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Abstract— It is reported that the symptoms of autism
spectrum disorder (ASD) could be improved by effective
early interventions, which arouses an urgent need for large-
scale early identification of ASD. Until now, the screening
of ASD has relied on the child psychiatrist to collect med-
ical history and conduct behavioral observations with the
help of psychological assessment tools. Such screening
measures inevitably have some disadvantages, including
strong subjectivity, relying on experts and low-efficiency.
With the development of computer science, it is possible
to realize a computer-aided screening for ASD and alleviate
the disadvantages of manual evaluation. In this study, we
propose a behavior-based automated screening method
to identify high-risk ASD (HR-ASD) for babies aged 8-24
months. The still-face paradigm (SFP) was used to elicit
baby’s spontaneous social behavior through a face-to-face
interaction, in which a mother was required to maintain
a normal interaction to amuse her baby for 2 minutes (a
baseline episode) and then suddenly change to the no-
reaction and no-expression status with 1 minute (a still-
face episode). Here, multiple cues derived from baby’s
social stress response behavior during the latter episode,
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including head-movements, facial expressions and vocal
characteristics, were statistically analyzed between HR-
ASD and typical developmental (TD) groups. An automated
identification model of HR-ASD was constructed based on
these multi-cue features and the support vector machine
(SVM) classifier; moreover, its screening performance was
satisfied, for all the accuracy, specificity and sensitivity
exceeded 90% on the cases included in this study. The
experimental results suggest its feasibility in the early
screening of HR-ASD.

Index Terms— High-risk autism spectrum disorder, au-
tomated screening, multi-cue features, still-face paradigm,
head-movements, facial expressions, vocal characteristics

I. INTRODUCTION

ASD is a lifelong neurodevelopmental disorder related
to impaired social-emotional functioning [1]. The core

behavioral symptoms of ASD that appear within two years
after birth involve facial expressions, body behaviors and
voices, on which the diagnosis of ASD is based [2], [3]. The
exact cause of autism is still unclear, and there is no evidence
for a cure in the near future [2], but some studies [2], [4],
[5] have found that effective early interventions can improve
ASD symptoms and outcomes. A delayed diagnosis leads to
missing opportunities of early interventions. Therefore, the
screening of ASD much earlier than typical diagnosis age at
3-4 years after birth is essential to early interventions. The
good news is that some early warning signs before 24 months
of age, including less joint attention, lack of social smiles, no
response to calling name and communication impairments, etc.
[6], [7], have been found in social interactions of babies later
diagnosed with ASD. Based on these atypical early symptoms,
it is possible to perform an early screening of HR-ASD, which
will bring a ray of hope for the babies at risk of ASD.

Currently, the early detection of HR-ASD relies on time-
consuming manual measures, including collecting medical
history, interviews and behavioral observations. To improve the
screening efficiency, an increasing number of researchers focus
on developing computer-aided technologies for early identifi-
cation of ASD [2], [8]. These studies mainly belong to one
of two broad categories, including human brain biomarkers
and extrinsic behavioral markers. For studies related to the
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brain, some non-invasive measurements, such as electroen-
cephalography (EEG), magnetic resonance imaging (MRI) and
functional magnetic resonance imaging (fMRI), have been
employed for finding biomarkers between ASD and healthy
comparison groups [9]. Wang et al. [3] conducted infant
tissue segmentations based on brain MRI scans and performed
statistical analyses to identify autistic and normal subjects aged
6 months. Bosl et al. [10] proposed using non-linear features,
derived from EEG signals, and the SVM calssifier to diagnose
HR-ASD cases at 3-36 months of age. On the basis of fMRI
signals, Emerson et al. [11] defined infants’ functional brain
connections at 6 months, which was also related to the scores
of social behavior, language, motor development and repetitive
behavior arising at 24 months of age, and they also used such
brain connections as features for identification of HR-ASD. In
addition to such automated diagnoses based on costly medical
examinations for infants’ brains, some researchers proposed to
develop behavioral markers-based diagnostic tools [12], where
video signals, audio signals and RGB-D (RGB image+depth
map) signals captured by low-cost sensors were utilized.

For example, Jaiswal et al. [13] designed a paradigm with
adult subjects reading and listening to short stories, after
which they proposed using computer vision cues derived
from RGB-D data as features for detection of ASD and
attention-deficit/hyperactivity disorder (ADHD). Liu et al. [14]
developed a machine learning method for identifying ASD
for 4- to 11-year-old children through tracked eye-movement
data, which was collected in an experimental scenario where
children were asked to distinguish between two races based
on facial images. Li et al. [15] collected a video-based eye-
movement dataset from ASD children (4- to 7-year-old) and
TD (6- to 8-year-old) children, and they achieved a diagnostic
classification accuracy of 93.7% based on the trajectory of
eye movement. Guha et al. [16] proposed a computational
approach to reveal the facial expressions imitation details at
9-14 years of life for high-functioning autism (HFA) and TD
children, where the reduced complexity in dynamic facial
behaviors was found to arise primarily from the eye region
for those HFA children. Although the existing researches [13],
[14], [15], [16] focusing on an automatic diagnosis of ASD
have achieved some progress, yet these studies were based
on comparatively older subjects who belonged to groups of
children, teenagers or adults. Some aforementioned experi-
mental paradigms and methods are even not applicable to
the babies before 24 months of age, because their language
skills, behavioral abilities and IQs are still in development.
Due to such development gaps, which led to challenges for
designing effective behavioral paradigms applicable to babies,
the behavior-based automated early screening of HR-ASD was
a less-touched problem in the existing researches.

Hashemi et al. [17] first designed a mobile application using
short movie stimuli to elicit behavioral and social responses
from babies, and utilized computer vision algorithms for
investigating baby behavioral markers. Jones et al. [18] applied
eye-tracking equipment to study eye fixation in infants later
diagnosed with ASD and found that these infants exhibited
a mean decline in eye fixation from 2 to 6 months of life.
Sheinkopf et al. [19] found that HR-ASD infants produced

pain-related cries with higher and more variable pitch than
those babies in a low-risk group. However, a lack of decision
models of binary prediction or severity score is one of common
limitations for these markers-related researches, where a final
diagnosis can not be provided. Besides, their performance in
the scenarios of actual daily social interactions also remains
to be seen.

