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Synthesis of materials with minimum number of trials is of paramount importance towards the
acceleration of advanced materials development. The enormous complexity involved in existing multi-
variable synthesis methods leads to high uncertainty, numerous trials and exorbitant cost. Recently,
machine learning (ML) has demonstrated tremendous potential for material discovery and property
enhancement. Here, we extend the application of ML to guide material synthesis process through the
establishment of the methodology including model construction, optimization, and progressive
adaptive model (PAM). Two representative multi-variable systems are studied. A classification ML
model on chemical vapor grown MoS, is developed, capable of optimizing the synthesis conditions to
achieve a higher success rate. And a regression model is constructed on the hydrothermal-grown
carbon quantum dots, to enhance the process-related properties such as the photoluminescence
quantum yield. The importance of synthesis parameters on experimental outcomes is particularly
extracted from the constructed ML models. Furthermore, off-line analysis shows that enhancement of
the experimental outcome with minimized number of trials can be achieved with the effective
feedback loops in PAM, suggesting the great potential of involving ML to guide new material synthesis
at the beginning stage. This work serves as a proof of concept for using ML in facilitating the synthesis
of inorganic materials, thereby revealing the feasibility and remarkable capability of ML in opening up
a new promising window for accelerating material development.

Introduction

Material synthesis is always a challenging problem hindering the
development of advanced inorganic materials. Complex
synthesis not only entails large uncertainties but is also costly
and time-consuming [1]. For example, two-dimensional (2D)
materials have received substantial research interests in recent

* Corresponding authors.
E-mail addresses: Xu, Q. (xuquan@cup.edu.cn), Guan, C. (CTGuan@ntu.edu.sg), Liu, Z.
(zliu@ntu.edu.sg).

years attributed to their unique and fascinating properties
[2-5], and chemical vapor deposition (CVD) is considered as
one of the most promising methods to realize the controllable
and scalable synthesis of these intriguing materials [6-8]. How-
ever, CVD process contains numerous variables like reaction
temperature, chamber pressure, carrier gas flow rate, etc., signifi-
cantly aggravating its unpredictability. Especially, early explo-
ration of the optimal synthesis condition was solely driven by
a laborious trial-and-error process, rendering extremely long
development cycles. Additionally, a large number of trials
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together with expensive precursors and high energy consump-
tion result in exorbitant research and development costs. Not
only CVD, other multi-variable synthesis methods including
hydrothermal, chemical vapor transport (CVT), atomic layer
deposition (ALD) and molecular beam epitaxy (MBE), also have
such issues. Therefore, an effective learning strategy towards
optimizing and accelerating the synthesis of advanced inorganic
materials, is urgently required.

Recently, machine learning (ML) methods have demonstrated
great potential in substantially accelerating materials develop-
ment, as shown in Fig. la. For instance, ML models have been
applied for the discovery of new materials (perovskite halides
[9,10], metallic glasses [11], shape memory alloys [12], inor-
ganic-organic hybrid materials [13], etc.) and prediction of mate-
rial properties (electronic properties of inorganic materials [14],
grain boundary energies of crystalline materials [15], material
phase transition [16], crystal structures [17], etc.), which are pri-
marily within phase 2 of the material development. While phase
3, material synthesis, the critical step towards the final applica-

FIGURE 1

tion of materials, remains less studied. Moreover, along with
development of high-throughput first-principles computations,
the need for efficient and controllable synthesis becomes even
more pressing to cope with the dramatically growing volume of
predicted and screened materials. Among the few pioneering
studies of ML-guided synthesis, most of them focus on exploring
the space and underlying mechanism of specific chemical reac-
tions, instead of the synthesis of materials for practical applica-
tions [18-20]. Thus, it is timely to explore the capability of ML
to guide the synthesis process of advanced materials.

