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Abstract—An important challenge in developing a movement-
related cortical potential (MRCP)-based brain-machine interface
(BMI) is an accurate decoding of the user intention for real-world
environments. However, the performance remains insufficient for
real-time decoding owing to the endogenous signal characteristics
compared to other BMI paradigms. This study aims to enhance
the MRCP decoding performance from the perspective of pre-
processing techniques (i.e., spectral filtering). To the best of our
knowledge, existing MRCP studies have used spectral filters with
a fixed frequency bandwidth for all subjects. Hence, we propose
a subject-dependent and section-wise spectral filtering (SSSF)
method that considers the subjects’ individual MRCP character-
istics for two different temporal sections. In this study, MRCP
data were acquired under a powered exoskeleton environments in
which the subjects conducted self-initiated walking. We evaluated
our method using both our experimental data and a public
dataset (BNCI Horizon 2020). The decoding performance using
the SSSF was 0.86 (±0.09), and the performance on the public
dataset was 0.73 (±0.06) across all subjects. The experimental
results showed a statistically significant enhancement (p<0.01)
compared with the fixed frequency bands used in previous
methods on both datasets. In addition, we presented successful
decoding results from a pseudo-online analysis. Therefore, we
demonstrated that the proposed SSSF method can involve more
meaningful MRCP information than conventional methods.

Index Terms—Brain-machine interface, Electroencephalogra-
phy, Movement-related cortical potentials

I. INTRODUCTION

BRAIN-MACHINE interfaces (BMIs) are communication
systems that provide a bridge between users and external

devices. BMIs convey the user’s intention without direct
manipulation or activation of the peripheral nervous system
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[1]–[4]. The BMI technique commonly employs electroen-
cephalography (EEG) signals to recognize user intentions
for controlling external devices, such as a wheelchair [5],
[6], a robotic arm [7]–[10], or a powered exoskeleton [11]–
[14]. EEG-based BMI technologies have been developed for
patients with paralysis or nerve damage (for example, spinal
cord injury or stroke) for neuro-rehabilitation, as well as for
healthy individuals [15]–[20]. An important factor of a natural
BMI system is the voluntary intention of users to conduct
various movements, such as walking, ankle dorsiflexion, arm
flexion/extension, or hand grasping [21]–[27].

The neural correlates of a movement intention from EEG
signals can be represented as an event-related desynchro-
nization and synchronization (ERD/ERS) and a movement-
related cortical potential (MRCP) [28]–[32]. In particular, an
MRCP is a spontaneous potential generated by the execu-
tion/imagination of a self-initiated movement paradigm or cue-
based movement paradigm, which is known to be contingent
negative variation (CNV). An MRCP comprises two main
components: a readiness potential (RP) and a movement-
monitoring potential (MMP) [33], [34]. The RP is a negative
cortical potential, which begins approximately 1∼2 s before
the onset of a voluntary movement activated over the pre-
supplementary motor area (pre-SMA) or the contralateral pri-
mary motor cortex (M1). An MMP is a slow positive deflection
associated with the outcome of the motor process after the
execution of the movement intention over M1. Therefore,
owing to its characteristics such as a potential spontaneity
and early detection of user intentions, an MRCP decodes the
process of movement preparation/execution based on a single-
trial basis. Hence, this potential can be mostly used for BMI-
based neuro-rehabilitation for patients utilizing the assistive
devices [14], [35].

Conventional BMI studies have shown that various func-
tional movements can be decoded using MRCP, such as
voluntary arm movements [8], [23], [36]–[38], sitting and
standing transitions [39], finger movements (pressing a button)
[40], [41], executed and imagined foot movements [30], [42]–
[44], and self-initiated walking [17], [45], [46]. Various signal
processing methods have been adopted, including different
types of spatial [44] and spectral filters (e.g., an infinite
impulse response (IIR) [37], [42] or a finite impulse response
(FIR) filters [47], [48]), along with the creation of an MRCP
template for matching [49], the modification of a conventional
classifier [39], [43], [50], [51], the adoptation of an artifact
rejection method [52], the proposal of feature combination
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Fig. 1. Experiment setup and protocols for MRCP data on exoskeleton
walking. The experiment environments comprised two EMG electrodes, a
wireless data transmitter and receiver, and the powered exoskeleton.

methods [46], [53], [54], and the use of different preprocessing
methods [55]–[57]. In addition, a few groups have investigated
the ability to extend an MRCP-based BMI to real-time envi-
ronments [42], [58].

Single-trial based MRCP decoding is needed for BMI users
to control external devices reliably and efficiently. Therefore,
an improvement in the MRCP decoding performance with a
low latency for a single-trial is one of the challenging BMI
issues. To solve these limitations, various signal processing
methods and paradigms have been proposed [34], [59]. In this
study, we hypothesized that 1) using subject-dependent MRCP
features and 2) applying separate spectral bands to the RP and
MMP sections can improve the MRCP decoding performance.
Note that previous studies have only used a static spectral band
in the entire MRCP temporal section for signal preprocessing
[37], [42], [43], [50].

Hence, our main contributions are three-fold: 1) We pro-
pose a subject-dependent and section-wise spectral filtering
(SSSF) method based on machine learning that can accurately
determine a user’s intention on a single-trial basis. 2) We
demonstrate the usefulness of the proposed method using both
our experimental data (i.e., lower limb MRCP) and the public
dataset of BNCI Horizon 2020 (i.e., upper limb MRCP) [50].
Finally, 3) we present successful decoding accuracies from an
offline analysis and a pseudo-online analysis.

II. MATERIALS AND METHODS

A. Participants
Ten healthy subjects (S1-S10; 10 males; 20-30 years in

age) participated in the experiment. All subjects were healthy
without any known neurophysiological anomalies or mus-
culoskeletal disorders. The experimental environments and
protocols were reviewed and approved by the Institutional
Review Board at Korea University (1040548-KU-IRB-17-181-
A-2). All subjects gave their informed consent according to the
Declaration of Helsinki prior to the experiment.

