimizes Q by preserving all the
non-positive measures, is obtained as:

pi =

{
1, if Ci ≤ λ
0. otherwise

. (4)

The final correspondence is obtained as I∗ = {(xi,yi)|pi =
1, i = 1, 2, ..., N}. Please refer to Section III-D for the post-
treatment of I∗ called inlier retrieval.

B. Context-aware Locality Measure (CALM)

Many feature extractors, e.g., SIFT [2], SURF [40], etc.,
implement feature extraction based on the scale and orientation
invariance. The scale and orientation infused with the extracted
features have strong consistency among inliers. For instance,
to an inlier pair, their ratio of scales mostly corresponds
to the scale factor between the two image regions [49],
and their orientation differences should also be similar to
those of other inlier pairs. These observations inspire us to
interpret the consistency from scale, orientation, etc., to our
dissimilarity measure. Therefore, the context-aware locality
measure (CALM) is designed. It measures the dissimilarity
based on the neighborhood relationship, inter-neighborhood
distance, and context information.
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The neighborhood relationship desires the one-to-one
matching among the corresponding neighboring inliers given
a point pair. Ideally, the perfect match achieves when every
neighbor from N x̂i

is incident to exactly one neighbor with
the same index from N yi

. It is formulated as:

gi =
1

2K

 ∑
j|yj∈Nyi

b(x̂i, x̂j) +
∑

j|x̂j∈N x̂i

b(yi,yj)

 , (5)

where the binary distance b(x̂i, x̂j) = 1, if x̂j|yj∈Nyi
/∈N x̂i

,
or b(x̂i, x̂j) = 0, otherwise. The same rule is applied to
b(yi,yj). For one point xi from a point set X, its indexes
j for summation are determined by the neighbors yj of the
paired point yi from another set Y. The normalization term
1/2K ensures that the range of gi is [0, 1].

The inter-neighborhood distance penalizes the pairs that
have similar neighborhood relationships yet quite different
relative distribution. Such inconsistency usually occurs when
the overlapping area of an image pair only governs a small
proportion of either one of the images (e.g., under planar
scaling and translation). Given a K×2 neighborhood set N zi

,
we define the 2K × 1 vector dzi = vec(N zi) − N zi

· 1,
where vec(·) denotes the row-wise vectorization of a matrix,
1 denotes a column vector of all ones, and the scalar (·)
denotes the mean of a matrix. We can therefore write the inter-
neighborhood distance as:

ai = 1−
dTx̂i

dyi√
dTx̂i

dx̂id
T
yi
dyi

, (6)

where the second term is basically the 2-D correlation coeffi-
cient.

The context information is parameterized using a local
histogram, encouraging pairs that have small chi-square dis-
tance. The histogram greatly related to the reference angular
coordinate echoes our previous concern about orientation.
Given a point x̂i and the relative coordinates of its K
neighboring inliers, i.e., x̂j|x̂j∈N x̂i

− x̂i, a local histogram
hx̂i = {hx̂i

r |r = 1, 2, ...R} centered at x̂i, with R bins that are
uniform in log-polar space [50], can be established to extract
the context information of x̂i as:

hx̂i
r = |x̂j : (x̂j − x̂i) ∈ bin(r), x̂j ∈N x̂i

|. (7)

By applying the same histogram to yi, the context dissimilarity
ψi of the i-th point pair can be quantified using the chi-square
distance

qi =
1

2

R∑
r=1

(hx̂i
r − hyi

r )2

hx̂i
r + hyi

r

, (8)

within a fixed range. More specifically, for any point pairs
(x̂i,yi), we have qi ∈ [0,K].

The CALM is then formulated according to the following
intuitions. The neighborhood relationship g exploits only the
binary relationship within the neighborhood. It may blindly
produce zero cost once the neighborhood indexes are identical,
without considering the actual spatial consistency. The local
context information q is the most informative component since
it considers both the orientation and distance. However, it

(a) (b) (c) (d)
Figure 2: The illustration of the four types of distributions that
may appear during the measure. The red and blue denote the two
feature point sets, with the features that are being measured and their
neighboring inliers denoted by blank and filled ones, respectively.
(a): in the beginning, the two sets may have a scale difference. Since
the radius of CALM is determined by the K-th neighboring inlier,
the relative distribution captured should be similar. (b): after the pre-
alignment, the neighboring inliers given a candidate pair should be
already roughly aligned. If the central features being measured are
inliers, they should also be aligned as well. Otherwise, they will
have large variations in the respective neighborhood caused by the
spatial deviation of the central points. (c): by applying the reference
angular coordinate and regularized neighborhood relationship, the
high cost caused by the angular bias can be alleviated, which makes
the measure reasonable. (d): when the feature pair has the same
neighborhoods yet large deviation (which is typical for features
at the fringe of the overlapping area), the estimation using only
neighborhood relationships will yield the false positive, and the
falsely aligned pairs may further result in unexpected distortion. In
contrast, our CALM can return a large dissimilarity measure thanks
to the local context information and inter-neighborhood distance.

may produce a high cost if the reference direction is biased.
Hopefully, the summation (g+a) can regularize g by the inter-
neighborhood distance a, because a is rarely zero in practice.
And the multiplication of q and (g+a) can alleviate the false
large cost from q itself. Therefore, we formulate the CALM
by incorporating Eq. 5, Eq. 6 and Eq. 8 as:

CN⊂I(x̂i,yi) = qi (gi + ωai) , (9)

where the constant ω ≥ 0 controls the strength of the regular-
ization. Our CALM can yield reasonable measures for various
scenarios accordingly, as displayed in Fig. 2. We find that the
form of Eq. 9 can yield better performance when compared
against a typical form, i.e., qi+ω1gi+ω2ai. The explanation
could be that there is a non-linear interaction between q and
other criteria. The setting of bin and neighboring inlier number
for our CALM is investigated in Section IV.

