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Introduction: Transcranial direct current stimulation (tDCS) has been shown tomodulate

cortical plasticity, enhance motor learning and post-stroke upper extremity motor

recovery. It has also been demonstrated to facilitate activation of brain-computer interface

(BCI) in stroke patients. We had previously demonstrated that BCI-assisted motor

imagery (MI-BCI) can improve upper extremity impairment in chronic stroke participants.

This study was carried out to investigate the effects of priming with tDCS prior to MI-BCI

training in chronic stroke patients with moderate to severe upper extremity paresis and

to investigate the cortical activity changes associated with training.

Methods: This is a double-blinded randomized clinical trial. Participants were

randomized to receive 10 sessions of 20-min 1mA tDCS or sham-tDCS before MI-BCI,

with the anode applied to the ipsilesional, and the cathode to the contralesional primary

motor cortex (M1). Upper extremity sub-scale of the Fugl-Meyer Assessment (UE-FM)

and corticospinal excitability measured by transcranial magnetic stimulation (TMS) were

assessed before, after and 4 weeks after intervention.

Results: Ten participants received real tDCS and nine received sham tDCS. UE-FM

improved significantly in both groups after intervention. Of those with unrecordable

motor evoked potential (MEP-) to the ipsilesional M1, significant improvement in

UE-FM was found in the real-tDCS group, but not in the sham group. Resting motor

threshold (RMT) of ipsilesional M1 decreased significantly after intervention in the real-

tDCS group. Short intra-cortical inhibition (SICI) in the contralesional M1 was reduced

significantly following intervention in the sham group. Correlation was found between

baseline UE-FM score and changes in the contralesional SICI for all, as well as

between changes in UE-FM and changes in contralesional RMT in the MEP- group.
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Conclusion: MI-BCI improved the motor function of the stroke-affected arm in chronic

stroke patients with moderate to severe impairment. tDCS did not confer overall

additional benefit although there was a trend toward greater benefit. Cortical activity

changes in the contralesional M1 associated with functional improvement suggests a

possible role for the contralesional M1 in stroke recovery in more severely affected

patients. This has important implications in designing neuromodulatory interventions for

future studies and tailoring treatment.

Clinical Trial Registration: The study was registered at https://clinicaltrials.

gov (NCT01897025).

Keywords: stroke, motor recovery, transcranial direct current stimulation, brain-computer interface,

motor imagery

INTRODUCTION

Post-stroke recovery of upper extremity (UE) function remains
a challenge. Less than 15% of stroke survivors with severe
impairment experience complete motor recovery (1, 2). Intensive
and repetitive practice is effective for motor recovery (3), but is
labor-intensive and costly. More effective rehabilitation strategies
that will deliver better functional outcomes without increasing
cost of care are needed.

Motor imagery (MI), or mental practice is a mental rehearsal
process of a specific movement without physical performance to
enhance post-stroke upper extremity motor recovery (4–10). It
has been demonstrated to be a safe, self-pacedmethod to improve
motor performance in athletes (6) and is effective in augmenting
the effects of motor practice in stroke patients (7–9).

MI shares similar neural substrates with motor execution
(11, 12). Functional neural changes induced by MI is similar
to that of short-term motor learning (5) with corresponding
changes in corticospinal excitability and reorganization of motor
representation have been demonstrated with MI (4, 13).

Robot-assisted training is typically applied to deliver intensive,
task-specific training in rehabilitation of motor function, but has
also been used to provide appropriate sensorimotor integration
through guidance of movement along a trajectory (14–18). The
coupling of MI and robot-assisted arm movement through
brain computer interface (MI-BCI) has been postulated to
enhance sensorimotor integration by bridging the motor intent
and providing appropriate somatosensory feedback through
passive manipulation of the paretic arm, thereby guiding
activity-dependent cortical plasticity through feedback on brain
activity (19). Our previous studies of MI-BCI in chronic stroke
demonstrated better improvement in motor function with fewer

Abbreviations: APB, abductor pollicus brevis; BCI, brain-computer interface;

EEG, electroencephalogram; ISI, inter-stimulus interval; MEP, motor evoked

potential; MI, motor imagery; MI-BCI, motor imagery-assisted brain-computer

interface; POST1, within 1 week after the intervention; POST2, 4 weeks post-

intervention; PRE, 1 week prior to commencement of the intervention; RMT,

Resting motor threshold; SICF, intracortical facilitation; SICI, Short intra-cortical

inhibition; tDCS, Transcranial direct current stimulation; TMS, transcranial

magnetic stimulation; UE, upper extremity; UE-FM, upper extremity component

of the Fugl-Meyer Assessment.

repetitions in the same time of training (20, 21). Others have
found similar benefit using BCI-driven orthoses for rehabilitation
of severe UE paresis (22).

