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Abstract—Decoding human movement parameters from 

electroencephalograms (EEG) signals is of great value for human-
machine collaboration. However, existing studies on hand 
movement direction decoding concentrate on the decoding of a 
single-hand movement direction from EEG signals given the 
opposite hand is maintained still. In practice, the cooperative 
movement of both hands is common. In this paper, we investigated 
the neural signatures and decoding of single-hand and both-hand 
movement directions from EEG signals. The potentials of EEG 
signals and power sums in the low frequency band of EEG signals 
from 24 channels were used as decoding features. The linear 
discriminant analysis (LDA) and support vector machine (SVM) 
classifiers were used for decoding. Experimental results showed a 
significant difference in the negative offset maximums of 
movement-related cortical potentials (MRCPs) at electrode Cz 
between single-hand and both-hand movements. The recognition 
accuracies for six-class classification, including two single-hand 
and four both-hand movement directions, reached 70.29%± 10.85% 
by using EEG potentials as features with the SVM classifier. These 
findings showed the feasibility of decoding single-hand and both-
hand movement directions. This work can lay a foundation for the 
future development of an active human-machine collaboration 
system based on EEG signals and open a new research direction in 
the field of decoding hand movement parameters from EEG 
signals. 

Keywords—Both-hand movement, brain-computer interface, 
EEG, hand movement decoding, movement-related cortical 
potential, neural signature  

I.  INTRODUCTION 
UMAN-MACHINE collaboration has attracted increasing 
attention in recent years. Human movement parameter 

(intention) recognition plays a vital role in an active human-
machine collaboration, which can help improve the 
performance of the whole human-machine systems. 

There are mainly two kinds of physiological signals used to 
recognize (or decode) human movement intention: 
electroencephalograms signals (EEG signals) and 
electromyography signals (EMG signals) [1] [2]. Compared 
with using EMG signals, using EEG signals could detect 
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motion intention more quickly [3]. In human-machine 
collaboration systems, decoding human movement intention 
earlier can better help users to perform the specified task or 
warn them [4]. In this paper, we focus on hand movement 
parameter decoding from EEG signals. 

EEG-based movement intention decoding is an essential 
branch in the area of brain-computer interfaces (BCIs). Over the 
past decades, there are many studies about the establishment 
and improvement of BCI systems. For example, in 1988, 
Farwell et al. [5] developed a spelling system to select letters 
on the screen by using P300. In 1991, Wolpaw et al. [6] first 
studied the EEG-based BCI for cursor control. In 2014, Bi et al. 
[7] proposed a new steady-state visually evoked potential BCI 
to continuously control a simulated vehicle with a 14-DOF 
dynamics model. In 2019, Edelman et al. [8] used EEG signals 
to achieve the neural control of a robotic device for continuous 
target tracking. Compared with motor imagery-based or visual 
evoked potentials-based BCIs, decoding movement parameters 
directly from EEG signals can provide an intuitive and natural 
control [9]. 

In recent years, a large number of studies have shown that it 
is feasible to decode hand movement parameters from EEG 
signals. In 2008, Waldert et al. [10] used EEG signals to decode 
center-out movements with the hand and obtained a binary 
decoding accuracy of 55% on average across subjects. In 2009, 
Bradberry et al. [11] proposed a decoding model that can 
extract hand kinematic information from EEG signals and 
reconstruct the trajectory and velocity of hand with the 
correlation coefficients of 0.2 and 0.3, respectively. In 2013, 
Robinson et al. [12] proposed a model that used the wavelet-
common spatial pattern algorithm to decode hand movement in 
four orthogonal directions from EEG signals, which yielded an 
average binary classification accuracy of 80%. In 2015, 
Jochumsen et al. [13] detected and classified movement-related 
cortical potentials (MRCPs) associated with hand movement in 
healthy subjects and stroke patients and showed the possibility 
of using the single EEG channel for detecting hand movement 
intention. In 2018, Chouhan et al. [14] proposed a wavelet 
phase-locking value-based method for binary classification of 
hand movement, and the binary classification of movement 
direction reached the mean accuracy of 76.85%. Considering 
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that unimanual upper-limb neuroprostheses control for a 
paraplegic patient is not enough, Schwarz et al. [15] 
investigated how to discriminate unimanual and bimanual 
reach-and-grasp actions, which are common and important for 
daily life. Experimental results from able-bodied subjects 
showed the possibility of discriminating bimanual from 
unimanual grasp movements, although the average recognition 
accuracy of the seven-class classification was peaking at 38.6%. 

However, to the best of our knowledge, no existing studies 
on hand movement decoding from EEG signals explore how to 
decode single-hand and both-hand movement parameters 
(including direction, acceleration, velocity, and trajectory). In 
practice, to use a device to complete a specific task, sometimes, 
able-bodied operators need to use a single hand to operate a 
human-machine interface (such as a joystick), while keeping 
the second hand still. Sometimes, they need to use both hands 
to operate two human-machine interfaces (such as two 
joysticks), respectively, and two hands often need to execute 
movements in different directions. Thus, for developing active 
human-centric assistive systems to better assist operators in 
performing tasks, decoding single-hand and both-hands 
movement parameters is worth being explored. 