In this work, to demonstrate the feasibility of optimizing and
accelerating the synthesis process of materials through ML, we
implement supervised ML on the CVD synthesis of 2D MoS,,
which is a promising candidate for numerous applications
[2,3,21-23]. The paradigm is schematically depicted in Fig. 1b.
The synthesis data are retrieved from archived laboratory note-
books from our laboratory. Our goal is to achieve the (1) quanti-
tative understanding of the synthesis systems, (2) improvement
of the experimental outcome and (3) acceleration of material
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Schematic illustration of a paradigm for ML-guided synthesis of advanced inorganic materials. (a) The life cycle of materials development includes four
phases: elements and compound database preparation, property prediction and optimization, materials synthesis, as well as practical application. As ML has
demonstrated its great potential in phase 2, its feasibility in material synthesis scenario (i.e., phase 3) is investigated in this work. (b) Workflow to achieve the
optimization and acceleration of inorganic material synthesis. Model construction, optimization and PAM are the three key steps, applicable to both
classification and regression material synthesis scenarios.
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synthesis with ML. A classification model is constructed, from
which the influence of each synthesis parameter on the experi-
mental outcome can be extracted and quantified, providing the
experimentalists general guidance on parameter tuning for
future experiments. The trained ML model is also capable of pre-
dicting the probability of successful synthesis given a set of CVD
parameters and recommending the most favorable conditions.
Progressive adaptive model (PAM) is further introduced to accel-
erate the development of new materials, which can maximize
the experimental outcome and effectively reduce the number
of trials. Most importantly, the principle demonstrated on CVD
synthesis can be extended to other multi-variable synthesis
methods, not only to improve the success rate, but also to
enhance the process-related properties. A regression model is also
successfully constructed on the hydrothermal-grown carbon
quantum dots (CQDs), to enhance the property of photolumi-
nescence quantum yield (PLQY).

ML-guided CVD synthesis with high success rate
In order to realize the controllable synthesis of advanced inor-
ganic materials, the ambiguous relationship between various
synthesis parameters and outcomes need to be understood. ML
has great potential for unveiling such relationships through
learning existing synthesis data, and then recommending opti-
mal growth conditions with high success rate. Here, the CVD-
grown MoS; is targeted not only because of its fascinating prop-
erties, but more importantly, the information obtained and
methodology established with MoS; can be potentially extended
to a full spectrum of CVD-grown materials including carbon nan-
otubes [24], graphene [25], oxides [26], nitrides [27], and transi-
tional metal dichalcogenides (TMDs, with a general formula of
MX, where M refers to transition metal and X refers to chalcogen
atoms) [6]. They are synthesized in a similar manner: (1) feeding
precursors (e.g., gas, liquid or solid based), (2) controlling/opti-
mizing the macroscopic parameters (e.g., precursor flowing rate,
temperature, pressure) and (3) obtaining the materials, as shown
in Fig. 1.

Dataset. The CVD-grown MoS, dataset, containing 300
experimental data points, is collected from our archived labora-

FIGURE 2

tory notebook. The detailed synthesis process is presented in
Methods. Among them, MoS; is successfully obtained in 183
experiments (61%), whereas the rest 117 experiments show neg-
ative results (39%). A binary classification problem in ML is
hence formulated by defining “Can grow” as positive class and
“Cannot grow” as negative class. Sample size of 1 um is adopted
as the boundary to classify the “Can grow” and “Cannot grow”
categories. Growth of MoS, with sample size larger than 1 pm
is considered as “Can grow” and smaller than 1 pm is considered
as “Cannot grow”. This criterion is based on the fact that it is
hard to determine whether the point of interest is the sample
or a nucleation site when its size is below 1 pm owing to the res-
olution limit of optical microscope (OM). Also, there is no prac-
tical use for such small sized MoS,. Characterizations of a typical
“Can grow” sample including OM, Raman spectroscopy and
scanning transmission electron microscopy are shown in
Fig. S1 in the Supporting Information.

Feature engineering. 19 features including gas flow rate,
reaction temperature, reaction time, etc. are initially identified
to describe the CVD process collectively (Table S1, Supporting
Information). The initial feature set consists of two parts: synthe-
sis process-related (i.e., CVD furnace parameters) as well as
reaction-related (i.e., reactant information). After eliminating
the fixed parameters and those with missing data, 7 features with
complete records are retained and constitute the final feature set,
which are also empirically considered as essential parameters for
CVD-grown MoS; by the experimentalists [6,28,29]. The new
feature set consists of distance of S outside furnace (D), gas flow
rate (Rg), ramp time (t;), reaction temperature (T), reaction time
(t), addition of NaCl, and boat configuration (F/T) where F and
T represent flat and tilted and boat refers to the container in
which precursors are placed for CVD reaction. Detailed feature
overview and histogram of the dataset over each feature are
shown in Table S2 and Fig. S2, respectively, in the Supporting
Information. Pearson’s correlation coefficients are calculated to
quantify the mutual information content between all pairwise
features. For ML applications, it is desired to have features with
minimum redundancy in information (Fig. 2a). Low linear corre-
lations for most of the features indicate that independent and