B. Experimental Protocols
We designed the experimental environments for acquiring

MRCP data using a powered exoskeleton to reflect similar
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Fig. 2. The experiment paradigm consisted of three states: a resting state of
approximately 10 s, an intention state, and 10 s exoskeleton walking. When
the subjects intended a self-initiated walking, the EMG signals were over the
pre-defined threshold. Based on the threshold, the exoskeleton applied the
half-step walking.

environments for neuro-rehabilitation and for real-world BMI
scenarios. The experiment setup was composed of three main
modules (Fig. 1).

(i) A powered exoskeleton module: We used the lower limb
exoskeleton (Rex, Rex Bionics, New Zealand) for gait assis-
tance. The exoskeleton can support itself and the weight of the
user, as well as programmed motions that perform essential
functions such as walking, turning, sitting, and standing. In
our experiment, we used the walking forward and standing
functions of the exoskeleton.

(ii) EEG module: A wireless EEG interface (MOVE System,
BrainProduct GmbH, Germany) was used to acquire EEG
signals under an ambulatory environment. The EEG signals
were acquired using an active-electrode system (ActiCAP
Systems, Brain Products GmbH, Germany) with 32 channels.
EEG signals were transmitted to the recording device. The
wireless device was located on the right arm of the exoskeleton
and was firmly fixed such that it was not disturbed by the
exoskeleton movement. The wireless data receiver and signal
amplifiers were connected to the EEG cap through a wireless
interface.

(iii) EMG module: The surface electromyography (EMG)
module acquired electrical signals from muscle activation of
the right leg to control the exoskeleton walking. The EMG
signals were recorded using the data transfer device and
amplifier with two bipolar Ag/AgCl electrodes on the tibialis
anterior (TA) and biceps femoris (BF) muscles of the right leg;
note that these muscles are known as fast activation muscles
for walking [46]. Movement onset triggers were marked when
the EMG activity exceeded a pre-defined threshold value.
The exoskeleton executed the walking function when trigger
information associated with muscle activation was received.

C. Data Acquisition

Scalp EEG and surface EMG signals were, simultaneously,
recorded during the experiment. The EEG signals were ac-
quired using 32 channels placed at Fp1, Fz, F3, F7, C1, FC5,
FC1, C3, T7, CPz, CP5, CP1, Pz, P3, P7, O1, Oz, O2, P4,
P8, CP6, CP2, Cz, C4, T8, C2, FC6, FC2, F4, F8, Fp2,
and POz. The ground and reference electrodes were placed
at FPz and FCz, respectively. The electrodes were positioned
according to the 10/20 international system. The impedance
of the electrodes was maintained at below 10 kΩ throughout
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Fig. 3. Overall flowchart for MRCP decoding based on the proposed SSSF method.

the experiment. The EEG signals were digitized at a sampling
frequency of 1,000 Hz. The notch filter frequency rate was set
at 60 Hz to reduce the DC power supply noise.

EMG signals were recorded to transfer the trigger informa-
tion in real-time for exoskeleton control. The impedance of
the EMG electrodes was maintained at below 20 kΩ during
the experiment, and the data were preprocessed using a 2
s sliding window with a 100 ms shift and were bandpass
filtered from 100–125 Hz with a Butterworth second-order
zero-phase shift bandpass filter [46]. The data were rectified
using the absolute value, and we calculated the moving average
of EMG amplitudes in the window size. The movement onset
was marked when the value of moving average exceeded the
pre-defined threshold determined based on a simple threshold
criterion [60] across each subject.

D. Experimental Paradigm

The subjects wearing exoskeleton were instructed to per-
form self-initiated walking after an intending walk (Fig. 2).
The experiment was conducted for a total of 50 trials. Each
trial was composed of three states: resting, walking intention,
and exoskeleton walking (self-initiated). During a resting state,
the subjects were instructed to not perform any tasks. They
relaxed their muscle after each trial within 10 s because
EMG contamination owing to muscle tension can impede the
detection of the movement onset. After resting, the subjects
attempted to move their right leg as if they were starting
to walk. At this point, our experimental system detected the
movement onset trigger generated from the EMG activation
of the right leg (intention state). Then, upon self-initiated ex-
oskeleton walking, the exoskeleton executed walking function
as a half-gait cycle for more than 10 s.

E. EEG Pre-processing

The EEG data analysis was conducted using the BBCI
[61] and OpenBMI [62] toolbox under a MATLAB 2018b
environment. We used interpolation and an antialiasing filter
[63], [64] to down-sample the acquired EEG data from 1,000
to 100 Hz to consider the continuous BMI decoding for real-
world scenarios. The EEG channels with respect to eye blinks
and facial/cranial muscle activity were removed (e.g., Fp-
, F-, T-, O-, P-, PO-) to reject artifacts [39]. In addition,
the data were re-referenced using a large Laplacian spatial
filter to compensate for the poor spatial resolution of scalp
EEG recordings [42], [49], [65]. The spatial filter was applied
to the C1, C2, CPz, and Cz channels with eight surrogate
channels, and these four channels were finally selected for a
data analysis.

F. SSSF

The preprocessed EEG data were segmented into 6 s epochs
(-5 to 1 s) based on movement onset triggers (0 s) for offline
analysis. During the 6 s epochs, EEG data from -2 to 1 s were
defined as the “walking intention” class (MRCP activation),
and the remaining data from -5 to -2 s were defined as the
“resting” class. The data from each class were composed of
the time×channel×trial (300×4×50). The data for the walking
intention class were then separated into RP (-2 to 0 s) and
MMP (0 to 1 s) temporal sections to consider each MRCP
component characteristic.