Tronick et al. [20] proposed a pioneering paradigm, the still-
face paradigm, to assess babies’ emotion regulation abilities
in actual social interactions. Generally, the still-face paradigm
contains 3 episodes, i.e., caregiver-child interaction episode,
still-face (SF) episode and reunion episode [20], [21]. The still-
face effect has been found robust in most sample variations
(infant gender and risk status) and procedural variations (the
length of the still-face episodes and the use of intervals
between episodes) [21]. A number of studies have employed
this paradigm [22] for exploring behavioral markers to further
diagnose ASD in adult-baby interaction scenarios. Some initial
findings, regarding SF episodes, related to HR-ASD babies
before 24 months of age have been achieved, such as more
neutral affects [23], fewer frequent gaze shifts [24], longer
durations of gazing away from caregiver’s face [24], fewer
smiles [25], more typical SF effects [26]. Our previous finding
[27] showed that babies’ social behaviors in the still-face
episode were more relevant to the severity of ASD symptoms
compared to those in the former mother-baby interaction
episode.

To the best of our knowledge, most of the existing SFP-
based studies in autism-related fields still undergo the process
of manual coding and evaluation. Babies’ emotion regulation-
relevant cues in the still-face episode, including facial expres-
sions, voices and head-movements, have not been explored for
developing automated screening tools to identify HR-ASD.

Overall, the main contributions of this paper are as follows:
1) Multiple vocal and visual features derived from ba-

bies’ social stress response behaviors were first studied
to reveal behavioral differences between HR-ASD and
healthy babies aged 8-24 months.

2) A novel behavior-based automated method was proposed
for identification of HR-ASD. It has advantages of
high-accuracy, low-cost and high-efficiency, and it has
potentials for large-scale applications.

II. DATA COLLECTION

A. Participants

In this study, 45 infants and toddlers with positive outcomes
through the Modified Checklist for Autism in Toddlers (M-
CHAT) screening were preliminarily enrolled to HR-ASD
group and 43 typical developmental (TD) infants and tod-
dlers were enrolled to healthy control group. The study was
carried out in Nanjing Brain Hospital and was approved by
the Medical Ethics Committee of Affiliated Brain Hospital
of Nanjing Medical University (2017-KY089-01). All the
subjects’ guardians agreed that the subjects would participate
in this study and signed the informed consent form. For trial
registration information, please refer to the Chinese Clinical
Trial Registry (ChiCTR-OPC-17011995).
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The inclusion conditions for the HR-ASD were as follows:
(1) positive screening results based on the M-CHAT; (2) 8 ≤
age < 24 months; and (3) the mother was the major caregiver.
The exclusion conditions for the HR-ASD consisted of (a)
genetic or metabolic disease, such as Rett’s syndrome, Fragile
X syndrome, etc.; (b) neurodevelopmental disorders, including
language developmental disorder, intellectual disability, etc.;
(c) traumatic brain injury history; and (d) severe neurological
disease history and serious physical illness history.

Participants in the TD group must have met the inclusion
conditions of (2) and (3) and all the exclusion criteria as listed
for the HR-ASD group.

All participants were assessed with the Gesell develop-
mental schedules [28] at the time of enrollment. To assess
the severity of ASD, the babies subjects in the HR-ASD
group were assessed with the Communication and Symbolic
Behavior Scales Developmental Profile (CSBS-DP) [29], the
Childhood Autism Rating Scale (CARS) [30] and the Autism
Behavior Checklist (ABC) [31]. Two pediatric psychiatrists
provided a final diagnosis based on the Autism Diagno-
sis Interview-Revised (ADI-R) [32], the Autism Diagnostic
Observation Schedule (ADOS) [33] and the Diagnostic and
Statistical Manual of Mental Disorders, Fifth Edition (DSM-
5) within one month after their birthdays at 2 years of age.

After re-diagnoses, 5 cases (1 female and 4 males) in the
group at risk of ASD were diagnosed with other disorders
(language delay) and were categorized to non-ASD group
in this study. Limited to the small number of cases with
other disorders, a reliable analysis for overall non-ASD group
with varying cases could be overgeneralization. Therefore, we
narrowed the subsequent analysis to HR-ASD and TD groups.

The demographics of participants in HR-ASD and TD
groups are shown in Table I, where the sex of participants
was evaluated by the χ2 test while the age and developmental
quotient-based skills were evaluated by the Mann-Whitney U
test.

TABLE I
DEMOGRAPHICS OF PARTICIPANTS (MEAN±SD)

HR-ASD TD Z/χ2
p-value(n=40) (n=43) value

Sex 36(M)/4(F) 32(M)/11(F) 2.47 0.12
Age(months) 19.65±3.81 16.40±4.70 -3.41 <0.01

D
ev

.Q
uo

tie
nt Adaptability 78.78±17.07 92.98±7.88 -4.22 <0.01

Gross Motor 90.95±17.20 92.77±8.46 -7.26 0.47
Fine Motor 85.83±19.55 93.70±8.29 -2.30 0.02
Language 58.20±19.84 86.51±8.35 -6.25 <0.01
Social Skills 78.78±17.35 92.28±7.18 -4.37 <0.01

Notes: SD, standard deviation; M, male; F, female; Dev. Quotient,
developmental quotient of the Gesell developmental schedules.

B. Experimental Setup

To capture the data of babies’ social behaviors, we em-
ployed 4 wireless Ezviz CS-C2C-1B2WFR (1080P) cameras
to record videos at a sampling rate of 25 fps. At the same time,
the audio data were collected at a sampling rate of 44.1 kHz
with a built-in microphone, which is incorporated in a wireless

camera device. The experimental scene layout is shown in Fig.
S1 that is provided in Supplementary Material.