Model evaluation and interpretation of the CVD-grown MoS, dataset. (a) The heat map of the Pearson’s correlation coefficient matrix among the selected
features of CVD-grown MoS,. (b) Receiver operating characteristic (ROC) curve of XGBoost-C. High AUROC unveils the great capability of the model to
distinguish between two classes. (c) Feature importance retrieved from XGBoost-C that learns from all 300 data samples, with unique and consistent SHapley
Additive exPlanations (SHAP) method. Rs and T are the two most important features.
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informative features have been selected to form the essential fea-
ture set [10].

Model selection. Based on “no-free-lunch theorem” [30],
there is no universally optimal algorithm for all problems. Thus,
in this work, XGBoost classifier (XGBoost-C, a more powerful
variant of gradient boosting decision tree; see Methods) [31], sup-
port vector machine classifier (SVM-C) [32], Naive Bayes classifier
(NB-C) [33], and multilayer perceptron classifier (MLP-C) [34] are
employed on MoS, dataset for selecting the best model. These
models have been successfully applied or considered in many
material science problems, especially for those with small data-
sets [10,12,35,36]. Notably, considering the small dataset but
possibly intricate relationship between the features and the out-
come, both simple and complex models are considered. Each
candidate model is evaluated with ten runs of nested cross valida-
tion to avoid overfitting in model selection [37]. Detailed work-
ing principle is illustrated in Fig. S3 in the Supporting
Information. The whole dataset is shuffled in each run of nested
cross validation, with the outer loop assessing the performance
of the models on unseen datasets (ten-fold outer cross valida-
tion), and the inner loop conducting hyperparameter search
and model fitting (ten-fold inner cross validation).

Detailed discussion of the characteristics of each model and
the quantitative comparisons among models is provided in
Fig. S4 in the Supporting Information, indicating that
XGBoost-C reproduces the best agreement to the true synthesis
outcomes and generalizes well to unseen data. Receiver operating
characteristic (ROC) curve of XGBoost-C is presented in Fig. 2b,
which reports the prediction performance of positive class (cor-
rectly versus incorrectly predicted) with all possible prediction
thresholds (see Methods) [38]. Large area under ROC curve
(AUROC) of 0.96 reflects the model'’s effectiveness in distinguish-
ing between “Can grow” and “Cannot grow” classes. Moreover,
the learning curve displayed in Fig. S5 in the Supporting Infor-
mation shows the performance of the model with increasing
number of epochs during training. The consistent performance
of the model with a narrow gap between training and validation
denotes that XGBoost-C is not overfitted to the training data,
ensuring its good performance on unseen data. Therefore,
XGBoost-C is chosen to learn the nonlinear mapping from
CVD synthesis parameters to experimental outcome from the
whole MoS, dataset, and subsequently make predictions on
unexplored conditions.

Optimization of synthesis condition for higher
success rate. Optimization involves distilling the importance
of synthesis parameters on experimental outcome from the
trained ML model, and applying the same model to obtain the
optimal experimental conditions. The schematic of optimization
process is provided in Fig. S6 in the Supporting Information.
SHapley Additive exPlanations (SHAP) is used to quantitatively
understand the CVD synthesis system through unveiling the
intricate relationship between features and output captured in
the obtained best model, XGBoost-C (see Methods). It is a unified
approach to interpret ML models by using additive feature
importance measures that is proven to be unique and consistent
with human intuition [39]. As shown in Fig. 2¢, the gas flow rate
(Rp) plays the most important role in determining whether MoS,
can be synthesized, followed by the reaction temperature (T) and

reaction time (t). To interpret from the perspective of laboratory
experiments, R¢ is a very important growth parameter, which
affects the exposure time and sulfur source controlling. Low R¢
will dramatically decrease the deposition rate of precursors on
the substrate, and thus make it difficult to grow MoS,. On the
other hand, MoS, can hardly be synthesized at very high R
either, because high flow rate may cause instability during crystal
growth and atoms do not get enough time to move into the right
lattice position [40]. T is critical in determining the vapor pres-
sure of the reactants and dominating the nucleation rate and
the growth rate of MoS, grains. Moreover, the thickness of
formed sample normally possesses a positive correlation with
reaction time t. Thus, the appropriate selection of R¢, T and t is
of great importance for the synthesis of atomic-layer 2D MoS,
from both ML and experimental points of view [6,28,29]. This
can also serve as a general guidance for the synthesis of other
2D materials, especially TMDs, due to their similar growing con-
ditions as discussed above.