We then composed the frequency filter bank (S) to select
the spectral bands according to each temporal section with
the best performance. The frequency filter bank comprises 30
different spectral bands related to the MRCP activation, which
consists of lower cutoff frequencies (0.05, 0.1, and 0.5 Hz) and
upper cutoff frequencies (1, 2, 3, ..., and 10 Hz). We applied a
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Algorithm 1: SSSF
Input: MRCP data {X , Y , Ω} and frequency filter bank S
• X = {xi}Di=1, {xi} ∈ RN×T : a set of single-trial EEG data for RP section, where D is the total number of trials with N channels and T
sample points
• Y = {yi}Di=1, {yi} ∈ RN×T : a set of single-trial EEG data for MMP section, where D is the total number of trials with N channels and T
sample points
• Ω = {Oi}Di=1: corresponding class labels, where Oi ∈ {1, 0} and D is the total number of trials
• S = {Si}Fi=1: frequency filter bank comprising spectral bands Si where ith is spectral bands and F is the total number of bands

Output: Selected spectral bands of each RP and MMP section
• Bselected = {SbRP , SbMMP }

1 for k = 1 to F do
2 RPk = Sk ⊗ X . ⊗: Band pass filtering
3 . RPk: Filtered data using kth spectral band
4 for j = 1 to F do
5 MMPj = Sj ⊗ Y . MMPj : Filtered data using jth spectral band
6 Divide the filtered data RPk , MMPj into H subsets . {RPk}: {RPk,1, RPk,2, ...RPk,H}
7 . {MMPj}: {MMPj,1,MMPj,2, ...MMPj,H}
8 . H: the total number of fold for cross-validation
9 for h = 1 to H do

10 RP trh = {RPk}-{RPk,h} . RP trh: Training data for RP section
11 RP valh = {RPk,h} . RP valh: Validation data for RP section
12 MMP trh = {MMPj}-{MMPj,h} . MMP trh: Training data for MMP section
13 MMP valh = {MMPj,h} . MMP valh: Validation data for MMP section
14 for i = 1 to H−1

H
×D do

15 F trh = f trih . f trih: Concatenate(Mean amplitude of RP trih, Mean amplitude of MMP trih)
16 end
17 for i = 1 to D

H
do

18 F valh = f valih . f valih: Concatenate(Mean amplitude of RP valih, Mean amplitude of MMP valih)
19 end

20 (wh, bh) = RLDA(F trh, Ω trh) . Train a RLDA classifier, Ω trh: {Oi}
H−1
H
×D

i=1
21 Yh = (wh)T ·F valh + bh . Evaluate the validation data using trained classifier parameters

22 Ph =
{

1 if, Yh ≥ 0
0 otherwise

}
23 θh = 1- error(Ph, Ω valh) . Performance evaluation, Ω valh: {Oi}

D
H
i=1

24 end
25 ACCk,j = 1

H

∑H
h=1 θh . Calculate averaged decoding performances for H-fold cross-validation

26 end
27 end
28 {idx k, idx j} = argmaxk,j (ACCk,j ) . Find the values of k and j when the ACC is the best performance
29 SbRP = Sidx k , SbMMP = Sidx j . SbRP and SbMMP : Selected spectral bands for RP and MMP sections
30 Bselected = {SbRP , SbMMP }

spectral filter to each temporal section using a FIR filter with
a zero-phase, 50th order Hamming window. In this study, we
adopted the FIR filter to consider short-length EEG data, such
as a 3 s sliding window.

To extract the MRCP features, during the training phase, we
calculated the mean amplitude feature vector in 0.2 s intervals
from each RP and MMP section. Hence, we obtained each
feature matrix (channels×feature vectors) from the RP and the
MMP sections. Consequently, each RP and MMP feature was
concatenated with MRCP features to consider all combinations
of each spectral band.

A binary regularized linear discriminant analysis (RLDA)
classifier, which is a robust classification method that uses a
normal distribution in each class sample [66], [67], was used
to discriminate between the walking intention and the resting
classes. The classifier was trained to reduce the dimensionality
of the data toward a feature vector space and to classify sam-
ples into either group, related to each class. We selected two
spectral bands (SbRP for RP section and SbMMP for MMP
section) with the best decoding performance according to the
k×j classification accuracies (ACCk,j) using the validation
dataset. A 5-fold cross-validation was used for a fair validation

to select the optimal spectral bands.
During the test phase, we separated the new single-trial

EEG data into two sections using the same method applied
during the training phase. We then applied spectral filtering for
each section with the selected spectral bands (Bselected). After
combining the mean amplitude features, the RLDA classifier
selected in the training phase was finally used to classify the
walking intention and resting for the test data. The proposed
SSSF is shown in Fig. 3 and Algorithm 1.

In addition, the proposed SSSF was designed for an asyn-
chronous MRCP detection. Throughout the offline analysis, the
data of each class including 50 trials were used to train and
validate the SSSF. In this study, for the pseudo-online analysis,
the time parameter of the epoch data was modified from a 6
s to 3 s epoch such that we adopted the 3 s epoch data as a
window to consider the latency of the continuous decoding.
Each 3 s epoch window could detect the subject’s walking
intention using a pre-trained SSSF during a single-trial.

G. Performance Evaluation for Our Experiment
1) Offline Analysis: To evaluate the proposed SSSF

method, we compared it with existing spectral filtering meth-
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TABLE I
DECODING PERFORMANCES WITH THE SELECTED SPECTRAL BANDS

ACROSS EACH SUBJECT USING THE TEST DATASET

Subjects
Selected spectral bands [Hz]

Decoding performances
RP section MMP section

S1 [0.1–4] [0.05–6] 0.96
S2 [0.5–7] [0.05–8] 0.74
S3 [0.5–1] [0.1–3] 0.70
S4 [0.1–1] [0.05–7] 0.86
S5 [0.05–2] [0.05–3] 0.94
S6 [0.1–10] [0.5–5] 0.74
S7 [0.5–3] [0.1–5] 0.96
S8 [0.5–4] [0.05–3] 0.86
S9 [0.05–1] [0.05–10] 0.90
S10 [0.1–1] [0.5–5] 0.94

Average 0.86 (±0.09)

ods during an offline analysis. First, we randomly selected
50% of the trials from all data for training and validation and
used the remaining 50% of trials for the testing. Using the
test data, the decoding performance was evaluated across each
subject. Note that we evaluated the classification performance
between the walking intention and resting state across all trials.