C. Candidate Bifurcation

The candidate bifurcation intends to reduce the distance and
structural dissimilarity of the potential inliers, while making
outlier pairs more conspicuous for pruning. To this end, the
approximate thin-plane spline (ATPS) transformation [51] pa-
rameterizing the transformation f is employed. Given the inlier
set I = {(x′i,y′i)}N

′

i=1, the universal set S = {(xi,yi)}Ni=1

and the radial basis function U(u) = u2 log u, the unknown
coefficient θ(N ′+3)×2 is found by solving the linear system:

θ =

(
K′ + ηI H′

H′T O

)−1(
Y′

0

)
, (10)

where K′N ′×N ′ is the radial basis kernel with each entry K′ij =
U(‖x′i − x′j‖), H′ = (1,X′) is the N ′ × 3 homogeneous
coordinate, O3×3 and 03×2 are terms of all zeros, and the
identity matrix IN ′×N ′ is for regularization with the constant
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η controlling the weight. Subsequent to which the updated
source point set is obtained by X̂ =

(
K H

)
θ, where K

is the N × N ′ basis containing Kij = U(‖xi − x′j‖), and
H = (1,X) is the N × 3 homogeneous coordinate.

D. Main Process

Our SIR consists of three major steps, which are the
initialization, stepwise process, and inlier retrieval. During the
initialization, the normalized2 universal set S and its subset,
the putative inlier set I0, are obtained with the loosest τ0 and
strict τ , respectively. The CALM then filters I0 to establish the
pre-alignment on S. After which the inlier and candidate pools
are obtained by the filtering I CALM←−−− I0 and set difference
C ← S\I , respectively.

The stepwise process involves the alternating inlier pool
enrichment and candidate pool bifurcation. In each iteration, a
subset C′m of the candidate pool, with its cardinality equaling
current |I|, is selected in the order of index. The selected
candidates undergo the pruning, which is up to what distance
ε are they considered as egregious outlier pairs, preserving
Cm = {(x̂i,yi)|‖x̂i − yi‖ ≤ ε, (x̂i,yi) ∈ C′m}N

′′

i=1. The
preserved candidates are then judged by CALM yielding the
intermediate inlier set Im. Hence the inlier pool is enriched by
I ← I∪Im. After which the transformation f is built to align
the pairs from I exclusively. Meanwhile, it also extrapolates
other pairs accordingly so that the similarity for the potential
inlier and outlier pairs is bifurcated. Our SIR iterates until the
candidate pool is traversed.

The inlier retrieval maximizes the inlier pool based on the
abundant and well-distributed inliers. It first reconstructs the
candidate pool again by C ← S\I , and then carries out
the enrichment and bifurcation over the whole C to retrieve
falsely rejected inlier pairs. The final inlier set I∗ and image
transformation coefficient θ∗ are yielded after the retrieval,
where the latter can further transform the sensed image to
overlay it over the reference one by Io = f(Is,θ∗) generating
the transformed image [1]. The pseudo-code is provided in
Algorithm 1.

IV. ANALYSIS AND IMPLEMENTATION DETAILS

The bin density (BD) of CALM, number of neighbors K for
neighborhood construction, and NNDR threshold τ for estab-
lishing the putative inlier set play cruel roles in our SIR. First,
the BD represents the strictness of the dissimilarity measure
on the context information. A very dense BD, say (50, 120)
for radial and tangential directions, may yield a high cost due
to the slight bias on the reference angle. Second, K determines
how many samples are used to yield the CALM. A large
K leads to a relatively large neighborhood and will involve
more inconsistency. Also, too high a K (e.g., K ≈ |I0|) may
ruin the registration if the initial inlier pool is quite limited.
Third, the filtering and pre-alignment used in Line 2 and 3
of Algorithm 1 can attenuate the negative effect of the initial

2The normalization process rescales the feature point sets, generalizing
arbitrary feature sets to have zero means and unit variances. The same spatial
scale is beneficial to further thresholding. It also roughly overlays the source
and target sets, by which the matching ambiguity is reduced [21], [22], [23].