The optimal synthesis conditions of 2D MoS; are further iden-
tified with XGBoost-C in the unexplored search space, whose dis-
tribution is illustrated in Fig. S7 in the Supporting Information.
In order to achieve this, the possible input range of each critical
parameter is firstly defined as in Table S3 in the Supporting Infor-
mation, resulting in 2,112,000 possible combinations in total.
Next, XGBoost-C is applied to predict the “Can grow” probabil-
ity of all the conditions. 10 synthesis conditions with the highest
predicted probabilities are then tested in the laboratory with
results shown in Table S4 in the Supporting Information.
Detailed feature analysis of the recommended 10 conditions is
provided in Fig. S8 in the Supporting Information. 2D MoS, is
successfully synthesized under all 10 conditions, which substan-
tially exceeds the 61% success rate in the original MoS, dataset,
verifying the validity and effectiveness of the ML model.

Acceleration with progressive adaptive model
(PAM). With the proven effectiveness of ML guidance in mate-
rial synthesis, it is hypothesized that the early intervention of ML
might lead to an enhanced experimental outcome and time
reduction. Therefore, PAM is further proposed, which starts from
a small initial dataset and evolves with iterative feedback loops.
In another study, a similar adaptive design strategy has been suc-
cessfully applied to identify the material composition with the
optimal targeted property, in which case the authors focus on
the best outcome achieved [12]. However, the proposed PAM
aims to enhance the total experimental outcomes of continuous
synthesis loops. Thus, the whole searching process is evaluated
instead of assessing the best result achieved by any single loop.
To directly compare the performance of human strategy-based
and ML-guided synthesis, PAM is evaluated with the same
CVD-grown MoS; dataset through off-line analysis. The existing
dataset serves as a baseline representing human strategy.

The schematic of PAM is provided in Fig. 3a. Initially, N; syn-
thesis conditions are randomly chosen and labeled by their
respective synthesis outcomes extracted from the dataset. Nj is
determined such that there are at least ten samples in each class
to draw the boundary between classes, in order to perform the
ten-fold cross validation. XGBoost-C model is first trained on
N; data and then used to predict the “Can grow” probability of
the rest (300 — N;) synthesis conditions, assuming the experi-
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FIGURE 3

Schematic of PAM for accelerating inorganic synthesis and its overall performance on CVD-grown MoS,. (a) Outline of the PAM workflow, displaying feedback
loops and exiting condition. (b) Plot of the highest predicted “Can grow” probability versus the number of explored conditions, smoothed with median filter
of window size 3 to highlight the trend. Blue line represents the number of “Can grow” samples found versus the number of explored conditions. (c) Plot of
error rate of PAM versus the number of explored conditions, smoothed with median filter of window size 3 to highlight the trend. The vertical dashed lines in
b and c indicate the critical point. (d) Distribution of the critical points of 1000 PAM trials. The critical points densely distribute around the mean of 189.28. (e)
Plot of the success rate, time reduction and true positive rate on the whole dataset achieved in each PAM trial. Together with (b), it shows that PAM performs

stably and consistently produces high success rate.

ments are yet to be conducted. One condition with the highest
probability together with its true label is then augmented to
the training set. The same steps are repeated in the subsequent
loops. PAM stops at the critical point, N, where the “Can grow”
probabilities of all (300 — N¢) conditions are predicted to be smal-
ler than 50.0% for the first time (i.e., PAM predicts all the remain-
ing conditions as “Cannot grow”). The success rate, true positive
rate and time reduction based on all the experiments conducted
are evaluated to assess the performance of PAM-guided materials
synthesis (see Methods).