C. Still-face Process

In the preparation stage, an experimenter who had assess-
ment experience of babies’ behaviors explained the experi-
mental instructions to the mother subject. In the process of
face-to-face interaction, the mother subject sat in front of
her baby, and the baby subject sat in a baby chair. To avoid
unexpected interruptions for the experiment, the experimenter
kept quiet and monitored the behavioral experiment from the
other side of the same room. At the end of the first episode, the
experimenter provided a short voice notice to ask the mother
subject to start a new episode.

Following [34], we introduced the SFP by eliminating the
reunion episode to make the video and audio data collection
procedures more convenient. During the first episode, the
mother amused her baby without any touch of body as if
at home for 2 minutes. Then, the mother maintained the no-
reaction and no-expression status, and placed her gaze above
baby’s head during the 1-minute still-face episode. A snapshot
of our slightly modified SFP procedure is illustrated in Fig. 1.

Fig. 1. A snapshot of SFP with two episodes, including an amusing
interaction episode (left) and a still-face episode (right).

III. METHODS

In this section, we describe the methods for extracting fea-
tures from visual and vocal cues. The diagram of our proposed
method for the identification of HR-ASD is illustrated in Fig.
2.

A. Head-Movement Feature

To obtain the head-movements features, the OpenPose tool-
box [35], [36], [37] was employed for the estimation of key
head points, including the eyes, ears and nose. Among these
points, nose point location was found to be more accurate
in our preliminary experiment than the other key points. As a
result, the nose point was selected to represent the head center
for subsequent head-movement feature analyses.

The babies’ atypical head-movements in a social interaction
environment could reveal the social impairment of ASD [38].
Here, the babies’ head-movements data during the still-face
episode were utilized as a distinguishing cue for the classifi-
cation between the HR-ASD and TD groups. The following
statistical indicators for head-movements, including the max-
value and mean-value of the head-movement displacement
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Fig. 2. The proposed automatic method for the identification of HR-
ASD. The feature set contains three parts, including 3-dimensional
head-movement (HM) features, 384-dimensional vocal characteristics
(VoC) features and 900-dimensional HOG-based frame-level average
facial appearance (FA) features. Multi-cue-based features were concate-
nated in serial order to obtain the final fused feature representation for
classification.

and time delay from the first frame to the frame where the
max-value of the head-movement displacement appeared, were
computed for analyses.

The point representing the head center for each frame is
denoted by [c1, c2, · · · , ci, · · · , cL], where L is equal to
the length of the video duration multiplied by its frame rate.
Then, the computation of the head-movement-based feature is
as follows:

i. Calculate the Mahalanobis distance between ci and c1,
and then denote the distance vector by d=[d1, d2, · · · , di, · · · ,
dL], where d1=0;

ii. Calculate the max-value, mean-value of the vector d, i.e.,
max dL, mean dL, then calculate the time delay δt between the
first frame and the frame where the max dL appears;

iii. Combine the results into a feature vector v = (max dL,
mean dL, δt).

B. Facial Appearance Feature
In our experimental scenario, as illustrated in Fig. S1, we

set up three cameras to capture baby’s facial expressions, i.e.,
one near-frontal camera and two non-frontal cameras. The
near-frontal camera aims to capture more facial expression
information for favoring the subsequent analysis. As a result,
its derived video data were utilized to calculate the facial
appearance features.

Some babies showed head-movements during the still-face
episode, which resulted in more difficulties for detecting faces,
compared with the conditions of the frontal-view facial im-
ages. To handle the problem induced by head-movements, we

introduced a face detection and alignment toolbox, MTCNN
[39], which was designed by deep convolutional neural net-
works (CNN) and was robust to challenges in unconstrained
environments, such as various poses, illuminations and oc-
clusions. The MTCNN toolbox was widely used in the field
of face-relevant preprocessing. We re-implemented the face
detection framework based on the MTCNN for accurate
face locating in sequential frames. The flowchart of re-
implementation for MTCNN-based face detection is illustrated
in Figure S2, see the Supplementary Material. For small head-
movement scenarios, the detected facial region within the pre-
dicted bounding box by MTCNN was fed into the OpenFace
[40] toolbox for facial image registration as in [41]. First,
the toolbox outputted 68 key facial landmarks coordinates for
each face, and the face shape can be represented by these
points. Then, the current detected face was aligned to the target
through a similarity transform, on the basis of the detected
facial landmarks and the reference of a frontal facial template
[41]. The resolution for a normalized face is 112×112 pixels
with a fixed distance of 45 pixels between two pupils. After
face normalization, the points surrounding the facial edge were
used to mask the face through constructing convex hull. An
example for visualization of facial normalization and masking
is illustrated in Fig. 3.

Fig. 3. Visualization for face normalization and masking. From left to
right, the images are (a) 68 detected facial landmarks, (b) source: a de-
tected face marked with triangular patches and (c)target: a normalized
face with face masking, respectively.

Through the face preprocessing as aforementioned, the noise
induced by head-movements could be largely reduced for the
detected facial images. However, we simply omitted the facial
image frame as in [42] for large head-movement scenarios,
where the baby’s face may not be detected by the face detector.

After face preprocessing, the babies’ face detection rates
were summarized. Since the face detection rate was not
normally distributed, we employed the Mann-Whitney U test
to assess significant differences between the two groups. The
comparison for face detection rates (mean±sd) corresponding
to the HR-ASD and TD groups during the still-face episode
is shown in Table II.

TABLE II
COMPARISON FOR FACE DETECTION RATES OF PARTICIPANTS

HR-ASD TD p-value

0.80±0.18 0.84±0.15 0.304

Each normalized face was used to calculate the frame-level
average facial appearance features. During this process, the
facial images were divided into nonoverlapping 12×12 blocks.
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To alleviate the side effects induced by misregistration error,
the blocks on the outermost edge were eliminated and the
central 10×10 blocks remained for each facial image.