Algorithm 1: Stepwise Image Registration
input : Two images Is and Ir

output : Transformed image Io, final inlier set I∗

1 Establish the normalized S and its subset I0 under
threshold τ0 and τ , respectively;

2 Filter the putative inliers by I0
CALM←−−− I0;

3 Pre-align S by the mapping f from I0;
4 Initialize the inlier pool by I CALM←−−− I0;
5 Initialize the candidate pool by C ← S\I;
6 while C is not traversed do
7 Select the candidates C′m where |C′m| = |I|;
8 Prune the selected candidates by Cm

ε←− C′m;
9 Determine the new inlier set by Im

CALM←−−− Cm;
10 Enrich the inlier pool by I ← I ∪ Im;
11 Refine the coefficient θ based on enriched I;
12 end
13 Re-construct the candidate pool by C′ ← S\I;
14 Prune the selected candidates by C ε←− C′;
15 Retrieve remaining inliers by IM+1

CALM←−−− C;
16 Obtain the final inlier set by I∗ ← I ∪ IM+1;
17 Obtain the final coefficient θ∗ and transform Is;

outliers in I0, which suggests that our SIR is not sensitive to
the τ . Though using a strict τ can definitely lower the outlier
ratio and cardinality of I0 and thus achieves a better accuracy-
efficiency tradeoff, the correspondences established at this
case may not be sufficient to perform the stepwise process
nor could it guide a fine image transformation, particularly
when the image pair suffers low resolution, low overlap ratio
or large viewpoint variations. Fourth, the threshold τ also
influences the performance of our SIR when the images are
contaminated by noises, e.g., the Gaussian noise, at which
case the correctness of I0 might be further lowered due to
the random deviation applied to each image intensity.

According to the above prior knowledge, the optimal pa-
rameter setting of our SIR is investigated as follows. The
CALM threshold λ and pruning threshold ε are first evaluated
by fixing the inlier ratio (IR), inlier number (IN), BD, K,
and τ to 0.1, 300, (5, 12), 5, and 1.25, respectively. After
which the previously fixed parameters are evaluated under the
optimal λ and ε. To synthesize the feature sets satisfying the
requirements of number and ratio, the following technique
is introduced. The inlier pairs are randomly selected from
the manually confirmed ground-truths of an image pair. The
random outliers within the image boundary (i.e., using the
Matlab rand function) along with their corresponding SIFT
descriptors are generated using the VLFEAT toolbox [3] (i.e.,
using the vl sift function). Finally, the random outlier pairs are
concatenated to the inlier pairs to meet the ratio requirement.
For example, the inlier ratio 0.1 can be obtained using 300
inlier pairs and 2700 outlier pairs. To apply the Gaussian noise
to images 3, the standard deviation of intensity given an image

3Unless otherwise stated, the noise is always applied to the source image
Is in the remainder of this paper.
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Figure 3: Quantitative evaluation of our SIR across different parameter settings. Column (a): the f1-score of our SIR using different λ-ε
settings. These two parameters determine to what extent could a correspondence be rejected by the CALM and pruning, respectively. The axis
for ε is spaced logarithmically, e.g., −5 denotes 1e−5. Column (b): the f1-score of our SIR using different neighborhood settings. The bin pair
and K define the density and locality of the CALM, respectively. Ten pairs, i.e., {(3, 8), (4, 10), (5, 12), (8, 20), (10, 24), (15, 36), (20, 48)},
are labeled as {1, 2, · · · , 7} on the axis, respectively. Column (c): the f1-score of our SIR with varied strictness of putative set against the
correctness of the universal set. Column (d): the RMSE of our SIR with different strictness of putative set against the Gaussian noise. Five
noise levels, i.e., 0, 50%, 100%, . . . , 200% are labeled as 0, 0.5, 1.0, . . . , 2.0. For each column, views from xyz-axis, xz-axis, yz-axis, and
xy-axis are used. Totally 100 replications are conducted for each treatment.

is firstly measured, the Gaussian noise which is in proportion
to the intensity deviation is then randomly generated using
the Matlab imnoise function. Finally, the noise grid is added
to the image intensity to realize the noise contamination. 100
replications are conducted for each treatment. The results are
shown in Fig. 3.

For the pair of λ and ε, our SIR achieves the optimal
performance at λ = 0.8 and ε = 0.0001. For the BD and K,
our SIR is favored by the treatments with sparse histogram and
larger K, and within an acceptable scope of performance, say
f1-score ≥ 0.7, different treatments have no obvious variations
on f1-score. For the NNDR threshold τ against the outliers,
we can see that the f1-scores are not sensitive with respect
to τ given IR≥ 0.15, by which the effect of filtering and
pre-alignment is demonstrated. The insensitivity implies that
our SIR can be generalized to different local descriptors [52].
For the NNDR threshold τ against the noise, the RMSE is
acceptable for all the noise levels when τ ≥ 1.3. Overall, the
default parameter setting of our SIR is determined as λ = 1.2,

ε = 0.001, BD= (5, 12), K = 5 and τ = 1.3, according to
the results from Fig. 3 and trial-and-error on the real data. The
ATPS smoothness is set to η = 0.5 empirically.

The ablation study is then conducted to investigate to what
extent can the pruning, retrieval, and stepwise process affect
our SIR in terms of robustness and efficiency. The non-
pruned (SIR-NP), non-retrieval (SIR-NR), and non-stepwise
(SIR-One) variants of our SIR are investigated. For SIR-
NP, the operations of Line 8 and 14 from Algorithm 1 are
removed. For SIR-NR, the operations of Line 13, 14, and 15
from Algorithm 1 are removed. And for SIR-One, the final
inlier set is directly obtained by I∗ CALM←−−− S after the pre-
alignment of Line 3 Algorithm 1. Three factors: (i) the IN of
universal set S, (ii) the IR of S, and (iii) the IR of putative
inlier set I0, i.e., the seed correctness (SC), are selected for
quantitative evaluation. Three scenarios are therefore designed,
each of which varies one factor with the other two being
fixed, as shown in Table I. GLPM [15] is chosen as the
baseline for comparison since it also requires S and I0 as the
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input yet without our stepwise process, CALM and candidate
bifurcation. The f1-score is used as the evaluation criterion.
It estimates the balance between the recall and precision. The
experimental results are shown in Fig. 4.