2) Pseudo-Online Analysis: We also evaluated the proposed
method through a pseudo-online analysis [68], [69] to confirm
the feasibility of real-world MRCP-based BMI scenarios. We
adopted a fully automated online artifact removal method
for brain-computer interfacing (FORCe), which can apply
thresholding to reject very high amplitude characteristics, to
remove noise related to the body and head movements from
the EEG data [70]. The EEG data were evaluated with a sliding
window of 3 s applied to the time interval (-4 to 4 s) with a
sliding overlap of 0.05 s. Each window was also processed
with the same spectral filtering and classifier parameters used
during the training phase of the offline analysis. The labels of
walking class were pre-assigned in the -2 to 1 s time intervals
based on the movement onset mark (0 s). The other labels were
defined as the resting class. Therefore, the classified values of
each window were evaluated for each trial between the pre-
assigned true labels and the decoded results.

H. Performance Evaluation for Public Dataset

In addition, we validated the SSSF on the public EEG
dataset, published through the BNCI Horizon 2020 project,
which contains various upper extremity tasks, such as an elbow
flexion/extension, wrist supination/pronation, hand open/close,
and resting [50]. Fifteen subjects participated in the experiment
(6 males and 9 females, 22-40 years in age). The dataset
comprised EEG data from 61 channels with a 512 Hz sampling
rate. To evaluate the SSSF on the dataset, we randomly divided
the data into a training set and a test set at a 50:50 ratio. The
EEG data were preprocessed using the same steps as those
applied in the offline analysis to apply the proposed SSSF (e.g.,
spatial filtering, time segmentation, and binary class selection).
We evaluated the MRCP decoding performance between each
class and the resting class to prove the availability of the SSSF.

TABLE II
COMPARISON OF THE DECODING PERFORMANCE USING THE FIXED- AND

SUBJECT-DEPENDENT SPECTRAL BANDS.

Subjects
Decoding performances

0.05–5 Hz [37] 0.05–10 Hz [43] 0.1–1 Hz [42] 0.3–3 Hz [50] SSSF
S1 0.96 0.96 0.82 0.96 0.96
S2 0.58 0.56 0.54 0.56 0.74
S3 0.70 0.70 0.68 0.70 0.70
S4 0.78 0.78 0.78 0.78 0.86
S5 0.92 0.90 0.80 0.88 0.94
S6 0.64 0.64 0.64 0.64 0.74
S7 0.94 0.94 0.84 0.88 0.96
S8 0.78 0.82 0.80 0.84 0.86
S9 0.70 0.70 0.60 0.66 0.90

S10 0.84 0.84 0.78 0.88 0.94
Average 0.78 (±0.13) 0.78 (±0.13) 0.72 (±0.10) 0.77 (±0.13) 0.86 (±0.09)

TABLE III
COMPARISON OF DECODING PERFORMANCES BETWEEN MULTIPLE

CHANNELS AND A SINGLE-CHANNEL USING THE SSSF

Subjects
Decoding performances

Multi-channels
(Cz, C1, C2, and CPz)

Single-channel
(Cz)

S1 0.96 0.96
S2 0.74 0.70
S3 0.70 0.68
S4 0.86 0.80
S5 0.94 0.94
S6 0.74 0.62
S7 0.96 0.96
S8 0.86 0.90
S9 0.90 0.70

S10 0.94 0.90
Average 0.86 (±0.09) 0.81 (±0.13)

III. RESULTS

Table I shows the selected spectral bands for RP and MMP
temporal sections and the corresponding performance accord-
ing to each subject. The selected spectral bands had different
bandwidth for the RP and MMP sections and were distinct
across each subject. The grand-average decoding performance
was 0.86 (±0.09) across all subjects.

Table II compares the decoding performance between the
SSSF and heuristic spectral filtering, which is used in most
conventional studies, such as 0.05–5 Hz [37], 0.05–10 Hz
[43], 0.1–1 Hz [42], and 0.3–3 Hz [50] for MRCP decoding.
The results showed that the proposed SSSF produced the
best grand-average decoding performance across all subjects.
The averaged decoding performances for each spectral band
were 0.78 (±0.13) at 0.05–5 Hz, 0.78 (±0.13) at 0.05–10
Hz, 0.72 (±0.10) at 0.1–1 Hz, and 0.77 (±0.13) at 0.1–4
Hz. In particular, subject S1, who had the best performance,
showed the same results in the comparative groups (0.05–5
Hz, 0.05–10 Hz, and 0.3–3 Hz). According to these results, the
proposed SSSF is more effective for subjects with a relatively
low MRCP decoding performance.

Table III compares the decoding performance between us-
ing multi-channels and a single-channel. The Cz, C1, C2,
and CPz were selected as multiple channels, and the Cz
channel alone was selected as the single-channel, which can



1534-4320 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2020.2966826, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING 6

S5S4S3S2S1

S10S9S8S7S6

Spectral bands SSSF

D
e
c
o

d
in

g
 p

e
r
fo

r
m

a
n

c
e 

(%
)

0

60

80

100

0

60

80

100

0

60

80

100

0

60

80

100

0

60

80

100

0

60

80

100

0

60

80

100

0

60

80

100

0

60

80

100

0

60

80

100

Spectral bands SSSF Spectral bands SSSF Spectral bands SSSF Spectral bands SSSF

Spectral bands SSSFSpectral bands SSSFSpectral bands SSSFSpectral bands SSSFSpectral bands SSSF
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represent the prominent MRCP patterns among all of the
EEG channels. The selected Cz as a single-channel has been
reported as a dominant channel owing to the observation
of brain modulations concerning the lower-limb movement
(e.g., walking and foot dorsiflexion) in the motor cortical
region [34], [63]. This processing was consistent with the
experimental protocols and analysis reported in [42], [51],
and [52]. The results showed that the grand-average decoding
performances were 0.86 (±0.09) for the multiple channels and
0.81 (±0.13) for the single-channel across all subjects. The
decoding performance tends to decrease by approximately 5%
when using only the Cz channel. However, subjects S1, S5, and
S7, who showed a high accuracy, did not exhibit differences
between single and multiple channels.