Some pioneering studies [23], [42] have revealed the facial
expressions differences between ASD and non-ASD partic-
ipants. Here, we further verify this finding by proposing a
computational method to detail the differences between the
HR-ASD and TD groups.

Human facial expressions are produced by facial muscle
deformation according to the well-acknowledged facial action
coding system (FACS) [43]. For example, a smile expression
is composed of AU6 (Cheeks raised) and AU12 (Lip corners
pulled up). Each type of facial muscle deformations corre-
sponds to an unique local facial appearance feature. Motivated
by FACS and the development of image descriptors, such as
histogram of oriented gradients (HOG), a good representation
of appearance and shape information [44], we propose to
distinguish the HR-ASD and TD groups through analyzing
HOG features that were extracted from local facial regions.
It has also shown a more satisfied representation ability than
the raw image pixel from the view of better invariance to
changes in illumination and shadowing [44]. Concretely, we
describe the computation of HOG-based frame-level average
facial appearance feature for an image sequence in Algorithm
1, which is presented in Supplementary Material.

C. Vocal Feature
Since the core symptoms of ASD are also involved with

voice-related cues [45], we propose to reveal the differences
between the HR-ASD and TD groups from the perspective of
babies’ voices during the still-face episode.

We employed Audacity1 software for denoising. Both the
noise from background and recording device were eliminated
as much as possible by the software. Only the baby’s voice
could be heard after preprocessing.

To quantify the information of voice, low-level descriptors
(LLDs) were employed to characterize vocal data from the
views of frequency, energy and spectrum. The following
sixteen low-level descriptors [45], [46], [47] were taken into
consideration:
• Root Mean Square Energy (RMSE): a characterization of
the loudness of a sound signal;
• Twelve Mel-Frequency Cepstral Coefficients (MFCC 1-12):
a representation of phoneme based on different short-term
power spectrums of sound signals [48];
• Zero-Crossing Rate (ZCR) of sound signals: the rate of the
signal changing from positive to zero then to negative or vice
a verse, which is used for voice activity detection;
• Probability of Voicing (VP): a representation of the proba-
bility of detecting the sound signals as voiced;
• Fundamental Frequency (F0): the frequency of vocal chords
vibrating in voiced sounds, which is related to prosody.

The LLDs contain two groups of elements, including
smoothing of the short-term descriptors (16 elements) and

1Audacity software is copyright ©1999-2019 Audacity Team. Web site:
https://audacityteam.org/. It is free software distributed under the terms of the
GNU General Public License. The name Audacity is a registered trademark
of Dominic Mazzoni.

their first-order delta coefficients (16 elements). Twelve sta-
tistical functions were computed for these 32 elements to
obtain 384-dimensional vocal features (12×32). The em-
ployed statistical functions [45], [47] are as follows: arith-
metic mean (amean), maximum (max), minimum (min),
range (maximum-minimum), maxPos (an absolute position
corresponding to a maximum value) , minPos (an absolute
position corresponding to a minimum value), stddev (standard
deviation), slope (slope of a linear contour approximation),
offset (offset of a linear contour approximation), qerror (the
quadratic error computed from the actual contour and its
linear approximation), skewness (3th order central moment)
and kurtosis (4th order central moment).

Finally, the vocal feature was extracted through the open-
source toolkit openSMILE using the off-the-shelf feature set
with aforementioned 384 elements [45], [46].

D. Feature Fusion and Normalization
Motivated by some audio-video-based studies [49], [50],

where multiple cues derived from multi-modal signals were
fused to attain a better representation, we fused the head-
movement, facial appearance and vocal characteristics features
to facilitate the improvement of classification performance. At
the fusion stage, each unimodal feature vector was concate-
nated in serial order to attain the final multi-cue representation.

Since each attribute has a different range, it is necessary
to conduct column-based feature normalization (samples are
represented by row-vectors). The normalization was performed
on the training set and then applied to test set. We normalized
the value range [xmin, xmax] to [0,1], and the normalization
process can be formulated as follows:

xn =
x− xmin

xmax − xmin
. (1)

E. Classification and Evaluation
Subsequent to the feature extraction and feature normal-

ization, we employed the support vector machine (SVM)
[51] with a linear kernel for classification. SVM seeks a
classification hyperplane in a high-dimensional space to sep-
arate different types of cases from different categories by
maximizing the space between positive and negative groups.

We denote the samples and the corresponding labels as {x1,
· · · , xi, · · · , xn} and {y1, · · · , yi, · · · , yn}, respectively, where
yi∈{-1,+1} and n is the number of samples. The classification
hyperplane is as follows:

wT x− b = 0, (2)

where w = (w1, w2, · · · , wm) is the normal vector of the
hyperplane, and b represents the displacement term.

To evaluate the performance of the binary classification,
we employed accuracy (Acc.), sensitivity (Sen.), specificity
(Spe.), the area under the curve of the receiver operator
characteristic (ROC) and the positive predictive value (PPV) as
our evaluation indicators. Concretely, sensitivity, namely, the
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TABLE III
CLASSIFICATION RESULTS OF UNIMODAL FEATURES AND MULTI-CUE FEATURES

SVM KNN
Acc.(%) Sen.(%) Spe.(%) AUC(%) PPV(%) Acc.(%) Sen.(%) Spe.(%) AUC(%) PPV(%)

HM 59.04 90.00 30.23 57.73 54.55 54.22 42.50 65.12 54.07 53.13
FA 89.16 85.00 93.02 89.24 91.89 80.72 65.00 95.35 77.91 92.86

VoC 87.95 90.00 86.05 84.77 85.71 86.75 90.00 83.72 85.17 83.72
HM+VoC 86.75 90.00 83.72 83.14 83.72 87.95 90.00 86.05 85.76 85.71
HM+FA 90.36 85.00 95.35 89.83 94.44 80.72 65.00 95.35 77.91 92.86
VoC+FA 96.39 95.00 97.67 94.59 97.44 93.98 92.50 95.35 92.50 94.87

HM+FA+VoC 96.39 95.00 97.67 94.59 97.44 92.77 90.00 95.35 91.40 94.74

true positive (TP) rate, means the rate of the HR-ASD correctly
assigned to the HR-ASD group. Similarly, specificity, namely,
the true negative (TN) rate, represents the rate of the subjects
in the TD group correctly classified as TD. The value higher
than 0.7-0.8 is acceptable for the sensitivity and specificity of a
screening tool [52]. The accuracy is computed by (TP+TN)/N,
where N is the number of all subjects in both groups. ROC is
a probability curve, and the AUC provides the distinguishing
capability of the classifier between classes, i.e., HR-ASD and
TD. Here, the PPV is a probability that subjects with a positive
screening test truly have ASD, where the value higher than 0.5
is acceptable [52].