Table I: Three experimental scenarios for quantitative evaluation of
the stepwise manner. S: scenario; IR: inlier ratio; IN: inlier number.
SC: seed correctness.

S IR of S IN of S SC |I0|
1 0.05, 0.10, ..., 1.0 300 1.0 15
2 0.1 50, 80, ..., 320 1.0 15
3 0.1 300 1.0, 0.9, ..., 0 50
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Figure 4: The ablation study of our SIR against non-pruned (SIR-
NP), non-retrieved (SIR-NR), one-step variants (SIR-One) and the
baseline method GLPM, respectively. Column (a) and Column (b)
are the results on f1-score and time cost, respectively. Rows from top
to bottom corresponds to Scenario 1, 2, and 3, respectively. The error
bars indicate the standard deviations of the errors. 100 replications
are conducted for each treatment. Best viewed in color.

In Scenario 1 the f1-score of our SIR outperforms the
variants and baseline when IR≤ 0.6, after which the SIR-
NP and GLPM achieves a larger f1-score. It suggests that
the pruning and ATPS can reduce the ambiguity caused by
low IR, they however backfire when IR is high. The limited
putative inlier set, i.e., |I0| = 15, is insufficient for structural
description since many distant points may have the same
neighboring inliers yet quite different relative distribution. The
stepwise manner enriching the inlier pool gradually alleviates
this issue. The reason why our SIR cannot achieve f1-score
1.0 when IR= 1 is mainly because of the drawback of using a
radial basis function as the general image deformation model.
The ATPS at the area with sparse control points may misalign
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Figure 5: The iteration-wise registration error of our SIR. The initial
inlier set is manually created by randomly selecting 15, 25, 35, 55,
105, and all pairs from I0, as shown in (a) to (f), respectively.
The marked lines show the average iteration-wise error at the i-th
step. Various colors are used to group trials ended up with the same
iteration counts, and the dashed lines with the same colors indicate
the associated final RMSE from GLPM. The black line on the bottom
indicates the systematic error.

the true inlier pairs, leading to a false rejection by the pruning.
Fortunately, such drawback is tolerable as our interest is to
recover inliers from the lowest possible NNDR threshold (i.e.,
the IR is usually < 0.4). In Scenario 2, as the potential
inlier grows, the difficulty of using |I0| = 15 to recover the
remaining inlier pairs also increases. As expected, the stepwise
manner gives the best and steady f1-score, and its advantage
against others is obvious. Whereas GLPM yields unacceptable
results due to the limited |I0| and low inlier ratio 0.1. The
low f1-score, obtained by the non-pruned version results from
the imbalance of high recall and low precision, reflects not
only the availability of the pruning in matching ambiguity
reduction, but also the sensitivity of the CALM towards
point deviation. Further investigation and discussion about the
sensitivity are provided in Secion VI. Scenario 3 demonstrates
that the stepwise manner enhances the tolerance of our SIR
towards the falseness of I0, as the apparent advantage can
be seen when the inlier ratio of I0 is ≤ 0.5, after which
the results are deteriorated. When it comes to efficiency, we
see that SIR-NP is the most time-consuming, which requires
nearly 5.5s to process 6K feature pairs. Thus it validates
the availability of the pruning on efficiency improvement.
GLPM features perfect time-saving result since it does not
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involve radial basis function based transformation. Overall,
the stepwise manner can greatly improve the accuracy and
robustness at the cost of tractable time.

We also experiment to reveal the iteration-wise behavior of
our SIR with regard to the sufficiency of the initial inlier set.
In this experiment we set IN= 300, IR= 0.2, and τ = 1.3, and
manually select 15, 25, 35, 55, 105, and all pairs from I0.
Totally 100 landmark pairs are manually labeled to compute
the RMSE. The GLPM is chosen as the baseline method.
Over the 100 replications, the representative trials ended up
with the same iteration counts are selected to calculate the
average iteration-wise RMSE and baseline RMSE. The results
are shown in Fig. 5. The line graphs suggest that the iteration
counts are inversely proportional to the cardinality of the initial
inlier set. When |I0| is small, e.g., ≤ 35, obvious RMSE
drops for the first half of each line can be observed, while for
the rest part, the RMSEs tend to be steady. Particularly, for
Fig. 5a, i.e., when |I0| = 15, the RMSEs significantly drop
at the last iteration due to the employment of the retrieval
process. As |I0| increases, the overall RMSE approaches the
systematic error at an earlier iteration, and the improvement
at the last iteration becomes trivial. The explanation for the
observed phenomenon lies in the sufficiency of the inlier pool
(which plays the role of control points) for ATPS transfor-
mation establishment. A small set of control points clustered
regionally may fail to present the image deformation far apart,
and therefore incur misalignment and false rejection of inliers.
As the control points are gradually enriched by the candidates,
the ATPS transformation becomes finer in a larger area until
reaching the saturation. The retrieval process can reexamine
the candidates based on the finest alignment and CALM, and
recovers inliers that are previously falsely rejected. The latter,
if positioned in a region with sparse control points, might
greatly decrease the RMSE in a global manner.