Fig. 4 shows the decoding performances using the single
spectral filtering method in the entire MRCP activation section
(-2 to 1 s) for 30 different spectral bands, such as 0.05–1 Hz,
0.05–2 Hz, ..., 0.05–10 Hz, 0.1–1 Hz, 0.1–2 Hz, ..., 0.1–10
Hz, 0.5–1 Hz, 0.5–2 Hz, ..., and 0.5–10 Hz. Most subjects
showed a higher performance when using the proposed SSSF
than when using single spectral filtering for the entire section.
Indeed, the SSSF method showed an increase in performance
of approximately 7% compared with the best accuracy of the
single spectral filtering method. Subjects S1 and S7 showed
the highest decoding performance (0.96) but the same per-
formance was shown when using the SSSF a single spectral
filter.

Fig. 5 shows that the MRCP exhibits a negative and a posi-
tive amplitude deflection from -2 to 1 s for S4 and S10 as the
representative subjects. The actual movement onset (0 s) was
set when the EMG signals exceeded a pre-defined threshold
amplitude. The black and red lines denote the trial-average
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RP and MMP patterns in the Cz channel, respectively. Each
RP and MMP pattern adopting the selected spectral filtering
showed negative shapes before the onset of movement (RP
section) and represented positive waves in the MMP section.
The blue area denotes the standard deviation of the RP and
MMP amplitudes according to each trial. Scalp topographies
are plotted to show the spatial pattern distribution for each

RP and MMP section. The topographies represent the average
amplitude across all trials during each time interval for the
representative subjects. The time interval is separated into two
sections to observe the brain dynamics during a movement
intention. Before the initiation of walking (-2 to 0 s), the
brain activity showed a gradually negative distribution near
the motor cortex, such as at Cz, C1, and C2 channels. After
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TABLE IV
EVALUATION RESULTS OF MRCP DECODING FOR THE PROPOSED SSSF USING PUBLIC MRCP DATA [50]

Subjects
Decoding performances

elbow flexion vs. rest elbow extension vs. rest supination vs. rest pronation vs. rest hand close vs. rest hand open vs. rest Multi-class (7-class)
S1 0.76 0.73 0.68 0.75 0.73 0.73 0.32
S2 0.69 0.75 0.81 0.76 0.65 0.80 0.45
S3 0.70 0.66 0.63 0.72 0.68 0.72 0.33
S4 0.82 0.72 0.79 0.77 0.70 0.76 0.54
S5 0.68 0.68 0.80 0.78 0.76 0.81 0.42
S6 0.78 0.81 0.88 0.85 0.80 0.75 0.65
S7 0.68 0.68 0.70 0.66 0.65 0.78 0.19
S8 0.72 0.70 0.70 0.65 0.65 0.76 0.25
S9 0.68 0.68 0.63 0.61 0.66 0.70 0.32
S10 0.90 0.85 0.85 0.80 0.85 0.81 0.48
S11 0.59 0.55 0.56 0.48 0.55 0.65 0.12
S12 0.80 0.75 0.71 0.68 0.83 0.88 0.48
S13 0.82 0.76 0.75 0.70 0.88 0.80 0.45
S14 0.78 0.86 0.73 0.78 0.76 0.85 0.48
S15 0.72 0.86 0.76 0.60 0.66 0.63 0.13

Average 0.74 (±0.07) 0.73 (±0.08) 0.73 (±0.08) 0.70 (±0.09) 0.72 (±0.09) 0.76 (±0.06) 0.38 (±0.15)

TABLE V
COMPARISON OF DECODING PERFORMANCES BETWEEN THE

CONVENTIONAL SPECTRAL FILTERS AND THE PROPOSED SSSF FOR THE
PUBLIC DATASET.

Decoding performances (hand open vs. rest)

Spectral filiter 0.05–5 Hz [37] 0.05–10 Hz [43] 0.1–1 Hz [42] 0.3–3 Hz [50] SSSF

Grand-average.
0.48

(±0.05)

0.51

(±0.02)

0.49

(±0.03)

0.50

(±0.09)

0.76

(±0.06)

movement onset in the MMP section (0 to 1 s), the intensity
of the spatial distribution returned from a negative to positive
spatial distribution.

Fig. 6 shows the decoding trends of the walking intention
according to all spectral bands used during our experiment
(x-axis for the MMP section and y-axis for the RP section).
Each pixel represents the decoding accuracy using each spec-
tral band. The pixels with the best classification accuracy
are denoted with black square boxes. We confirmed that
the proposed SSSF method selected different spectral bands
for each subject-dependent and each MRCP component. It
was demonstrated that applying the preprocessing method
according to each subject and MRCP component has a greater
effective than using the method in the same way across all
subjects. Fig. 6 provides further details of this.

Fig. 7 shows the pseudo-online analysis results of our
experiment data. Note that the total length of each trial used
in the pseudo-online analysis was 8 s (-4 to 4 s). Similar to the
offline analysis, we used a 3 s sliding window with an overlap
of 0.05 s. Therefore, we acquired 100 classification results
per trial. The black dashed line indicates the movement onset
mark (0 s), and each gray box represents the walking class. For
all subjects, most of the epochs around the movement onset
were classified correctly. Subjects S1, S4, S5, S7, S8, and
S10 showed relatively clear results for all trials compared with
the other subjects. However, although we applied the artifact
removal technique to prevent malfunctions of the movement
artifacts, we were unable to avoid large misclassifications

TABLE VI
STATISTICAL ANALYSIS FOR MULTIPLE COMPARISONS WITH BONFERRONI

CORRECTION FOR BOTH OUR DATASET AND THE PUBLIC DATASET

Our dataset Public dataset

Groups p-value Groups p-value

0.05–5 Hz [37] vs. 0.05–10 Hz [43] 1.000 0.05–5 Hz vs. 0.05–10 Hz 0.491

0.05–5 Hz vs. 0.1–1 Hz [42] 0.012 0.05–5 Hz vs. 0.1–1 Hz 0.696

0.05–5 Hz vs. 0.3–3 Hz [50] 0.696 0.05–5 Hz vs. 0.3–3 Hz 0.668

0.05–5 Hz vs. SSSF <0.01 0.05–5 Hz vs. SSSF <0.01

0.05–10 Hz vs. 0.1–1 Hz 0.012 0.05–10 Hz vs. 0.1–1 Hz 0.282

0.05–10 Hz vs. 0.3–3 Hz 0.696 0.05–10 Hz vs. 0.3–3 Hz 0.794

0.05–10 Hz vs. SSSF <0.01 0.05–10 Hz vs. SSSF <0.01

0.1–1 Hz vs. 0.3–3 Hz 0.013 0.1–1 Hz vs. 0.3–3 Hz 0.413

0.1–1 Hz vs. SSSF <0.01 0.1–1 Hz vs. SSSF <0.01

0.3–3 Hz vs. SSSF <0.01 0.3–3 Hz vs. SSSF <0.01

when the subjects walked.
Table IV shows the evaluation results of decoding the user