Transcranial direct current stimulation (tDCS) is a non-
invasive method of modulating corticospinal excitability by
changing the firing threshold of neuronal membrane and
modifying spontaneous activity according to the direction of
current, such that cathodal tDCS decreases cortical excitability
while anodal tDCS increases it (23–25). Good functional
recovery has frequently been associated with a rebalancing of
interhemispheric inhibition (17, 26). Based on this, cathodal
tDCS is applied to the contralesional primary motor cortex (M1)
and anodal tDCS to the ipsilesional M1 to enhance corticospinal
excitability. This is the paradigm most frequently studied to
enhance motor recovery after stroke (27–31), and has thus far
yielded mixed results (32).

Additionally, tDCS has also been explored as a priming
tool to improve the accuracy of BCI, both in healthy subjects
(33, 34) and in stroke patients with mixed results (35, 36).
We had previously reported the preliminary results of the first
ever study to investigate the effect of a course of training
with BCI-assisted motor imagery (MI-BCI) with tDCS priming
(simultaneous anodal stimulation to the ipsilesional M1 and
cathodal stimulation to the contralesional M1) prior to each
session, compared to MI-BCI with sham tDCS, on recovery of
chronic stroke patients with moderate to severe impairment (37).
This population was chosen as they have the most difficulty
engaging in active motor task training. The stimulation protocol
was selected based on the intent to rebalance transcallosal
inhibition, as suggested by previous studies (28, 30, 38). Clinical
improvement was observed post-training, with online BCI
accuracies being significantly better in the tDCS group, compared
to the sham group.

The neurobiological principles that govern post-stroke
recovery of motor function are incompletely understood. While
task-specific training, and MI as an extension, is applied based
on principles of activity-dependent cortical plasticity, and non-
invasive brain stimulation is applied based on rebalancing of
interhemispheric inhibitions, a more detailed understanding
of the cortical reorganization associated with the combination of
therapeutic modalities, and indeed of the recovery process itself,
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is required in order to tailor therapeutic approaches. TMS may
be used to probe these changes in cortical excitability. Here we
report the changes in cortical activity associated with this training
protocol, which will inform the design of future studies.

PARTICIPANTS AND METHODS

Participants
A total of 42 participants were screened for eligibility for the
study. All screening and study procedures were performed at
the National University Hospital, Singapore. All partcipants
provided voluntary, written informed consent in accordance with
the Declaration of Helsinki. The study was approved by the
National Healthcare Group Domain-Specific Review Board and
was registered at https://clinicaltrials.gov (NCT01897025).

Patients 21–80 years old with a history of unilateral, single,
hemorrhagic, or ischemic supratentorial stroke more than 9
months prior to enrolment, with upper extremity component of
the Fugl-Meyer Assessment (UE-FM) (39) between 11 and 45
(moderate to severe motor impairment of arm) were eligible for
inclusion. Participants were excluded based on the following: (1)
inability to operate the MI-BCI system; (2) contraindications to
TMS/tDCS including previous cranial surgeries, ferromagnetic
implants, and seizures; (3) other factors affecting UE movement:
severe pain in the affected UE that may be exacerbated by
the use of the robotic device, major depression; (4) other
neurological disorders.

Sample Size Calculation
Sample size calculation was based on the minimal clinically
important difference (MCID) score of the UE-FMA score, which
is estimated to be 10 in a population of stroke patients with severe
UE paresis (standard deviation of 10.73) (40). Based on a two-
sided level of significance of 5% and a statistical power of 80%,
the number of participants required is estimated to be 40 for a
two-armed parallel-design study.

Study Design and Randomization
This was a prospective, double-blinded, randomized controlled
trial. Participants were randomized into real- or sham-tDCS
intervention groups using a computer-generated stratified
randomization approach. The randomization number generated
was kept in a sealed envelope and was issued to the study
coordinator before the start of intervention for each participant.
Both the participants and assessors were blinded to the
intervention that participants received.