The implementation details are provided based on Algo-
rithm 1. First of all, given the universal set S, two lists storing
the indexes of I0 and the rest feature pairs are generated after
Line 1. Throughout our SIR the first list will be enriched to
yield the final inliers, and the second list will be traversed,
as stated in Line 16 and Line 6, respectively. The first use of
CALM in Line 2 differs from the rest, as its judgment is based
on the initial features before the pre-alignment. At which time,
the reference angular coordinate is initiated by the orientation
from the SIFT descriptor. Meanwhile ω = 0 from Eq. 9 is used
for ensuring the scaling, translation, and rotation invariance
of CALM. Whereafter the reference angular coordinate is set
as the direction from the point currently being measured to
its nearest neighbor, and ω = 1 is adopted to impose the
equal priority between neighborhood relationship and inter-
neighborhood distance. The construction in Line 4 improves
the correctness of the inlier pool since the matching ambiguity
is reduced by the pre-alignment. In Line 7 the requirement
of equal cardinality instead of a fixed step size addresses
the possible dilemma caused by an extremely unbalanced
inlier-to-candidate ratio so that the capability of CALM in
the stepwise process will not be exceeded or wasted. Such
adaptivity also implies that the actual iteration number M
for different image pairs is flexible. The pruning in Line 14

ensures that the outliers, which are not consistent with the
ATPS transformation, are removed. This helps the following
retrieval process safely recover the false negatives to maximize
the inlier pool as well as minimize the registration error. When
the size of the inlier pool is small, this step might greatly
decrease the registration error in a global manner.

The KNN searching has O((N + K) log(N)) complexity
using the k-d tree [57]. In addition to which the dissimilarity
measure using CALM is of O(KN) complexity. The matrix
inversion of the linear system Eq. 10 with O(N3) complexity
is the computational bottleneck of our SIR. Fortunately, by
employing ATPS the actual complexity is reduced to O(N ′3).
When N is very large (e.g., N ′ = 0.1N , which is analogous
to inlier ratio 0.1), the saving factors in processing time could
be 1000x [51]. Overall, our SIR has O(N log(N) + N ′3)
complexity, since K � N .

V. EXPERIMENT

To test the performance and generality of our SIR, extensive
experiments including feature matching, image registration,
and image retrieval are carried out. Eight state-of-the-art
methods, namely RANSAC [4], PROSAC [6], LPM [14],
GLPM [15], ICF [16], GS [11], CPD [22] and GLMD [23]
are used for comparison.

The experiments are performed on a laptop with a 2.6 GHz
Intel Core CPU and 16 GB memory using Matlab code. The
open-source VLFEAT toolbox [3] is employed for determining
the universal set S [2] and K-D tree-based neighboring inlier
searching. In particular, all the experiments use the loosest
NNDR threshold τ0 = 1.0 to determine the universal set S,
and use τ = 1.3 to determine the putative inlier set I0 for
our SIR and GLPM [15]. The overview of our experimental
design and the references to the datasets are shown in Table
II.

A. Ground-truth and Criterion

Generally, three types of ground-truth are used. For feature
matching experiments, its ground-truth is an N ′ × 1 column
vector indicating the indexes of inlier pairs extracted by the
SIFT algorithm, where N ′ denotes the number of inlier pairs
out of N feature pairs. The recall, precision, and f1-score
are employed as the criteria. An ideal method should be
able to yield indexes that are identical to the ground-truth
given an image pair so that the three criteria all equal 1.
For image registration experiments, the ground-truths are two
M × 2 matrices indicating the corresponding coordinates of
the human-labeled points, where M denotes the number of
labels. The root mean square error (RMSE), and the associated
area under curve (AUC) are used as the criteria. An ideal
method should be able to overlay the two coordinate sets with
RMSE= 0 and AUC= 1 given an image pair. For image
retrieval experiments, its ground-truth is an M × (N − 1)
matrix, where M denotes the number of images in total, N
denotes the number of images for each group. The i-th row
is the indexes corresponding to the top N − 1 query results
given the i-th query image. The N-score is employed as the
criterion. Suppose that N = 4, given the i-th query image,
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Table II: The overview of our experimental design. Exp.: experiment. Para. Set.: the parameter setting for the experiment. The changed
parameters are listed. Pair Num.: the number of image pairs. Treatment: the number of conditions. Replication: the number of runs for
each treatment. FM: feature matching. IReg.: image registration. IRet.: image retrieval. The three synthesized datasets involve the random
generation of outlier or noise, therefore 100 replications are conducted.

Exp. Dataset Para. Set. Pair Num. Treatment Replication Result Method Compared

FM
ACF [49] Default 40 1 1 Fig. 6, Fig. 8, Table III RANSAC [4], PROSAC [6],

LPM [14], GLPM [15],
ICF [16] and GS [11]

RS [15], [53] Default 40 1 1 Fig. 6, Fig. 8, Table III
Synthesized 1 Default 1 30 100 Fig. 7

IReg.