One typical trial of PAM is visualized and analyzed in Fig. 3b
and c. The highest predicted “Can grow” probability of each trial
is plotted versus the number of explored conditions, as shown in
Fig. 3b. The highest probability drops below 50.0% at 193, thus
N¢ =193. Among the 193 experiments, 166 produce “Can grow”
samples, resulting in a success rate of 86.01%, with ~25%
improvement from the original MoS, dataset. In addition,

35.67% time reduction with 90.71% true positive rate is achieved
with PAM, at the cost of an error margin, where type-I and type-II
errors equal to 15.89% and 10.56%, respectively (see Methods).
The sum of type-I and type-II error reaches the lowest around
N, verifying the validity of the choice of the critical point.

To further investigate whether the randomly selected initial
training set affects the model’s performance, PAM is repeated
1000 times on shuffled MoS, dataset. Validation of the selection
of 1000 trials is provided in Fig. S9 in the Supporting Informa-
tion. 1000 trials of PAM result in a distribution of N¢ as shown
in Fig. 3d, where N¢ mainly clusters to the mean of 189.28
(£28.89). The respective success rate, time reduction and true
positive rate of 1000 trials are calculated and presented in
Fig. 3e. The success rate remains stably high at around 83.60%,
with small variance (£5.57). Average of time reduction and true
positive rate are 36.90% (+£9.63) and 87.13% (+13.78), respec-
tively. It is thus seen that PAM can help the experimentalist iden-
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tify the optimal synthesis conditions quickly, and thus consider-
ably reduce the time on empirical trials.

Based on the CVD-grown MoS, dataset, through model con-
struction, optimization and PAM, our results above demonstrate
that our proposed ML methodology can achieve high success
rate and time reduction, and has great advantages in navigating
complex multi-variable synthesis systems of inorganic materials.

To investigate the generalizability of the proposed method
within the CVD system, 255 experimental data of WTe, are then
retrieved from the archived laboratory notebook and fed to the
XGBoost-C model. WTe, is another important member of 2D
TMDs family, which is also one of the most promising type-II
Weyl semimetals and topological materials [41,42]. Correspond-
ing results are provided in Fig. S10 in the Supporting Informa-
tion. As indicated in Fig. S10c, XGBoost-C performs very well
on the WTe, dataset with high AUROC of 0.93. Feature impor-
tance extracted from the model (Fig. $10d), suggests that H, flow
rate (i.e., gas flow rate, R¢) and reaction temperature (T) are the
top two features for the CVD synthesis of WTe,, which are in
good agreement with the results of MoS,. A detailed feature com-
parison between MoS, and WTe, systems has been summarized
in the Table S5 in the Supporting Information. Based on the fea-
ture importance, morphology control of WTe; is achieved and a
rational growth mechanism is further proposed, which are dis-
cussed in detail in another study [43]. One typical trial of PAM
on WTe, dataset is visualized and analyzed in Fig. S10e, with
Nc equals to 142. It suggests that 44.31% time reduction with
92.11% true positive rate could be achieved with the proposed
PAM.

ML-guided hydrothermal synthesis with enhanced targeted
property

To further verify the generalizability of our established method-
ology across synthesis methods, we have extended its application
to the hydrothermal system, a well-known multi-variable syn-
thesis method to obtain inorganic materials [44]. aiming to
enhance the process-related properties as shown in Fig. 1b.
Recently, carbon quantum dots (CQDs) obtained by hydrother-
mal method have gained substantial attention for their tunable
low toxicity, high biocompatibility and robust surface engineer-
ing capacity and thus have been widely used in diverse fields
including light emitter, sensors, catalysis, bio-imaging, and
energy harvesting etc [45,46]. Therefore, improving the proper-
ties of CQDs with ML is of great research interest. Most impor-
tantly, it showcases the feasibility of our methodology in
addressing regression problems on top of classification problems
(CVD-grown MoS, dataset).

Dataset and model construction. For the growth of
CQDs, the experimental setup and detailed synthesis process
are provided in Fig. S11 in the Supporting Information and
Methods. Empirically, six hydrothermal parameters are identi-
fied as significant input features: pH value (pH), reaction temper-
ature (T), reaction time (t), mass of precursor A (M), ramp rate (R;)
and solution volume (V). Detailed feature overview is shown in
Table S6 in the Supporting Information. Feature correlation is
presented in Fig. S12 in the Supporting Information, with low
linear correlations verifying the effectiveness of feature selection.