Intervention
Participants were initially screened for eligibility and ability to
effectively activate the BCI system. Those who passed screening
were randomly allocated to either real-tDCS or sham-tDCS
group. Each received 10 sessions of real- or sham-tDCS, followed
immediately by MI-BCI assisted robotic arm training. The
intervention was conducted daily over 2 consecutive weeks.

Transcranial Direct Current Stimulation
(tDCS)
Direct current was delivered by a stimulator (NeuroConn,
Germany) through rubber electrodes embedded in saline-soaked
50 × 70 mm2 sponge bags at an intensity of 1mA. The anodal
electrode was placed over the ipsilesional M1 and the cathodal
electrode was placed over the contralesional M1. Stimulation
intensity was ramped up to 1mA over 30 s and maintained
for 20min, before ramping down. Sham-tDCS was delivered by
similarly ramping up to 1mA but maintained for only 20 s to
give participants the same scalp sensation, before ramping down
(29). tDCS intervention lasted for 20min for both groups so that
participants were blinded to their group allocation.

Motor Imagery—Assisted Brain-Computer
Interface (MI-BCI) Coupled With Robotic
Arm Training
The MI-BCI protocol has been detailed in previous publication
(37). In short, 27-channel electroencephalogram (EEG) signals
were recorded by NuAmp EEG amplifier (Compumedic,
Germany). The Inmotion2 MIT-Manus robot (Interactive
Motion Technologies, MA, USA) was used to provide
unrestricted unilateral passive and active shoulder and elbow
movements in the horizontal plane (41). Visual feedback from
the screen indicated the success or failure of MI detection for
each MI task. Once motor intention was successfully detected,
the robot-assisted motion would be triggered according to the
clock exercise therapy of the MIT-Manus robot (42).

Outcome Measures
All outcome measures were performed within 1 week prior to
commencement of the intervention (PRE), within 1 week after
the intervention was completed (POST1), and again at 4 weeks
post-intervention (POST2).

Upper Extremity Motor Function
Assessment
The UE-FM (39) was the primary outcome measure in this
study. UE-FM assessment was performed by a single senior
occupational therapist who was blinded to the group allocation.

Corticospinal Excitability Measurement by
TMS
TMS measurement of corticospinal excitability was performed
by a single research assistant. Resting motor threshold (RMT),
short intra-cortical inhibition (SICI) and short intra-cortical
facilitation (SICF) were measured using transcranial magnetic
stimulation of the primary motor cortex, with participant
sitting upright in a chair with back supported, looking
forward, with both forearms resting comfortably on pillows
and elbows supported at 90◦. Motor-evoked potentials (MEPs)
were recorded from the abductor pollicus brevis (APB)
via surface electrodes in a belly-tendon arrangement, by
Medelec Synergy Electromyography (EMG) system (VIASYS
Healthcare, UK). Single- and paired-pulse TMS were delivered
through a 70mm figure-of-eight coil using Bistim 2002
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(Magstim Co., UK). The coil was placed on the scalp
with the handle pointing posteriorly at a 45◦ between
the coronal and sagittal planes. The optimal scalp position
for activating APB was determined from initial exploration
over a 1-cm grid marked on a swimming cap worn over
the head.

RMT was defined by the lowest intensity eliciting peak-to-
peakMEP amplitude of 50µV, in at least five out of 10 trials from
single-pulse TMS stimulation (43). SICI and SICF were measured
using paired-pulse stimulation with a conditioning stimulus of

80% of RMT followed by a test stimulus of 120% of RMT. MEPs
were recorded with different inter-stimulus intervals (ISIs). ISI
of 2ms typically induces SICI while ISIs of 10 and 15ms reflect
SICF (44, 45).

Adverse effects were monitored using a questionnaire
documenting pain and discomfort at the stimulation site. The
Beck Depression Inventory, the Fatigue Severity Scale, and the
forward and backward digit span tests were administered for
possible psychological and cognitive changes which may be
potential confounders.

FIGURE 1 | CONSORT flow diagram. Forty-two participants were screened. Nineteen participants completed the intervention and follow-up evaluation and were

included in the final analysis−10 in the real-tDCS group, nine in the sham-tDCS group.
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Statistical Analysis
All statistical analysis was carried out using the IBM SPSS
version 23 software. Linear mixed model with an unstructured
covariance matrix and Bonferroni adjustment was used to
compare differences between the two intervention groups (real-
tDCS vs. sham tDCS) and among three time points (PRE,

POST1, and POST2). Differences in the baseline UE-FM between
two groups were analyzed by the student t-test. Chi-Square
test was used to compare differences between categorical
data. Correlation of non-parametric data was analyzed using
Spearman Correlation. P < 0.05 was set as the level for
statistical significance.