RS [15], [53] Default 40 1 1 Fig. 9, Fig. 13 RANSAC [4], PROSAC [6],
LPM [14], GLPM [15],

ICF [16], GS [11],
CPD [22] and GLMD [23]

FIRE [54] Default 134 1 1 Fig. 13, Fig. 14, Table III
Synthesized 2 Default 1 1 100 Fig. 10
Synthesized 3 Default 1 5 100 Fig. 11

IRet. UKBench [55] λ = 1.6
is used

for IRet.

10000 1 1

Table III
RANSAC [4], PROSAC [6],

LPM [14], GLPM [15],
ICF [16] and GS [11]

10000 1 1
10000 1 1
40000 1 1

Holiday [56] 10000 1 1

(a) Homographic

(b) Scaling (c) Rigid

(d) Wide Base-line

(e) Non-rigid

Figure 6: Representative examples of feature matching results on ACF and RS datasets. For each group, the sensed and reference images,
and their motion field are displayed. Each arrow in the motion field connects the positions of feature points in image pairs (blue = true
positive, black = true negative, green = false negative, red = false positive). For the visual convenience of image pairs, at most 50 randomly
selected matches are drawn, and the true negatives are not shown on the sensed and reference image pair. Best viewed in color.
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Figure 7: The feature matching results on the Synthesized 3 dataset. The top and bottom rows correspond to the scenarios of varying IR
and varying IN, respectively. The last column shows the time cost accordingly. The error bars indicate the standard deviations of the errors.
100 replications are conducted for each treatment. Best viewed in color.

the three remaining images from its group should ideally be
contained in the i-th query result.

B. Dataset and Setup

1) Affine covariant features (ACF) dataset: The dataset [49]
contains 40 image pairs with changes due to blur, viewpoint,
zoom & rotation, light, and JPEG compression. The images
are of sizes from 800 × 640 to 1000 × 700. For each image
pair, its associated homography is provided. The ground-truth
is determined by first using the homography to transform the
features, and then evaluating the overlap of each feature pair
with regards to their SIFT scales [49].

2) Remote sensing (RS) dataset: The dataset [15], [53]
contains 40 image pairs captured by high-altitude satellite
and small UAVs (SUAVs), respectively. The satellite images
feature rigid or affine deformation, while the SUAV images
involve non-rigidity due to ground relief variations or imaging
viewpoint changes. The images are of sizes from 600 × 400
to 800 × 600. The ground-truth for feature matching exper-
iment is obtained by first using our SIR to establish rough
correspondence, and then manually confirming the correctness
[14], [15]. The ground-truth for image registration experiment
is obtained by manually labeling 20 pairs of points between
the image pairs, all of which are well-distributed at easily
identified places around the interest areas [53], [48].

3) Fundus image registration (FIRE) dataset: The dataset
[54] contains three different categories, forming a total of 134
retinal image pairs. Such characteristics are the degree of over-
lap between images and the presence/absence of anatomical
differences. The images are originally acquired with a Nidek
AFC-210 fundus camera with a field of view of 45◦, and are
down-sampled to the resolution of 582×582 in our experiment.
Ground-truth in the form of corresponding image points and
a protocol to evaluate registration accuracy are provided.
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Figure 8: Feature matching results on the ACF (left column) and RS
(right column) datasets. Best viewed in color. For the corresponding
area under curves, please see Table III.

4) Synthesized 1-3 dataset: They are produced using three
types of data augmentation techniques on a randomly chosen
image pair from RS dataset. The controllable treatments pro-
vide an excellent way to evaluate the performance on accuracy
and efficiency quantitatively. For synthesized 1 dataset, Sce-
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Figure 9: The pair-wise registration error on the RS dataset. Pairs 4-12 and 21-40 are captured by small UAV (SUAV), and the rest are
captured by high-altitude satellites. The overall RMSE and standard deviation are indicated in the legend. Best viewed in color.

nario 1 and 2 of Table I are followed to specify the inlier
ratio (IR) and inlier number (IN) of the universal set S,
resulting in 20 treatments on IR and 10 treatments on IN.
For synthesized 2 dataset, the IR and IN of S are fixed as 0.2
and 300, respectively, resulting in 1 treatment. For synthesized
3 dataset, five Gaussian noise levels {0, 50%, . . . , 200%} are
used, resulting in 5 treatments. The percentage of noise level
is determined following the same technique from Section IV.
Overall, through abundant replications, the randomly gener-
ated outliers or noise provides a good simulation of the real-
world scenarios without tedious artificial efforts.

5) UKBench dataset: The dataset [55] contains 6376 im-
ages with 1596 groups of 4 images known to be taken of the
same object but under different conditions. We select Group
1−25, 26−50, 51−75, and 1−50 forming subsets U1, U2, U3,
and U4, respectively. Given the asymmetric nature of non-rigid
image registration, (4× 25)2 = 10000 and (4× 50)2 = 40000
image pairs from the two scales are formed, respectively. All
the images are of size 640× 480.

6) Holiday dataset: The dataset [56] contains 1491 images,
which are mainly personal holiday photos. The dataset con-
tains 500 image groups, each of which represents a distinct
scene. We first select all the groups that have four or more
images, and then randomly choose images to equalize the size
of each group as 4. Finally, 25 groups are randomly selected
to form 10000 image pairs. All the images are down-sampled
to a resolution of 640× 480.