For performance and generalization evaluation, we adopted
a subject-independent 10-fold cross-validation protocol to con-
duct the experiments. In each fold, ∼90% subjects were used
for training, and the remaining ∼10% subjects were tested.
We repeated this process 10 times to cover each fold of the
data.

To check if the classification accuracy was attained by
coincidence, we employed two different classifiers, i.e., SVM
(linear kernel, less hyper-parameters compared with other
kernels) and KNN (a non-parametric method), for comparison.

IV. RESULTS AND ANALYSIS

A. Classification Results

The classification results corresponding to SVM and KNN
classifiers are detailed in Table III. For comparison of screen-
ing accuracies between two classifiers, we can find that the
SVM classifier (linear kernel) outperformed the KNN (k=5)
classifier over all unimodal features. The proposed fusion
of three types of features from different modalities shows
satisfied performance with all the accuracy, sensitivity, speci-
ficity, AUC and PPV exceeding 90% for both classifiers. It
also indicates that the fused feature representation is of good
discriminability and demonstrates some stabilities for different
classifiers.

To evaluate the performance of different kinds of features,
we compare each type of feature under the SVM classifier. For
unimodal features, the facial appearance (FA) feature achieves
the best performance compared with the head-movement (HM)
and vocal characteristics (VoC). Fusion of the HM and FA
improves the accuracy by ∼1.2%, while HM+VoC does not
show such an improvement. The fused FA+VoC significantly
enhances the accuracy by 7.23% compared with the FA feature
which has best classification performance in unimodal field.

However, the fusion of FA+VoC+HM does not further improve
performance. This may be attributed to the slight contribution
of the HM that contains only three statistical elements.

The comparison between diagnostic predictions and actual
results of HR-ASD and TD cases is illustrated in Table IV. In
total, there were three subjects falsely classified based on the
fusion of HM, FA and VoC under the SVM classifier.

TABLE IV
DIAGNOSTIC PREDICTIONS OF MULTI-CUE FEATURES

Actual
Predicted TD HR-ASD

TD 42 1
HR-ASD 2 38

In Fig. 4, the misclassified samples are visualized on the 2-
D plane through a nonlinear projection. As seen in the Fig. 4,
two misclassified HR-ASD samples are close to the samples in
the TD group, while the misclassified sample in the TD group
seems to be located in the HR-ASD group on the 2-D plane.
This may be induced by the comparatively large intraclass
covariances for two groups.

Fig. 4. Visualization for misclassified samples on the 2-D plane by a
t-distributed stochastic neighbor embedding.

To assess the statistical significance of the classifier and its
classification performance, a permutation test was used. The
classification accuracy for each case of 1000 trials (randomly
permuting the labels for 1000 times) is presented in Figure
S3. Here, the p-value is represented by the proportion of
1000 trials in which the classification performance is the same
as or better than the original status under a null hypothesis.
From the test results, we find that the classification accuracy
corresponding to each case in the permutation test is not
higher than the original one before random permutation; thus,
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the p-value of the permutation test is less than 0.001, which
indicates that the alternative hypothesis is true. It implies that
the classifier can learn the relationship between the samples’
features and corresponding labels. In other words, the multi-
cue features can well characterize the discriminant information
hidden in the raw video and audio data between the HR-ASD
and TD groups.

The recruited subjects in two groups had an overall average
age difference of ∼3 months (as shown in Table I). The
classification accuracy and subject number distribution among
different month groups are further analyzed to check if the
classification model has a bias due to their ages. As can be
seen from Fig. 5, the classification accuracies (blue and red
solid lines) are comparatively invariant to age changes. Thus,
we can conclude that our identification model does not use age
information for classification with a 10-fold cross-validation,
where about 10% (8-9/83) independent subjects were used for
testing in each fold. Within the same age group (blue and red
bar), no category biases can be found because the model does
not vote all predictions to TD group or HR-ASD group which
contains a comparatively large number of samples. We also
find that the proposed method can well predict HR-ASD as
early as 8 months of age. The falsely classified samples are
in the range between 16 to 18 months and the range between
22 to 24 months, respectively.

Fig. 5. The classification accuracy and participant number distribution
among different month groups.

B. Statistical Test Analyses for the Extracted Features
Since the features were not normally distributed, we con-

ducted a significant difference test for the extracted features
with the Mann-Whitney U test (α=0.05) and employed false
discovery rate (FDR) estimation for multiple testing correc-
tion.

1) Analyses of Head-movement Features: The group-level
statistical analyses of the head-movement parameters are il-
lustrated in Table V. The results of the U test show that
there are no significant differences in max dL, mean dL and
δt between the HR-ASD and TD groups, respectively; this
may be the result of missing social reference-related head-
pose information, which is one of the limitations in this study.

2) Analyses of Facial Appearance Features: Among the 900
facial appearance features, there are 383 features showing sig-
nificant differences (FDR-corrected p < 0.05). The summation
of gradient magnitudes from 9 bins in a histogram for each

TABLE V
STATISTICAL ANALYSIS OF HEAD-MOVEMENT PARAMETERS BETWEEN

HR-ASD AND TD (MEAN±SD)

HR-ASD TD p-value

max dL 40.90±23.59 37.82±20.22 0.61
mean dL 103.56±61.38 99.34±40.90 0.77

δt 33.81±18.20 34.15±16.72 0.80

local facial region was also statistically assessed. As a result,
we find that 38 corresponding facial regions (vs. 100 facial
regions representing the whole central parts of the face) show
significant differences between the two groups (FDR-corrected
p < 0.05). The group-level mean values for the summation of
gradient magnitudes corresponding to these 38 facial regions
are shown in Table VI.