TABLE 1 | Clinical-demographics characteristics.

Group Gender Age

(year)

Stroke

duration

(months)

Affected

hemisphere

Affected region Ischaemic/

Haemorrhagic

Comorbidities UE-FM MEP

Real tDCS M 29 11 R Parietal I hypertension,

hyperlipidaemia

51 +

M 54 28 L CR, IC I hypertension,

hyperlipidaemia, DM

29 +

F 38 29 R BG H DM, Turner’s

syndrome

38 -

F 60 51 R BG H. extending to

temporal and CR

H hypertension 26 +

F 48 49 L BG H. extending to

frontal and CR

H hypertension 39 -

M 59 13 L MCA territory

subcortical

I DM, hypertension,

hyperlipidaemia, IHD

31 +

M 65 27 L CR I DM, hypertension,

hyperlipidaemia

41 -

F 57 10 L BG, CR H none 40 -

M 47 9 R MCA territory

subcortical

I Atrial fibrillation 30 -

M 65 86 R CR, IC, BG I DM, hypertension,

hyperlipidaemia

28 -

Mean ± SD 6M/4F 52.2 ± 11.8 31.3 ± 24.5 5L/5R - 6I/4H - 35.3 ± 7.8 4+/6-

Sham tDCS M 51 44 R MCA territory

subcortical

I IHD,

hyperlipidaemia,

33 +

M 39 25 L Subcortical

(intracranial large

vessel disease)

I Acute myeloid

leukemia

36 -

M 59 52 R BG H Hypertension

hyperlipidaemia

41 +

F 70 19 R MCA territory

subcortical

I Hyperlipidaemia,

rheumatic heart

disease

23 -

M 59 44 R MCA territory

subcortical

I DM, hypertension,

hyperlipidaemia

29 -

M 58 29 L MCA territory

subcortical

I Hypertension,

hyperlipidaemia

28 -

M 58 25 R BG H Hypertension,

hyperlipidaemia

20 +

M 47 10 L Thalamus I Hypertension,

hyperlipidaemia

40 -

M 67 52 R CR I - 43 +

Mean ± SD 8M/1F 56.4 ± 9.6 33.3 ± 15.1 3L/6R - 7I/ 2H - 32.6 ± 8.1 4+/5-

Statistics χ(1) = 2.04,

p = 0.15

t = 0.86,

p = 0.40

t = 0.21,

p = 0.83

χ(1) = 0.69,

p = 0.40

- χ(1) = 0.54,

p = 0.46

- t = 0.75,

p = 0.46

χ(1) = 0.84,

p = 1.00

No statistical differences in demographic data were found between the real-tDCS and the sham-tDCS group, including the initial UE function. Data was analyzed by the independent

student t-test or Pearson’s Chi-Square test. Data shows Mean ± SD or number of cases.

M, male; F, female; L, left; R, right; CR, corona radiata; IC, internal capsule; BG, basal ganglia; MCA, middle cerebral artery; I, ischemic stroke; H, haemorrhagic stroke; DM, Diabetes

Mellitus; IHD, Ischemic Heart Disease; UE-FM, Upper extremity sub-scale of the Fugl-Meyer Assessment; +, MEP is recordable from the ipsilesional M1; -, MEP is not recordable from

the ipsilesional M1.
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We further analyzed the data from participants whose MEP
of the ipsilesional M1 were unrecordable even at maximal TMS
stimulator output (MEP-). Absence of MEP is associated with
poorer functional outcomes in stroke patients (46).

RESULTS

We were not be able to reach the planned recruitment target. Of
42 chronic stroke patients who underwent screening, 19 were
recruited, 10 to the real-tDCS group and nine to the sham-
tDCS group. All completed the intervention and the follow-up
evaluations (Figure 1). Six patients in the real-tDCS group and
five patients in the sham-tDCS group were MEP- at the baseline.
There was no statistical difference between groups in baseline
demographic and stroke characteristics (Table 1), as has been
reported previously (37).