C. Results on Feature Matching

The feature matching experiments aim to test the capability
of the methods on removing outliers from the given putative
point correspondences. The ACF, RS, and Synthesized 1
datasets are used. RANSAC [4], PROSAC [6], LPM [14],
GLPM [15], ICF [16], and GS [11] are selected for compari-
son. The results for ACF and RS datasets are shown in Fig. 8
and Table III, some representative examples are demonstrated
in Fig 6. In order to visualize the morph of the image pairs in
the examples, the motion fields are formed by first overlaying
the two images, and then connecting the positions of feature
points in image pairs [14], [15]. Ideally, the blue arrows (i.e.,

the true positive) should possess great consistency with respect
to the actual image deformation. The results for Synthesized
1 dataset are shown in Fig. 7. Our SIR achieves the highest
f1-score on ACF and RS datasets. For Synthesized 1 dataset,
when the IR is varied, our SIR yields the highest f1-score
when IR≤ 0.6, and requires around 4s to process the 6K pairs
of feature points. When the IN is varied, our SIR achieves
favorable performance on f1-score and time cost.

Time (s)

RMSE

Figure 10: The boxplot of the RMSE (top) and time cost (bottom)
on the Synthesized 2 dataset. 100 replications are conducted for the
treatment. Best viewed in color.

D. Results on Image Registration

In the second series of experiments, we test the capability of
the methods on minimizing the overlay error given an image
pair. The RS, FIRE, Synthesized 2, and Synthesized 3 datasets
are used. RANSAC [4], PROSAC [6], LPM [14], GLPM [15],
ICF [16], GS [11], CPD [22], and GLMD [23] are selected for
comparison. The results for RS and FIRE datasets are shown
in Fig. 9, Fig. 14 and Table III, some representative examples
are demonstrated in Fig. 13. The results for Synthesized 2 and
3 datasets are shown in Fig. 10 and Fig. 11, respectively.

For RS dataset, RANSAC and PROSAC secure a very close
performance to our SIR on the satellite images, however, the
inherent non-rigidity of the SUAV data prevents the paramet-
ric model based RANSAC and PROSAC from an accurate
registration. The falsely matched fringe points by LPM can
degrade the registration result, though they may only take
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Figure 13: Representative examples of image registration results on the RS and FIRE datasets. For each group the sensed (first row), reference
(second row), transformed (third row) images, and the 8× 8 checkboard (last row) are displayed.
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Figure 14: Image registration results on the FIRE dataset. If the RMSE of an image pair is below the error threshold, the registration is
considered as successful. The success corresponds to the percentage of successfully registered image pairs for a given threshold. (a), (b) and
(c): image registration results for the three categories grouped by FIRE dataset, each of which contains 14, 49, and 71 retinal image pairs.
(d): the overall result for FIRE dataset. Best viewed in color. For the corresponding area under curves, please see Table III.

a very small proportion of the whole correspondence. CPD
and GLMD both work unreliably as the high outlier ratio
exceeds their tolerance. Our SIR achieves the lowest errors.
For FIRE dataset, Our SIR acquires the largest AUC over
the 134 image pairs. For Synthesized 2 dataset, under the
condition of IR= 0.2 and IN= 300, our SIR achieves the
lowest RMSE according to the boxplot, with an averagely 0.6s
time cost. For Synthesized 3 dataset, Our SIR achieves the best
performance for all the five noise levels.

E. Results on Image Retrieval

In the third series of experiments, we test the capability
of the methods on near-duplicate image retrieval given query
images. RANSAC [4], PROSAC [6], LPM [14], GLPM [15],
ICF [16] and GS [11] are selected for comparison. The N-
Score and total time costs are provided in Table III.

We decrease the matching strictness of our SIR by setting
the CALM threshold λ = 1.6, by which our SIR gives
reasonable retrieval result even when the image pairs have
large depth discontinuity or motion inconsistency. Our SIR
demonstrates the best N-Score. Moreover, as our SIR will

break if the number of inlier pairs from the inlier pool after the
pre-alignment is less than K, its average time cost has been
so close to the linearithmic time featured LPM and GLPM.

VI. DISCUSSION AND LIMITATION

The advantages that SIR brings into the filed are as follows.
Conceptually, it is a gradually generalized version of the
GLPM [15] with a continuously improved dissimilarity mea-
sure. Technically, it utilizes the complement of intensity and
geometric information to form a robust dissimilarity measure.
It also realizes the non-parametric interpolation efficiently.
Empirically, it shows favorable accuracy under non-rigid de-
formation, as shown in Pair 21-40 of Fig. 9, or under severe
outlier degradation, i.e., inlier ratio ≤ 0.6, as shown in Fig. 7
and 10. It also shows efficiency in dealing with large feature
sets, i.e., around 4s for 6000 feature pairs, as shown in Fig. 7d
and 7h, or around 685s for 80K image pairs with 640 × 480
resolution.

The current limitation mainly lies in the dimensionality
and transformation generality. First, our SIR cannot work
on volumetric images (which are typically arisen in medical
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Table III: The area under curve (AUC) results corresponding to Fig. 8 and 14, as well as the N-score and average time cost per image pair
corresponded to image retrieval experiments. Bold fonts indicate the best results. Avg. T.: the average time cost of an image pair. ”-” denotes
that the method is not included in the experiment.