As high photoluminescence quantum yield (PLQY) is a key prop-
erty of quantum dots desired for applications, it is targeted in this
work for further enhancement. 467 experimental records are
retrieved from our archived laboratory notebooks, with different
growth parameters and respective PLQY ranging from O to 1
clearly labeled.

In order to best infer PLQY from the features, several regres-
sion algorithms are evaluated with nested cross validation men-
tioned above, including XGBoost regressor (XGBoost-R) [31],
support vector machine regressor (SVM-R),[32] Gaussian process
regressor (GP-R) [47], and multilayer perceptron regressor (MLP-
R) [34]. Coefficient of determination (R*) is adopted as the pri-
mary performance indicator, which measures the proportion of
variance of the outcome (i.e., PLQY) that is predictable from
the features. Detailed model comparison results are provided in
Fig. S13 in the Supporting Information. XGBoost-R outperforms
the rest by a large margin with its R* equals to 0.8402, where
approaching one is desirable; and is thus selected as the best
model.

Optimization for higher PLQY. After obtaining the
trained XGBoost-R model with the full dataset, feature impor-
tance of the hydrothermal system is studied as well. As shown
in Fig. 4a, pH value plays the most important role in determining
the value of PLQY, followed by reaction temperature and reac-
tion time. This coincides with our expectation: (1) pH will affect
the formation of CQDs, as small stable CQDs would dissolve in
the acidic and basic solutions. (2) Optimal reaction temperature
is required for the formation of CQDs. Higher temperature will
result in higher average kinetic energy of molecules and more
collisions per unit time, damaging the formation of stable CQDs;
and lower temperature would retard or even prevent the forma-
tion of CQDs because of insufficient chemical reaction energy.
(3) Reaction time is an important factor controlling the size of
CQDs, which then affects their photoluminescence properties
owing to the quantum confinement effect. Inadequate time will
not lead to the formation of CQDs, while prolonged time will
result in large-sized CQDs. When the size is larger than the exci-
ton Bohr radius, the quantum confinement effect of CQDs will
be impaired and PLQY will be reduced.

The trained XGBoost-R model is then applied to predict the
PLQY of 1,555,840 possible synthesis conditions resulting from
the combinations of different values of features shown in
Table S7 in the Supporting Information. Eleven synthesis condi-
tions are recommended by the model attributed to their highest
predicted PLQY. Experiments are then carried out in the lab with
results provided in Table S8 in the Supporting Information. High
PLQY of 55.5% (vs. 52.8%, the highest PLQY in the training set)
is achieved surprisingly, which is one of the highest PLQY
reported with such ultra-low heteroatom doping precursor ratio
[45]. Characterizations of the obtained CQDs are provided in
Fig. 4b and Fig. S14 in the Supporting Information. Moreover,
the average PLQY in the recommendation set reaches 53.56%,
more than twice the average value of the training set. Compar-
ison of the performances of the training set and the ML-
provided recommendation set is presented in Fig. S15 in the Sup-
porting Information, indicating great effectiveness of the ML
model.
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FIGURE 4

Optimization and acceleration of hydrothermal-grown CQDs with XGBoost-R and PAM. (a) Feature importance retrieved from XGBoost-R that learns from the
full dataset. The most important features are pH and T. (b) The UV-Vis absorption wavelength of the as prepared S,N-CQDs, and the fluorescence emission
spectra at different excitation wavelengths. (c) Plot of PLQY achieved with or without ML guidance versus number of explored conditions of a typical PAM
trial, smoothed with median filter of window size 3 to highlight the trend. (d) Distribution of the critical points of 1000 PAM trials, suggesting that PAM model
is 99.9% confident to find the best condition of this confined dataset within 115 experiments.

Acceleration with PAM. The limitation with traditional
experimental exploration arises from the heuristic choice of
experimental conditions due to the lack of guidance. Specifically,
the optimal synthesis condition within the pre-defined search
space needs to be explored through a large number of experi-
ments. In the CQDs dataset, without ML guidance, the probabil-
ity of finding the best synthesis condition is evenly distributed
among the full dataset of 467 experiments, leading to excessive
waste of time. To tackle such problems as well as to test the gen-
eralizability of PAM proposed above, the performance of PAM on
CQDs regression dataset is carefully examined, aiming to effi-
ciently identify the best synthesis condition with minimum
number of trials.