Upper Extremity Motor Function
Measurement
Both the real- and sham-tDCS groups improved significantly in
the UE-FM after intervention [from 35.3 ± 7.8 (PRE) to 36.2 ±

8.8 (POST1) and 40.3 ± 7.8 (POST2), F = 7.64; p = 0.01 for
real-tDCS group; from 32.6 ± 8.1 (PRE) to 35.3 ± 9.6 (POST1)
and 37.8 ± 11.4 (POST2), F = 4.85; p = 0.04 for sham group],
with no statistically significant difference between groups (F =

0.23, p = 0.64). The analysis on 1UE-FM (UE-FM compared
to pre-intervention) was previously reported (37). 1UE-FM was
significantly higher at POST2, compared to POST1 in real-tDCS
group [from 0.9± 3.0 (POST1) to 5.0± 4.4 (POST2), F = 13.64;
p = 0.005], but not in the sham group [from 2.8 ± 4.0 (POST1)
to 6.1± 5.7 (POST2), F = 4.45; p= 0.07] (Figure 2).

When MEP- participants were considered alone, significant
improvement in UE-FM was found only in the real-tDCS group
[from 36.0 ± 5.5 (PRE) to 38.0 ± 6.4 (POST1) and 41.3 ± 7.1
(POST2), F = 9.71, p = 0.02], but not in the sham-tDCS group
[from 31.2 ± 6.8 (PRE) to 32.6 ± 8.3 (POST1) and 32.5 ± 6.5
(POST2), F = 0.88, p= 0.50] (Figure 3).

Neurophysiological Outcome
Measures—RMT
There was significant difference in RMT of the ipsilesional M1
over time in real-tDCS group [from 0.80 ± 0.04 (PRE) to 0.72 ±
0.07 (POST1) and 0.67± 0.06 (POST2), F = 12.67; p= 0.00], but
not in the sham-tDCS group [from 0.83 ± 0.17 (PRE) to 0.87 ±
0.08 (POST1) and 0.82± 0.12 (POST2), F= 3.00; p= 0.19]. Post-
hoc Bonferroni test showed that RMT of the real-tDCS group was
significantly lower at POST1 and POST2, compared to PRE (p
= 0.0001 and 0.01, respectively). The overall difference between
real and sham groups was statistically significant (F = 15.12; p
= 0.01). No significant within- and between-group differences in
the RMT were found in the contralesional M1 (Figure 4).

FIGURE 2 | UE-FM score (A) and 1UE-FM (B) in both groups. (A) Both

groups improved significantly in UE-FM at POST2 after intervention (n = 10 for

real-tDCS group, n = 9 for sham-tDCS group). Between group difference was

not statistically significant. (B) 1UE-FM (changes in UE-FM score compared to

PRE) was significantly higher at POST2, compared to POST1 in the real-tDCS

group, not in the sham group. Data shows mean ± SEM.

Neurophysiological Outcome
Measures—SICI and SICF in the
Contralesional M1
The interventions reduced SICI in the contralesional M1
significantly, as measured at ISI of 2ms (SICI2ms), in the
contralesional M1 (F = 9.34, p = 0.00), when both groups
were combined. The sham-tDCS group had significantly reduced
SICI2ms following intervention [from −52.2 ± 11.6 (PRE) to
−36.3 ± 8.3 (POST1) and −35.9 ± 8.7 (POST2), F = 27.15, p =
0.00]. The difference in the real-tDCS group was not significant,
as was the difference between groups (Figure 5). There was no
significant difference in SICF between groups, or over time.

Relationship Between UE-FM and
Contralesional Corticospinal Excitability
Spearman’s correlation was used to investigate the relationships
between clinical outcome measures (UE-FM) and contralesional
corticospinal excitability. Correlation was found between the UE-
FM score and the contralesional RMT such that a higher UE-
FM score was associated with lower contralesional RMT (r =

−0.315, p = 0.019). A lower UE-FM score was also associated
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FIGURE 3 | UE-FM (A) and 1UE-FM (B) in both groups in MEP- participants.

(A) Significant improvement in UE-FM in the real-tDCS group (n = 6), but not

the sham-tDCS group (n = 5). (B) No significant difference in 1UE-FM was

shown between groups, or over time. Data shows mean ± SEM.

with greater changes in contralesional SICI2ms (1SICI2ms) (r
= −0.420, p = 0.012) (Table 2). When MEP- participants
were considered alone, a greater reduction in contralesional
RMT (1RMT, difference from PRE) was associated with greater
improvement in UE-FM score (1UE-FM, difference from PRE)
(r =−0.463; p= 0.034) (Table 2).