TABLE VI
GROUP-LEVEL MEAN GRADIENT MAGNITUDES FROM FACIAL REGIONS

WITH SIGNIFICANT DIFFERENCES BETWEEN TD AND HR-ASD

Index TD HR-ASD Index TD HR-ASD

R006 0.1464 0.1796 R007 0.1680 0.2030
R008 0.1983 0.2313 R019 0.1397 0.1742
R020 0.2061 0.2277 R021 0.0636 0.0758
R022 0.0798 0.0929 R026 0.0874 0.1109
R027 0.0712 0.1029 R028 0.0678 0.0986
R031 0.0659 0.0769 R032 0.0786 0.0966
R036 0.1189 0.1392 R037 0.0965 0.1322
R038 0.0912 0.1302 R039 0.0869 0.1143
R042 0.0742 0.0902 R043 0.0933 0.1126
R047 0.1400 0.1690 R048 0.1361 0.1703
R049 0.1199 0.1448 R052 0.0742 0.0851
R053 0.0892 0.1016 R079 0.1737 0.1456
R080 0.2301 0.1838 R081 0.0948 0.0762
R086 0.1613 0.1343 R087 0.1636 0.1334
R088 0.1900 0.1514 R089 0.2350 0.1885
R091 0.1275 0.0934 R092 0.1486 0.1080
R093 0.1821 0.1326 R094 0.2105 0.1566
R095 0.2309 0.1714 R096 0.2414 0.1786
R097 0.2564 0.2006 R098 0.2714 0.2315

Fig. 6 illustrates the visualization for the grayscale frame-
level average faces from the HR-ASD and TD groups. From
Fig. 6(a)(b), we find that the HR-ASD babies reveal compar-
atively larger head-poses, which may be induced by a lack of
social attention. As for the frame-level average faces, facial
expressions from the individuals in the HR-ASD group seem
more awkward while most TD babies present expectations or
curiosities when their mothers maintain the no-reaction and
no-expression status. From Table VI and Fig. 6(c), we find
that the group-level mean gradient magnitudes are larger for
the right facial regions close to babies’ eyes and mouth corner
(corresponding to the left part of the image) in the HR-ASD
group, this could be induced by HR-ASD babies’ awkward
facial expressions arising with larger facial muscle deforma-
tions. Furthermore, the group-level mean gradient magnitude
values are found to be different for partial regions around
babies facial edges. One possible explanation is individuals’
head-pose differences in the HR-ASD and TD groups.

3) Analyses of Vocal Features: Significant differences be-
tween the HR-ASD group versus the TD group can be found
from 224 vocal features (FDR-corrected p <0.05). These
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Fig. 6. Visualization for the frame-level average grayscale faces
from the TD and HR-ASD groups. (a) TD; (b) HR-ASD; and (c) The
highlighted HR-ASD baby facial regions as listed in Table VI. In (c),
the regions indexes are with column priority, and yellow color indicates
larger gradient magnitudes with blue color for lower gradient magni-
tudes. This figure should be better viewed in color.

224 vocal features are composed of mel-frequency cepstral
coefficients (MFCC, 80.8%), root mean square energy (RMSE,
5.8%), zero-crossing rate (ZCR, 8.5%), probability of voicing
(VP, 3.1%) and fundamental frequency (F0, 1.8%). F0 (a major
cue of prosody)-related features show a significant difference
between the HR-ASD and TD groups, which is consistent
with the conclusion that those with ASD have problems in
prosody [45]. Regarding the rest of the vocal features, includ-
ing MFCC, ZCR, VP and RMSE, no consistent conclusions
have been reached, to the best of our knowledge. In terms of
our dataset, we find that most MFCC-based parameters show
significant differences between the HR-ASD and TD groups.

C. Visualization of Weights for the Fused Features

The weights denoted in Eq.(2) were computed for visualiz-
ing the contribution of each element from the fused features.
The top 20 positive and negative weight coefficients and the
corresponding features names are illustrated in Fig. 7. As can
be seen in this figure, 67.5% of these features belong to the
vocal field, and the remaining are related to facial appearance.
The results also show that our multi-cue-based method takes
advantage of both visual and vocal information.

V. DISCUSSION

In this study, multi-cue features derived from babies’ so-
cial response behaviors in a frustration environment were
statistically analyzed to reveal behavioral differences between
HR-ASD and TD groups. The developed multi-cue-based
screening method has advantages of high-accuracy, low-cost
and noncontact. Different from some pioneering studies [23]–
[25], [27], where conventional social behavior indicators under
the SF paradigm were manually coded and used for statistical
analyses, we proposed a data-driven method that is free of
manual coding. This objective measurement, derived from be-
havioral data, also provides evidence in early screening of HR-
ASD. Such a data-driven exploration will inspire researchers
from computer vision, pattern recognition and etc. fields to

Fig. 7. Visualization for the top 20 positive and negative weight
coefficients and the corresponding attribute names. Regarding the
appearance feature named FA-R19, the feature is a subtype element
of the histogram corresponding to the 19th facial region in Fig. 6.
For the vocal features, the features with ’mfcc’ prefix in names are
subtype elements corresponding to the MFCC descriptor. The ’sma’
and ’sma de’ represent smoothing of the short-term descriptors and
1st-order delta coefficients of the smoothed descriptors, respectively.
The digital id following ’sma’ or ’sma-de’ within the ’mfcc’-related feature
names corresponds to the one in 12 Mel-bands. The suffix of ’offset’ in
the name is an indication of the corresponding statistical function.

develop more advanced but low-cost behavioral measurement
tools in diagnoses of mental disorders.