In a typical run of PAM, along with the increase of explored
conditions, the corresponding true yield shows a clear declining
trend, suggesting that the PAM model is capable of identifying
the best synthesis conditions at the early stage of PAM loops
(see Fig. 4c). In contrast, the original empirical exploration
demonstrates a much more random nature. In order to verify
that PAM can perform stably with varying initial training sets,
PAM on CQDs dataset is repeated 1000 times with randomly
chosen initial training sets. In each trial, the loop number where
the best synthesis condition is found, denoted by N, is recorded.
The results of 1000 trials are summarized in Fig. 4d, from which
we can see that the PAM model is able to find the best condition
of this confined dataset within 115 experiments with 99.9% con-
fidence. Compared to the 467 experiments that need to be con-

ducted through a heuristic approach, our proposed PAM-based
approach helps to achieve 75.37% reduction in time for identify-
ing the optimal synthesis conditions for WTe;.

Conclusion and outlook
In summary, this study demonstrates the successful application
of ML in guiding the synthesis of inorganic materials, through
the establishment of the methodology including model construc-
tion, optimization and PAM. High AUROC of 0.96 is achieved
with XGBoost-C for the CVD system in predicting the synthesis
result of 2D MoS,, thereby optimizing its CVD synthesis condi-
tion. PAM, whose active feedback loop renders ML capable of
guiding new material synthesis at the beginning stage, is next
used to enhance the experimental outcome as well as minimize
the number of trials. More importantly, we also demonstrate that
the proposed methodology could be extended to any type of
multi-variable synthesis method across various material cate-
gories. In this paper, this is achieved by applying the proposed
ML strategy to a hydrothermal system to effectively improve
the process-related properties (i.e., PLQY) of CQDs. Our results
corroborate the potential of ML to optimize and accelerate the
material synthesis process, thereby encouraging the development
of advanced inorganic materials for practical applications in
terms of time reduction and property enhancement.

In this study, we have focused on using ML models for the syn-
thesis of a single type of material with a few important features, to
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simplify the complex problem of material synthesis through
bypassing the chemistry factors behind such processes. However,
to further exploit the useful information contained in historical
trials and guide material synthesis more effectively, a more com-
prehensive model involving chemistry-related features such as
the vapor pressure, solubility, reactivity, etc., as well as various
types of material is very much required. It may not only produce
more accurate predictions and guidance, but also reveal new
information or hypotheses regarding the fundamental mecha-
nism of successful synthesis by inverting the model. Additionally,
the establishment of an integrated database across inorganic
material synthesis systems is another promising perspective.
Standardization of data recording protocols and construction of
a universal feature list are two essential premises. Despite huge
amount of efforts and joint interdisciplinary collaboration
demanded, the established database will contribute to the mining
of unidentified relationships between synthesis parameters and
experimental outcomes, paving the way for data-driven intelli-
gent synthesis of advanced inorganic materials with ML.

Methods

Synthesis of MoS,: Sulfur (S) and molybdenum trioxide (MoQOs3)
are used as precursors. Si wafer with a 280 nm SiO, top layer is
used as substrate. The MoO3; powder is put into the boat, and
Si/SiO; substrate is put on the boat with the polished surface
down. The boat is then placed in the middle of the 1-in. diameter
quartz tube. Sulfur powder is positioned a few centimeters away
from the furnace mouth in the upstream and Argon (Ar) gas is
used as the carrier gas. The system is heated to the growth tem-
perature with designated ramping rate and maintained for a
few minutes for the growth of MoS,.

XGBoost: XGBoost derived from Gradient Boosting Decision
Tree (GBDT) [31,48], is a typical class of gradient boosting that
employs decision trees as base estimators. It makes decision
through an ensemble of M base estimators h,,m=1,---,M:

R M
= )
m=1

Given N training data {(x,y,)},, the objective is to
minimize:
N R M
0bj(0) = 3 1yis¥) + 3 Qhw)
i=1 m=1

where ), I(y,, 7,) is the training loss and Y-\, Q(h,,) is a regular-
ization term which penalizes complexity of the base estimators.
Additive training strategy adds one new tree at a time, by choos-
ing the tree that optimizes the objective at step t:

0bj(0)' = X1 (ys 7, ) + Shui Q) whereas

Vi = () =7 4 ().