Figure SIR RANSAC PROSAC LPM GLPM ICF GS CPD GLMD

Fig. 8-a 0.8858 0.8758 0.8514 0.8580 0.8721 0.8184 0.5460 - -
Fig. 8-b 0.9358 0.9514 0.9621 0.7403 0.9276 0.7707 0.8732 - -
Fig. 8-c 0.9042 0.8960 0.8917 0.7871 0.8854 0.6811 0.6541 - -
Fig. 8-d 0.9775 0.8503 0.8514 0.9773 0.9619 0.8399 0.8251 - -
Fig. 8-e 0.9714 0.9374 0.9621 0.7048 0.9089 0.7169 0.9156 - -
Fig. 8-f 0.9743 0.8818 0.8917 0.8077 0.9343 0.6730 0.8612 - -

Fig. 14-a 0.8100 0.7010 0.7126 0.0943 0.6300 0.5302 0.5590 0.0671 0.2781
Fig. 14-b 0.7950 0.6369 0.7235 0.0214 0.2854 0.2063 0.3473 0.0276 0.0416
Fig. 14-c 0.9869 0.9698 0.9700 0.1902 0.7882 0.9722 0.8349 0.0929 0.4553
Fig. 14-d 0.8983 0.8200 0.8530 0.1185 0.5878 0.6459 0.6278 0.0663 0.2855

U1 2.93 2.90 2.89 1.75 2.48 0 2.33 - -
U2 2.92 2.89 2.90 1.39 2.58 0.02 1.90 - -
U3 2.54 2.33 2.12 0.64 2.04 0.08 0.75 - -
U4 2.91 2.86 2.84 1.64 2.38 0 2.06 - -
H1 2.12 1.82 1.88 0.75 1.10 0.06 1.08 - -
Avg. T. (s) 1.32e− 2 3.37e− 1 2.40e− 1 1.29e− 2 8.57e− 3 1.66e+ 0 6.86e− 1 - -

(a)

RMSE

RMSE

(b)

RMSE

(c)

(d)

RMSE
(e)

RMSE
Figure 11: The boxplot of the RMSE on the Synthesized 3 dataset.
From (a) to (e) are the RMSEs under 0, 50%, . . . , 200% Gaussian
noise, respectively. 100 replications are conducted for each treatment.
Best viewed in color.

image analysis), as the local histogram constituting the CALM
is planar. Straightforwardly expanding the histogram to a 3-D
log-polar space may produce unexpected context dissimilarity
due to the high spatial sparsity. An appropriate 3-D descriptor
[52] has to be designed or employed. Second, our SIR cannot
work on scenarios that involve large depth discontinuity or
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Figure 12: The f1-score on varied outlier/deviation treatments from
our SIR (upper row) and GLPM (lower row). Column (a) and
Column (b) are views from xyz-axis and xy-axis. 100 replications
are conducted for each treatment. Best viewed in color.

individual motion inconsistency (which are typically arisen
in stereo matching and motion tracking), due to the motion
coherence [58] imposed by the ATPS. The usage of the
pruning implies that the alignment of central points, or to be
more general, the deformation model aligning the points, is
not trivial for the CALM to work, as the error caused will
be accentuated and soon makes the CALM worthless. We are
currently looking at the work in [59] for ways of estimating
the transformation in a patch-wise fashion, and incorporating
the pruning measure ε as a term in the CALM.

We also attempt to explore the second limitation of our SIR
quantitatively. To this end, we apply deviation to the target
point set Y in proportion to the standard deviation produced
by the normalization process. The IR and deviation strength
are set to {0.2, 0.4, . . . , 1.0} and {0, 1.5%, 3%, . . . , 15%},
respectively. The GLPM is chosen as the baseline method. The
results shown in Fig. 12 manifests that our SIR can achieve
0.8 or larger f1-score when deviation strength is ≤ 6%.
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VII. CONCLUSION

We present the stepwise image registration with the closed-
form solution for feature matching and image registration. Our
SIR casts the image registration as a stepwise process, which
gradually enriches the inlier pool and bifurcates the candidate
pool. The context-aware locality measure removes mismatches
with increasing accuracy thanks to the enrichment.

To avoid being trapped and time-consuming, we start from
the reliable inlier pairs, and the possibility of receiving re-
inforcement from intermediately recovered inliers motivates
us to introduce the stepwise strategy with the CALM. To
reject the initially included outliers, a pre-alignment process
is conducted for bifurcation before creating the pools. To
maximize the finally preserved inliers, a retrieval process
is included to retrieve missed outliers based on the finest
CALM and alignment. The ablation study demonstrates that
the stepwise manner, pruning, and retrieval process affect our
SIR significantly in terms of robustness and efficiency. We
have not been able to define the boundary condition of our
SIR theoretically. Nevertheless, an exploratory test shows that
our SIR can reach f1-score≥ 0.8 when the spatial deviation of
each feature point is ≤ 6% of the overall standard deviation.
Experiments on feature matching, image registration, and im-
age retrieval using real and synthesized data exhibit satisfying
robustness and efficiency of our SIR against state-of-the-art
methods.
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