Limited to the small number of cases with other develop-
ment disorders in this study, we did not provide a specific anal-
ysis for the 5 cases later diagnosed with language delay. Here,
a preliminary extension was conducted, and those 5 cases as
well as 43 TD cases were merged to non-ASD group for
further verification. The diagnostic evaluation for 48 non-ASD
cases and 40 HR-ASD cases was conducted through a leave-
one-out cross-validation protocol (LOOCV). The SVM (linear
kernel) classification model was trained and verified on the
proposed multi-cue features, and overall sensitivity, specificity
and PPV for total 88 cases were 97.5%(39/40), 89.6%(43/48)
and 88.6%(39/44), respectively. Two of the five cases were
correctly predicted as non-ASD while the rest 3 cases and
2 TD cases were falsely classified into HR-ASD group. An
overall false positive rate of our method is 10.4%(5/48). The
comparison between some relevant screening tools and our
method is illustrated in Table VII. As can be seen in Table
VII, our screening method is appropriate for younger babies
than widely used instruments including the checklist for autism
in toddlers (CHAT) [53], M-CHAT and the M-CHAT [54],
revised with follow-up (M-CHAT-R/F) [55]. The sensitivity
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TABLE VII
COMPARISON BETWEEN RELEVANT SCREENING TOOLS AND OURS

Reference [53] [54] [55] Ours

Instrument CHAT M-CHAT M-CHAT-R/F cameras devices
Description Parent interview 2stages: Parent 2stages: Parent SF paradigm+video recording

and observation questionnaire+Interview questionnaire+Interview +automated identification
Age(Months) 18 16-30 16.00-30.95 8-24

Sensitivity 0.38 0.97 0.85 0.98
Specificity 0.98 0.95 0.99 0.90

PPV 0.59 0.36 0.48 0.89

of our automated screening method is comparable to M-CHAT,
while the PPV seems much better than that of M-CHAT and its
modification. Since less negative cases were included in this
study compared with [53]–[55], it is still necessary to include
a large number of cases for further verification.

Despite the success of the extracted features, there are
still opportunities for improving the performance. A lack of
robust head-pose measurement for babies’ head-movements
led this study to using 1st-order indicators for representing
head-movement information. The 1st-order statistical analysis
for head-movement trajectory is insufficient for understanding
atypical social reference. An advanced head-pose estimator
may help social reference analysis for babies, which has shown
some effectiveness in distinguishing HR-ASD and TD cases
under the SF paradigm [6]. Future methods need to incorporate
such estimators for further analyses.

Due to a lack of a large number of included cases, this
study mainly focused on finding differences between HR-ASD
and TD groups. More varying cases with other development
disorders were not covered. A large number of cases with
matched age need to be included, it could provide opportuni-
ties to train a more reliable and robust diagnostic model. The
model trained on large-scale samples would be convictive for
medical community, and other researchers can employ the off-
the-shelf diagnostic model for more explorations. Moreover,
it is significant to include more younger babies earlier than
8 months of age, and it will reveal the earliest age when
the automated screening method could provide an acceptable
diagnostic result.

In order to be applicable to unconstrained environments
including homes and child health care centers, future work
should refine the experimental layout, e.g., an example video
for guiding participants how to perform under the paradigm
should be incorporated. The proposed method should be
extended to an end-to-end system which could be installed
on some smart devices for large-scale applications.

VI. CONCLUSION

This paper presents a multi-cue-based automated screening
method for early identification of infants and toddlers at high
risk for ASD before 24 months of life. Under the simple but
effective still-face paradigm, multiple features derived from
babies’ visual and vocal behavior were analyzed to reveal
differences between HR-ASD and TD. The proposed multi-
cue features showed better diagnostic performance than the
unimodal features, which verifies the effectiveness of our
proposed method. Such an automated identification tool could
meet the need of large-scale screening for ASD.
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[41] T. Baltrušaitis, M. Mahmoud, and P. Robinson, “Cross-dataset learning
and person-specific normalisation for automatic action unit detection,” in
2015 11th IEEE International Conference and Workshops on Automatic
Face and Gesture Recognition (FG), vol. 6. IEEE, 2015, pp. 1–6.

[42] M. D. Samad, N. Diawara, J. L. Bobzien, J. W. Harrington, M. A.
Witherow, and K. M. Iftekharuddin, “A feasibility study of autism
behavioral markers in spontaneous facial, visual, and hand movement
response data,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 26, no. 2, pp. 353–361, 2017.

[43] R. Ekman, What the face reveals: Basic and applied studies of spon-
taneous expression using the Facial Action Coding System (FACS).
Oxford University Press, USA, 1997.

[44] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2005, pp. 886–893.

[45] N. Russo, C. Larson, and N. Kraus, “Audiovocal system regulation in
children with autism spectrum disorders,” Experimental Brain Research,
vol. 188, no. 1, pp. 111–124, 2008.

[46] F. Eyben, M. Wöllmer, and B. Schuller, “Opensmile: the munich
versatile and fast open-source audio feature extractor,” in Proceedings
of the 18th ACM international conference on Multimedia. ACM, 2010,
pp. 1459–1462.

[47] F. Eyben, F. Weninger, F. Gross, and B. Schuller, “Recent developments
in opensmile, the munich open-source multimedia feature extractor,” in
Proceedings of the 21st ACM international conference on Multimedia.
ACM, 2013, pp. 835–838.

[48] M. D. Skowronski and J. G. Harris, “Increased mfcc filter bandwidth
for noise-robust phoneme recognition,” in 2002 IEEE International
Conference on Acoustics, Speech, and Signal Processing, vol. 1. IEEE,
2002, pp. I–801.

[49] J. Yan, W. Zheng, Z. Cui, C. Tang, T. Zhang, and Y. Zong, “Multi-cue
fusion for emotion recognition in the wild,” Neurocomputing, vol. 309,
pp. 27–35, 2018.