Side Effects of Intervention
No complications of tDCS or MI-BCI were reported by
participants during and after intervention. There was no within-
and between-group difference in the forward and backward
digit-span, the Beck Depression Inventory and the Fatigue
Severity Scale.

DISCUSSION

In this preliminary study, both the real- and sham-tDCS
groups improved significantly in UE function with MI-BCI
training. The intervention of MI-BCI with tDCS prior to it was
safe and well-tolerated by our patients. MI-BCI training was
again demonstrated to improve motor function despite initial
moderate to severe motor impairment, with gains continuing up

FIGURE 4 | RMT in the ipsilesional M1 (A) and contralesional M1 (B).

(A) Significant reduction in RMT in ipsilesional M1 in real-tDCS (n = 6) group at

POST1 and POST2, compared to PRE, but not in sham-tDCS group (n = 5).

The overall difference between groups was statistically significant. (B) No

significant difference in RMT in contralesional side between two groups (n =

10 for real-tDCS group, n = 9 for sham-tDCS group), or over time. Data

shows mean ± SEM.

to 4 weeks post-intervention, which were greater in extent in the
real-tDCS group.

Previous evidence suggests that modulation of cortical
excitability with tDCS prior to task training may result in greater
improvements in motor outcomes (27, 29–31, 47). A recent
systematic review suggested that response to contralesional
inhibitory neuromodulation may be affected by timing—while
smaller studies demonstrated a definite effect in UE stroke
recovery in the post-acute stage, one large study in the chronic
stage did not demonstrate improved UE function (48). Whether
this was because of the heterogeneity of the participants or
the decreased response to modulation in the chronic phase
is debatable. The lack of clear, additional clinical benefit in
adding tDCS to MI-BCI training in our study may be attributed
to the small sample size which had not reach our planned
recruitment target, and the relatively short training period in
the context of chronic stroke. Indeed, there was a trend toward
significant difference between the tDCS and sham groups, in
favor of the tDCS group. With the inclusion of more patients
and a longer training duration, we may see a significant effect
between groups.
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FIGURE 5 | SICI (ISI 2ms) in contralesional M1 in both groups. The

sham-tDCS group (n = 9) had significantly reduced SICI2ms at POST1 and

POST2, compared PRE. No difference over time was observed in real-tDCS

group (n = 10). Between-group difference was not significant.

TABLE 2 | Correlation between UE-FM and corticospinal excitability in the

contralesional M1.

All participants

UE-FM 1UE-FM

Correlation p-value Correlation p-value

coefficient coefficient

Contralesional RMT −0.315* 0.019 −0.174 0.309

1RMT −0.325 0.053 −0.14 0.414

SICI2ms 0.127 0.36 0.022 0.902

1SICI2ms −0.420* 0.012 −0.057 0.744

MEP — participants

Contralesional RMT −0.204 0.263 −0.201 0.382

1RMT −0.369 0.099 −0.463* 0.034

SICI2ms 0.180 0.332 −0.220 0.352

1SICI2ms −0.415 0.069 −0.110 0.645

UE-FM score is negatively correlated with RMT and 1SICI2ms (changes in SICI2ms

compared to PRE). When MEP- participants were considered alone, moderate correlation

was found between a decrease in RMT (1RMT, changes in RMT compared to PRE) in the

contralesional M1, and an improvement in UE-FM score (1UE-FM). *p < 0.05.

Patient selection and the stimulation protocol selected, may
have also contributed to the lack of observable difference. Recent
literature suggests that recovery of motor function post-stroke
follows a relatively predictable “proportional recovery rule” (49–
51), which describes the potential for recovery ∼70% of the
maximum possible. Integrity of the corticospinal tract is an
important factor determining adherence to this rule (“fitters”)
(49, 51). Those without intact corticospinal tracts tend to be
“non-fitters” to the rule, have more severe impairments and show
poorer recovery.

Our population of patients were mostly those with
undetectable MEPs at the time of recruitment. It has been
suggested that such “non-fitters” may adopt different neural
mechanisms to achieve recovery compared to those with

greater integrity of the corticospinal tracts. Di Pino et al.
proposed a bimodal balance-recovery model in which those with
high structural reserves would achieve best recovery through
rebalancing of interhemispheric inhibition, while those with low
structural reserves (i.e., Larger area of damage and more severe
impairment) may achieve better outcomes through promotion
of vicarious activity in the unaffected hemisphere (52). We
based our choice of tDCS protocol on the intent to rebalance
interhemispheric inhibition, based on previous literature,
without considering the integrity of the corticospinal tract. This
may have contributed to the lack of observed efficacy. Indeed,
more recent studies have applied a stratified approach using
clinical and functional imaging cut-offs to facilitate selection of
a tailored stimulation protocol (facilitation vs. inhibition of the
contralesional hemisphere) (53).