intention using the proposed SSSF on the public dataset (BNCI
Horizon 2020). We conducted an evaluation between one of
the movement classes and the resting class. The grand-average
results showed 0.74 (±0.07) for elbow flexion vs. rest, 0.73
(±0.08) for elbow extension vs. rest, 0.73 (±0.08) for supina-
tion vs. rest, 0.70 (±0.09) for pronation vs. rest, 0.72 (±0.09)
for hand close vs. rest, and 0.76 (±0.06) for hand open vs. rest,
respectively, across all subjects. In addition, we applied multi-
class classification on all classes of movement and the resting
class (seven classes in a total). The grand-average classification
performance showed 0.38 (±0.15) across all subjects. The
results showed higher results than the chance rate accuracy
of approximately 0.14.

Table V compares the decoding performances between the
conventional spectral filters and the proposed SSSF for the
public dataset. The results were evaluated using the representa-
tive binary classification of the hand open class and the resting
class. Decoding performances of 0.48 (±0.05) at 0.05–5 Hz,
0.51 (±0.02) at 0.05–10 Hz, 0.49 (±0.03) at 0.1–1 Hz, 0.50
(±0.09) at 0.3–3 Hz, and 0.76 (±0.06) for the proposed SSSF
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were obtained. We also confirmed that SSSF showed better
results than a single frequency filtering method on the upper
limb MRCP data.

For a statistical analysis of the decoding performance us-
ing our dataset and the public dataset, we adopted multiple
comparisons through a Bonferroni correction. Initially, we
validated the normality and homoskedasticity of each com-
parative group (e.g., 0.05–5 Hz versus SSSF in Table VI)
owing to the small number of samples. The normality for
each conventional method using the Shapiro–Wilk test was
satisfied with a null hypothesis (H0), and the assumption of
homoscedasticity based on Levene’s test was also met for
each comparative group. Hence, we could conduct a statistical
analysis between the conventional method and the proposed
SSSF using multiple comparisons with a Bonferroni correc-
tion. Table VI shows the p-value of each comparative group.
The proposed SSSF versus other conventional methods showed
significant differences (p<0.01) not only with our dataset but
also with the public dataset. However, a comparison between
conventional methods showed no significant interaction with
a high p-value (>0.05).

IV. DISCUSSION

In this study, we demonstrated the possibility of robust
detection of user intentions from an MRCP when applying
our experimental data and the public dataset. The experiment
data were acquired from the MRCP data to detect the walking
intention under a lower-limb exoskeleton environment. We
proposed the use of SSSF method, an MRCP feature selection
method that considers the individual characteristics of a sub-
ject’s EEG signals through a pre-processing step. As a result,
the SSSF showed the highest decoding performance compared
to conventional methods for not only our experimental data but
also the public dataset.

Recent brain-computer interface (BCI) studies have also
been conducted using various advanced methods such as EEG
feature optimization and novel classification algorithms. Zhang
et al. [71] developed the spatial-temporal discriminant analy-
sis (STDA). The STDA method maximizes the discriminant
information between the target and non-target classes using
spatial and temporal dimensions collaboratively. Recently, the
authors proposed a sparse Bayesian Laplace priors-based EEG
classification method. They adopted a sparse discriminant
vector learned using a Laplace prior in a hierarchical manner
under a Bayesian evidence framework [72]. In particular,
for the MI-BCI to detect user intention, Zhang et al. [73]
proposed a temporally constrained sparse group spatial pattern
(TSGSP) as a novel feature extraction method. The authors
evaluated the performance using the public EEG dataset and
validated the effectiveness of the proposed TSGSP compared
to other competing methods. Shahtalebi et al. [74] proposed a
framework for constructing optimized subject-specific spectral
filters in an intuitive fashion resulting in a creation of sig-
nificantly discriminant features coupled with error-correcting
output coding (ECOC) classifiers. Wang et al. [75] developed
a novel method based on an evolutionary algorithm (EA) to
optimize the spatial filter in a multiple-channel EEG. Aghaei et

al. [76] proposed a separable common spatio-spectral pattern
(SCSSP) for extracting of discriminant spatio-spectral EEG
features in MI-BCI. These advanced methods have contributed
to the robust decoding of EEG signals through feature op-
timization and novel classification depending on the BCI
paradigm. Similarly, in this study, we investigated the robust
feature selection method and focused on a single-trial MRCP
for improving the performance within the endogenous BCI
paradigm. The MRCP characteristics can represent a distinct
temporal template such as slow negative/positive deflection
before and after movement. Therefore, we approached the
MRCP components such as RP and MMP section, which
can reflect discriminant temporal patterns for feature selection
depending on each subject. The SSSF has been verified
based on the reliable decoding performance in detecting both
walking intention (lower-limb MRCP) and various types of
upper extremity intention (upper-limb MRCP).

In addition, in this study, we compared the decoding per-
formance using single-channel and multiple-channels. As the
results indicate, the performance showed a slight difference
(below 5%) between the multi- and single-channel approaches.
This indicates that it may be possible to detect movements
using only a single EEG channel for a BMI; hence, it can
activate assistive technologies for providing afferent feedback
[64]. We confirmed that the Cz channel showed a dramatically
discriminant performance compared to other nearby channels.
As one of the reasons for the Cz channel activation in this
study, our experimental data are related to lower-limb move-
ment (i.e., walking). The increased cortical density of each
electrode during a body movement is represented throughout
the motor cortex according to each body region. The lower
limb is closely related within the central location of the motor
cortex near the Cz channel [41]. The single-channel BMI
approach with optimal sites will lead to the use of a small
number of EEG feature vectors for a final decision such that
it has potentially reduced the computational time for model
training and real-time scenarios.