[50] M. Valstar, J. Gratch, B. Schuller, F. Ringeval, D. Lalanne, M. Tor-
res Torres, S. Scherer, G. Stratou, R. Cowie, and M. Pantic, “Avec 2016:
Depression, mood, and emotion recognition workshop and challenge,” in
Proceedings of the 6th international workshop on audio/visual emotion
challenge. ACM, 2016, pp. 3–10.

[51] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector
machines,” ACM transactions on intelligent systems and technology
(TIST), vol. 2, no. 3, p. 27, 2011.

[52] R. E. Nickel and L. Huang-Storms, “Early identification of young chil-
dren with autism spectrum disorder,” The Indian Journal of Pediatrics,
vol. 84, no. 1, pp. 53–60, 2017.

[53] G. Baird, T. Charman, S. Baron-Cohen, A. Cox, J. Swettenham,
S. Wheelwright, and A. Drew, “A screening instrument for autism at
18 months of age: a 6-year follow-up study,” Journal of the American
Academy of Child & Adolescent Psychiatry, vol. 39, no. 6, pp. 694–702,
2000.

[54] M. K. Khowaja, A. P. Hazzard, and D. L. Robins, “Sociodemographic
barriers to early detection of autism: screening and evaluation using the
m-chat, m-chat-r, and follow-up,” Journal of autism and developmental
disorders, vol. 45, no. 6, pp. 1797–1808, 2015.

[55] D. L. Robins, K. Casagrande, M. Barton, C.-M. A. Chen, T. Dumont-
Mathieu, and D. Fein, “Validation of the modified checklist for autism
in toddlers, revised with follow-up (m-chat-r/f),” Pediatrics, vol. 133,
no. 1, pp. 37–45, 2014.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2020.3027756, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

Supplemental Material 
 

Automatic Identification of High-Risk Autism Spectrum Disorder: A Feasibility 
Study Using Video and Audio Data under the Still-Face Paradigm 

 
Chuangao Tang, Student Member, IEEE, Wenming Zheng, Senior Member, IEEE, 

Yuan Zong, Member, IEEE, Nana Qiu, Cheng Lu, Xilei Zhang, Xiaoyan Ke,  
Cuntai Guan, Fellow, IEEE 

 
 

Figure S1 

 

Figure S1 Experimental scene layout. To capture the near frontal-view and profile-view facial 
behaviors of the baby subject, three small wireless cameras are set ~40cm before and ~20cm above 
the head of the baby subject. The fourth camera is used to record the mother subject's behaviors. 
The video and audio data are collected in the disk of a computer through wireless transmission. 
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Details for face detection:  
Before feeding facial images into a face detection tool, a broader rectangular boundary (that is 

‘bbox’ in the following flowchart) corresponding to the baby’s head and body was obtained through 
a graphic interactive operation. This rectangular boundary helps to eliminate other individuals co-
occurring in the same frame so as to ensure the detected faces belong to the baby. The MTCNN is 
consisted of cascaded convolutional networks and contains three stages, including a proposal 
network (P-Net), a refine network (R-Net) and an output network (O-Net). The three stages-based 
processing can be regarded as a coarse-to-fine manner. From P-Net to O-Net, the fixed initial non-
maximum suppression (NMS) thresholds (i.e., 0.6, .0.7 and 0.8, respectively) show an increasing 
trend. A higher threshold indicates a higher confidence level for the detected object to be considered 
as a face. Due to lack of perfect face detection or tracking tools for complex conditions in real 
scenarios, we supplemented a relaxation operations for failed cases. We proposed using coefficients 
to gradually lower the initial NMS thresholds for situations where true faces were not detected as 
positive cases. This strategy is adaptive to our experimental scenarios and improves the face 
detection rates. Besides, a strict assessment of face quality was conducted to ensure the detected 
faces are not false positive. 
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Figure S2  

i<framesCount?

Initialization: minfacesize=30, 
nms_threshold=[0.6,0.7,0.8],
pnet.load(trained_weights),
rnet.load(trained_weights),
onet.load(trained_weights),

factor=0.709,
i=0, framesCount=1500

Input: Video frames(F), 
bbox
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End
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Figure S2 Flowchart of re-implementation for face detection based on MTCNN.  
Figure S3  

 
Figure S3 Permutation test of 1000 cases. The best classification accuracy is 75%. The accuracies 
of most trials are lower than 70%. 
 
 
 

Algorithm 1 Computation for frame-level average facial appearance feature (a-HOG). 

Input: 

X: An image sequence with T (the number of detected facial images) normalized grayscale facial images. 

1: for each 𝑖𝑖 ∈ [1,𝑇𝑇] do 
2:    Calculate the horizontal gradient gx=I(x+1,y)-I(x-1,y)and the vertical gradient gy=I(x,y+1)-I(x,y-1)                        

for each pixel in the ith image Xi, where I(x,y) is the pixel intensity value; 

3:    Calculate the gradient magnitude Mx,y=�gx
2+gy

2, the gradient orientation θx,y=arctan(
gy

gx
) for per pixel; 

4:    Split Xi into 12×12 non-overlapping local regions and split the gradient orientation range into uniform-

spaced 9 parts, i.e., [0°,20°,⋯,180°]; 
5:    For each of the central 10×10 local regions, categorize the gradient orientation θx,y at each pixel into 

the range between two adjacent elements in 9 angular parts, and then vote the gradient magnitude 

𝑀𝑀𝑥𝑥,𝑦𝑦 at each pixel to corresponding bin(s) in a nine-bin histogram to get a vector vi,j∈R1×9,j=1,2,⋯,100; 

6:    Use the L2-norm to normalize vi=[vi,1,vi,j,vi,100]∈R1×900, i.e., vi
′= v𝒊𝒊

�‖v𝒊𝒊‖2
2+ϵ2

, where ϵ is a constant close 

to zero for avoiding division by zero, and clip vi
′ by 0.2, then get a new vector v𝑖𝑖′′ by renormalizing 

the clipped vi
′; 

7: end for 

Output: Frame-level average facial appearance feature f = 1
T
∑ v𝑖𝑖′′T

i=1 . 
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