Notwithstanding, we were able to observe a clinical
improvement in both groups. We found a correlation between
the degree of impairment in the stroke-affected arm and the
degree of change in intracortical inhibition on the non-lesioned
hemisphere. Furthermore, in the MEP- group, improvement in
function was associated with increased corticospinal excitability
on the contralesional motor cortex. These findings suggest a
role of the contralesional hemisphere in the recovery of motor
function post-stroke.

Cortical reorganization, with an increase of excitability of
the contralesional hemisphere has been observed repeatedly
following stroke (54–56). But the significance of this in motor
recovery remains uncertain (57). Inhibition of the contralesional
hemisphere has been shown to lead to worsening of function in
the stroke-affected limb in both animals and humans (58, 59).
Whether bilateral activation during task performance reflects
poorer outcomes is debated. Some have found that bilateral
activation portends poor outcome (60), while others have found
it persists in well-recovered stroke patients (61, 62). Of note,
the extent of contralesional activation relates to the degree
of motor skill challenge (63) and would be an important
consideration in relation to the extent of motor impairment.
In terms of exploring alternative approaches to non-invasive
brain stimulation, the contralesional premotor cortex has been
identified as a promising target in preliminary studies to augment
recovery for the more severely affected stroke patients, while little
effect has been demonstrated with facilitation or perturbation of
the contralesional M1 (53, 59).

The mechanism by which the contralesional motor
cortex may facilitates motor recovery is a matter of active
investigation. Indeed, the interhemispheric inhibition in stroke
recovery has been questioned in recent studies. Premovement
interhemispheric inhibition in a group of mild to moderately
impaired stroke patients was found to be preserved early
post-stroke and only became abnormal in the chronic phase,
with no cross-sectional correlation with functional recovery
(64). Studies using TMS have demonstrated that the increased
contralesional M1 excitability is not causally related to the
decreased transcallosal inhibition from the ipsilesional M1 (56).
But rather, a decrease in intracortical inhibition as measured by
SICI, which reflects the activity of GABAAergic interneurons
(65), may mediate the contralesional M1 reorganization. The
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relatively suppressed inhibitory effect of the conditioning
stimulus at higher intensity suggests a shift in the balance
of excitatory and inhibitory activity toward an increase in
contralesional excitatory activity (55). Such a reduction in SICI
in the subacute period post-stroke is associated with significant
functional improvement and may reflect the unmasking of
latent networks critical for cortical reorganization (55, 66). Our
finding that clinical improvement correlated with a reduction
in contralesional SICI suggests that such a decrease in GABAA-
mediated inhibition may also play a role in contralesional
reorganization associated with functional improvement, even in
the chronic phase of stroke. Further investigation is required to
ascertain this.

Finally, with regard to how tDCS may augment MI-BCI
training, we had previously demonstrated an increase in MI
detection accuracy with real-tDCS compared to sham-tDCS (21).
A higher accuracy for classifying MI was observed in stroke
participants following bi-hemispheric tDCS (67). Others have
demonstrated a modulation of event-related desynchrony during
MI with tDCS, which may enhance BCI accuracy and contribute
to more effective training (35, 68, 69).

Anodal tDCS may also exert influence on training efficacy
through enhancing implicit motor learning (24), or by improving
attention (70). The greater delayed improvement demonstrated
by the tDCS group may also reflect NMDA-dependent long-term
changes in synaptic efficacy, an important mechanism underlying
learning, and memory processes (23, 71).

In conclusion, MI-BCI resulted in significant UE
improvement in chronic stroke patients with moderate to
severe impairment. A trend toward better outcomes in the
real-tDCS group was observed with significant benefit seen
in the MEP- group. Future studies with more participants
should focus on elucidating the specific neural mechanisms
underlying motor recovery and the interaction of individual and
stroke factors, tailoring neuromodulatory interventions using

a stratified approach, and determining the optimal approach
to combining MI-BCI with non-invasive brain stimulation to
enhance motor recovery.
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