ROC curve: To plot the ROC curve of XGBoost-C model [38],
nested cross validation is employed to generate predicted proba-
bilities on 300 data samples respectively. In ten-fold outer cross
validation, nine folds are used as the model development set,
while the predicted probabilities of the remaining 30 samples
are recorded. In the inner cross validation, the best hyperparam-
eters are determined on the model development set with strati-

fied ten-fold cross validation. True positive rate, which makes
up the y-axis of ROC curve, indicates the percentage of true pos-
itive samples that are correctly predicted. False positive rate, x-
axis of ROC curve, is the percentage of true negative samples that
are falsely predicted as positive.

SHapley Additive exPlanations (SHAP): SHAP is a unified
approach for additive feature attribution, which produces theo-
retically sound and unique solutions [39]. The explanation
model g(Z) satisfies g(2) = ¢, + 1, ¢z, where 2/ € {0,1}", M
is the number of input features, and ¢; € R. z; = 1 indicates a fea-
ture that is being observed, otherwise it is denoted by 0. ¢; repre-
sents the feature importance value.

To compute SHAP values, f,(S) = E[f(x)|xs] is defined wheref
is the function, i.e., ML model, to be explained, S is the set of
non-zero indexes in 7, and E[f(x)|xs] is the expected value of
the function conditioned on the subset S of the input features.
Using these conditional expectations, SHAP value is assigned to
each feature:

1SI1M = 13| — 1)!
b= 2 M

SCN\{i}

[FL(SULi}) =19

where N is the set of all input features.

Success rate, time reduction and true positive rate on the whole
dataset: Success rate is defined as the number of “Can grow” con-
ditions explored divided by the total number of explored condi-

[Na

tions (i.e., N¢), while time reduction is calculated as ‘,’\’,7’"?” True
a

positive rate is defined as the number of correctly predicted pos-
itive samples over the total number of true positive samples. The
true labels are obtained from experimental results, with positive
and negative classes referring to “Can grow” and “Cannot grow”,
respectively. At N¢ of each trial of PAM, the true positive is com-
puted as the number of “Can grow” conditions found divided by
the total number of true conditions in the whole dataset (i.e., 183
for the MoS, dataset).

Type-I and Type-II Error Rate: Type-I error rate indicates the per-
centage of falsely predicted positive samples (False Positive, as it
is falsely predicted as positive but actually in negative class) over
the total number of true negative samples. Similarly, type-II error
rate is defined as the percentage of falsely predicted negative
samples (False Negative, as it is false predicted as negative but
actually in positive class) over the number of true positive sam-
ples. For PAM, type-I and type-II error rates are calculated as fol-
lows. N; refers to the initial training set. Nk represents the
training set in the k™ loop (inclusive of N;), and thus the test
set is (Nay — Ng). Since (Nx — N;) are the experiments conducted
under the guidance of PAM, which are regarded as the most prob-
able “Can grow” conditions in each loop, they are predicted as
positive samples by PAM. The prediction results of the test set
are produced by the model trained on N. In the k™ loop:

Ni—N1)™ + (Nay — N
Type —1 error rate:( k= N1) o+ (Nan = Ni)

(Nan — N1)~
N — N, FN
Type —1I error rate = M
(Nan —Nq)

whereas for a random set N, N* and N~ represent the number of
samples in true “Can grow” and “Cannot grow” class respectively
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in N, N stands for number of false positive samples in N, NN
indicates the number of false negative samples in N.

Synthesis of carbon quantum dots (CQDs): 10-60 mL 0.01 M sul-
famide solution and 0.2-20 g sodium citrate is added into a
100 mL Teflon-lined stainless-steel autoclave. Then, the auto-
clave is kept in an oven at 80-300 °C for 0.1-12 h. After the reac-
tion, the resulting product is filtered using a 0.22 mm membrane
filter followed by concentrating using rotary evaporator to obtain
the purified (S, N)-CQDs. The filtrate is dialyzed in a 500 Da dial-
ysis bag for 2 days to obtain the final S, N-CQDs, against ultra-
pure water which is renewed every 10-12 h, until almost no Na
+ (below detective limit) is detected in DI water.

Data and code availability

The raw data required to reproduce these findings are available to
download from https://github.com/MSwML/ML-guided-mate-
rial-synthesis.git. The source code used to perform the ML tests
and to generate the plots used here, is available under MIT
License.
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