In addition, we compared the computational time between
the proposed SSSF and the baseline method. We measured
the elapsed time for model training and testing using the
tic-toc function in MATLAB software. Table VII shows the
computational time required to detect a movement intention
when applying our dataset and the public dataset. To validate
the elapsed time under the same conditions as much as possible
between the proposed and baseline methods, we defined the
baseline method as the use of conventional spectral filters.
Compared to the SSSF and the baseline method, the averaged
training time was 252.08 s and 0.37 s, respectively, whereas
the average test times for both methods are 0.01 s when using
our dataset. For the public dataset, the training showed average
times of 5665.77 s and 4.93 s, respectively, and the test time
is 0.04 s. The proposed SSSF method has a critical limitation
under a much longer training time than the baseline method.
Although the decoding performance is an important challenge,
the computational time for model training is also a valuable
aspect for adoption in real-world scenarios. Therefore, we plan
to modify the SSSF to reduce the model training time. After
pre-training the spectral band for the characteristics of the sub-
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TABLE VII
COMPUTATIONAL TIME OF PROPOSED SSSF AND BASELINE METHOD BY

USING OUR DATASET AND THE PUBLIC DATASET

Elapsed time for our dataset (s) Elapsed time for public dataset (s)

Subjects
SSSF Baseline

Subjects
SSSF Baseline

Training Test Training Test Training Test Training Test
S1 246.52 0.02 0.73 0.01 S1 4719.90 0.05 5.02 0.06
S2 253.79 0.02 0.35 0.01 S2 4714.50 0.04 4.86 0.04
S3 260.24 0.02 0.28 0.01 S3 4721.80 0.03 5.35 0.06
S4 253.95 0.02 0.26 0.01 S4 6934.12 0.06 5.20 0.06
S5 250.75 0.03 0.30 0.01 S5 6637.05 0.05 5.04 0.04
S6 248.30 0.01 0.24 0.01 S6 5733.01 0.04 4.89 0.04
S7 251.31 0.02 0.33 0.01 S7 5713.94 0.04 4.89 0.04
S8 251.31 0.01 0.36 0.01 S8 5709.94 0.05 4.89 0.05
S9 252.66 0.02 0.43 0.01 S9 5705.24 0.04 4.76 0.04
S10 252.60 0.01 0.37 0.01 S10 5716.10 0.04 4.90 0.04

Average 252.08 0.02 0.37 0.01 S11 5701.78 0.04 4.82 0.04
S12 5710.04 0.04 4.84 0.04
S13 5734.20 0.04 4.86 0.04
S14 5710.05 0.04 4.82 0.03
S15 5824.85 0.05 4.83 0.04

Average 5665.77 0.04 4.93 0.04

ject using a large MRCP dataset, when new subjects used the
SSSF, the computational time for spectral feature selection can
be reduced by measuring the probabilistic similarity between
the pre-assigned and new subjects, or by applying advanced
model optimization methods.

Furthermore, we designed the SSSF based on a subject-
dependent approach, which can lead to a dramatic improve-
ment in BMI performance. This strategy considers a large
EEG variability between inter-subjects [32], [77]. We adopted
a dependent strategy to design the SSSF method and consider
the differences in individual MRCP characteristics for each
subject. However, under real-world BMI scenarios, one of
the ultimate goals is for the BMI system to provide utility
and effectiveness for various types of end-users. In particu-
lar, MRCP-based BMI technology has been mostly used to
rehabilitate the motor functional recovery in patients. One of
the important points for a neuro-rehabilitation is to induce the
plasticity of brain function through a feedback system; hence,
the reliable MRCP performance for user intention decoding is
needed. For this reason, a subject-dependent strategy has been
adopted, but the long calibration time imposes a high cogni-
tive workload on patients when using a BMI-based neuro-
rehabilitation. This problem is a critical point in verifying
whether the systems can be adopted in real-world applications.
To solve this problem, the proposed SSSF has been modified
to consider the subject’s common MRCP characteristics and
reduce the subject’s training time. Fortunately, the MRCP
showed a similar amplitude in stroke patients and healthy
subjects despite a neural injury, which may be due to better
motivation, or the fact that less mental effort and shorter
planning are needed [42], [65]. Accordingly, we plan to modify
the SSSF to adopt real-world BMI scenarios using a subject-
independent approach [78] with short training time.

V. CONCLUSION AND FUTURE WORKS

The robust decoding of a movement intention from EEG
signals is an essential and critical issuein the development
of self-paced BMI control systems [14]. In this study, we
proposed the SSSF method to accurately detect user intentions
from an MRCP. The proposed method utilizes two temporal
sections, RP (-2 to 0 s) and MMP (0 to 1 s), and the
spectral frequencies were selected from each temporal interval.
We found that the RP and MMP components have different
optimal spectral bands, which are highly dependent on indi-
vidual subject recordings. Although a direct comparison with
previous studies is difficult owing to different experimental
protocols and methodologies, a single-trial MRCP detection
achieved a high grand-average decoding performance of 0.86
(±0.09) for all subjects. This result demonstrates the feasibility
of BMI-based self-initiated walking with a powered exoskele-
ton.

Nonetheless, the decoding performance in the pseudo-online
analysis remains insufficient for application to real-world BMI
scenarios. Furthermore, a critical issue is uncertain external
artifacts (e.g., body movements and robot vibrations) under
an asynchronous BMI paradigm. In our study, unstable MRCP
patterns with large variations were also observed during the
exoskeleton running time, despite the use of the FORCe
method. Therefore, to provide stable operating commands, it
is necessary to apply the advanced noise reduction algorithms
to minimize noise for a real-time environment.

In addition, our experiment data were acquired using only
healthy subjects wearing a lower-limb exoskeleton. Therefore,
the proposed SSSF should demonstrate the possibility of its
application to stroke or paralyzed patients for BMI-based gait
rehabilitation. It is more complicated to extract distinctive
brain patterns for patients owing to their brain malfunctions.
Hence, future work will target an assessment of the robust-
ness of our method among patients to show the possibility
of using an MRCP-based exoskeleton system in real-world
applications.
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[54] J. Ibáñez et al., “Detection of the onset of upper-limb movements based
on the combined analysis of changes in the sensorimotor rhythms and
slow cortical potentials,” J. Neural Eng., vol. 11, no. 5, p. 056009, 2014.

[55] U. Rashid, I. K. Niazi, M. Jochumsen, L. R. Krol, N. Signal, and
D. Taylor, “Automated labelling of movement-related cortical potentials
using segmented regression,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 27, no. 6, pp. 1282–1291, 2019.

[56] A. I. Sburlea, L. Montesano, and J. Minguez, “Advantages of EEG phase
patterns for the detection of gait intention in healthy and stroke subjects,”
J. Neural Eng., vol. 14, no. 3, p. 036004, 2017.

[57] N. A. Bhagat et al., “Design and optimization of an EEG-based
brain machine interface (BMI) to an upper-limb exoskeleton for stroke
survivors,” Frontiers Neurosci., vol. 10, no. 122, pp. 1–17, 2016.

[58] M. Jochumsen et al., “Online multi-class brain-computer interface for
detection and classification of lower limb movement intentions and
kinetics for stroke rehabilitation,” Brain Comput. Interfaces, vol. 2, no. 4,
pp. 202–210, 2015.

[59] F. Karimi, J. Kofman, N. Mrachacz-Kersting, D. Farina, and N. Jiang,
“Detection of movement related cortical potentials from EEG using
constrained ICA for brain-computer interface applications,” Front. Neu-
rosci., vol. 11, p. 356, 2017.

[60] G. Staude and W. Wolf, “Objective motor response onset detection in
surface myoelectric signals,” Med. Eng. & Phys., vol. 21, no. 6-7, pp.
449–467, 1999.

[61] B. Blankertz et al., “The berlin brain–computer interface: Non-medical
uses of BCI technology,” Frontiers Neurosci., vol. 4, no. 3, pp. 1–13,
2010.

[62] M.-H. Lee et al., “EEG dataset and openbmi toolbox for three BCI
paradigms: an investigation into BCI illiteracy,” GigaScience, vol. 8,
no. 5, p. giz002, 2019.

[63] C. Guger, B. Z. Allison, and N. Mrachacz-Kersting, “Brain-computer
interface research: A state-of-the-art summary 7,” in Brain-Computer
Interface Research. Springer, 2019, pp. 1–9.

[64] A. Delorme and S. Makeig, “EEGLAB: an open source toolbox for
analysis of single-trial eeg dynamics including independent component
analysis,” J. Neurosci. Methods, vol. 134, no. 1, pp. 9–21, 2004.

[65] M. Jochumsen, I. K. Niazi, D. Taylor, D. Farina, and K. Dremstrup,
“Detecting and classifying movement-related cortical potentials associ-
ated with hand movements in healthy subjects and stroke patients from
single-electrode, single-trial EEG,” J. Neural Eng., vol. 12, no. 5, p.
056013, 2015.

[66] B. Blankertz, S. Lemm, M. Treder, S. Haufe, and K.-R. Müller,
“Single-trial analysis and classification of ERP components—a tutorial,”
Neuroimage, vol. 56, no. 2, pp. 814–825, 2011.

[67] M. S. Treder, A. K. Porbadnigk, F. S. Avarvand, K.-R. Müller, and
B. Blankertz, “The LDA beamformer: optimal estimation of ERP source
time series using linear discriminant analysis,” Neuroimage, vol. 129, pp.
279–291, 2016.

[68] B. Blankertz, G. Curio, and K.-R. Müller, “Classifying single trial EEG:
Towards brain computer interfacing,” in Adv. Neural Inf. Process. Syst.,
Dec. 2002, pp. 157–164.

[69] M.-H. Lee, S. Fazli, J. Mehnert, and S.-W. Lee, “Subject-dependent clas-
sification for robust idle state detection using multi-modal neuroimaging
and data-fusion techniques in BCI,” Pattern Recognit., vol. 48, no. 8,
pp. 2725–2737, 2015.

[70] I. Daly, R. Scherer, M. Billinger, and G. Müller-Putz, “FORCe: Fully
online and automated artifact removal for brain-computer interfacing,”
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 23, no. 5, pp. 725–736,
2014.

[71] Y. Zhang, G. Zhou, Q. Zhao, J. Jin, X. Wang, and A. Cichocki, “Spatial-
temporal discriminant analysis for ERP-based brain-computer interface,”
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 21, no. 2, pp. 233–243,
2013.

[72] Y. Zhang, G. Zhou, J. Jin, Q. Zhao, X. Wang, and A. Cichocki, “Sparse
bayesian classification of EEG for brain–computer interface,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 27, no. 11, pp. 2256–2267, 2015.

[73] Y. Zhang, C. S. Nam, G. Zhou, J. Jin, X. Wang, and A. Cichocki,
“Temporally constrained sparse group spatial patterns for motor imagery
BCI,” IEEE Trans. on Cybernetics, vol. 49, no. 9, pp. 3322–3332, 2018.

[74] S. Shahtalebi and A. Mohammadi, “Bayesian optimized spectral filters
coupled with ternary ECOC for single-trial EEG classification,” IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 12, pp. 2249–2259, 2018.

[75] Y. Wang and K. C. Veluvolu, “Evolutionary algorithm based feature
optimization for multi-channel EEG classification,” Front. Neurosci.,
vol. 11, p. 28, 2017.

[76] A. S. Aghaei, M. S. Mahanta, and K. N. Plataniotis, “Separable common
spatio-spectral patterns for motor imagery BCI systems,” IEEE Trans.
Biomed. Eng., vol. 63, no. 1, pp. 15–29, 2015.

[77] N.-S. Kwak and S.-W. Lee, “Error correction regression framework
for enhancing the decoding accuracies of ear-EEG brain-computer
interfaces,” IEEE Trans. on Cybernetics, pp. 1–14, 2019.

[78] O.-Y. Kwon, M.-H. Lee, C. Guan, and S.-W. Lee, “Subject-independent
brain-computer interfaces based on deep convolutional neural networks,”
IEEE Trans. Neural Netw. Learn. Syst., pp. 1–14, 2019.