In this paper, we investigate how to discriminate the neural 
signatures of both-hand movement directions from those of  
single-hand movement directions and how to decode single-
hand and both-hand movement directions. The contribution of 
this paper is that it is the first work to investigate the neural 
signatures and decoding of single-hand and both-hand 
movement directions. This work can lay a foundation for the 
future development of an active human-machine collaboration 
system based on EEG signals and open a new research direction 
in decoding hand movement parameters from EEG signals. 

The remainder of the paper is organized as follows: Section 
II introduces the method. Section III presents the results. 
Section IV describes the discussion, limitations of our work, 
and future work. Section V describes the conclusion. 

II. METHOD 

A. Experimental Paradigm and Procedure 
Eight healthy subjects (aged 22-25 years, one female) 

participated in the experiment. All of them were right-handed 
and had normal vision. Every subject was confirmed to have no 
brain diseases. The study adhered to the principles of the 2013 
Declaration of Helsinki.  

Since all subjects are right-handed in our experiment, we 
regarded the right-hand movement as the single-hand 
movement to be decoded and the left-hand movement as the 
secondary movement. We required all subjects to move their 
right hands in horizontal directions (right or left). Considering 
that two hands often move in different directions in practical 
human-machine collaboration systems, we preliminarily set the 
left-hand movement in vertical directions (up or down) rather 
than horizontal directions. Both hands were moved in the 2-D 
horizontal plane. Figs. 1 and 2 show the experimental setup and 
protocol, respectively. There were six sessions in all. Two of 
them were right-hand movements in the right and left directions 
without the left-hand movement, respectively. The remaining 
four sessions were the right-hand movements in the right and 
left directions with the left-hand movement in the up and down 

 
Fig.1. Experimental setup. 

directions, respectively. Each experimental session was 
composed of five runs, with a rest period of 2 minutes in 
between. Each run consisted of 16 trials.  

When one trial started, two target positions (red and green 
solid blocks correspond to the target positions of the left and 
right hands, respectively) appeared in specified directions, and 
the subjects were required to prepare for the movement during 
this period. At the fourth second of the experiment, the 
computer indicated subjects to execute the movement by 
changing two target positions on the screen from the solid to 
hollow blocks, and the subjects started to use left and right 
hands to move the corresponding blocks from the center to 
target positions. At the seventh second, both blocks were asked 
to be in the target positions, and then the subjects were acquired 
to move both hands back to the center position. Before the 
actual movement execution, the subjects were required to keep 
their eyes fixed on the green block (corresponding to the right 
hand) to reduce the interference of eye movements. Subjects 
were instructed not to make any body movements unrelated to 
the experimental requirements. 

B. Data Acquisition 

  The experiment was performed at the IHMS Lab of the School 
of Mechanical Engineering, Beijing Institute of Technology, 
China. EEG signals were acquired by a 64-electrode portable 
wireless EEG amplifier (NeuSen.W64, Neuracle, China) from  
the scalp of subjects at the Fz, F3, F4, Cz, C1, C2, C3, C4, FCz, 
FC3, FC4, Pz, P3, P4, P7, P8, T7, T8, Oz, O1, O1, POz, CP3, 
CP4 locations according to an international 10-20 system, with 
a forehead ground at AFz and reference placed at CPz. 
Electrooculogram (EOG) signals were acquired from two 
electrodes positioned below the outer canthi of the eyes. The 
sampling rate was set to be 1000 Hz. Electrode impedances 
were calibrated to be less than 5 KΩ. We collected the positions 
of both hands by using the motion position tracking equipment 
FASTRACK at a sampling rate of 60 Hz. 

C. Data Analysis 
EEG signals were down-sampled to 100 Hz. The EEG 

signals from each channel were re-referenced by binaural 
electrodes. We defined the time when the subjects were 
indicated to execute the motion as the movement cue onset, i.e., 
the fourth second in the experiment. The actual movement onset 
was calibrated by FASTRACK and was 0.5 s after the movement 
cue onset. Trials were rejected according to the two criteria: (1) 
amplitude threshold exceeding ±300 μV and (2) trials with 
abnormal kurtosis. Furthermore, the standard independent 
component analysis for EOG removal by using
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Fig. 2. Experimental paradigm 

EEGLab was applied. For the muscle artifacts, we did not take 
a further preprocessing since muscle artifacts are in the high-
frequency band (generally higher than 20 Hz) instead of the 
low-frequency band (e.g., less than 6 Hz) used in our study, and 
the work [16] shows that muscle artifacts do not provide any 
discriminative information about the decoding performance. 
All data processing was done in MATLAB. 

1) Movement Related Cortical Potential (MRCP): MRCP is 
a spontaneous potential that is generated by the execution or 
imagination of movement. Studies show that MRCPs encode 
movement information [9] [15]. Thus, MRCPs were extracted 
to present neural signatures of brain activity during the 
experimental period [17]. For the MRCP detection, the filtering 
is critical since the low signal-to-noise ratio of EEG signals [18]. 
We first applied a baseline correction to suppress the zero drift 
of signals. To remove the global background activity, we used 
a common average referencing (CAR). After that, a fourth-
order [0.01-4] Hz band-pass Butterworth filter was used to 
reserve the low-frequency component of EEG signals. The 
weighted average (WAVG) filter was applied to the Cz channel 
to improve the performance of the MRCP detection. The 
WAVG was calculated by 	𝑒!(𝑡) = 𝑒!(𝑡) + 1/𝐾∑ 𝑒"(𝑡)#

"$% , 
where 𝑒!(𝑡) is the EEG signal of the ith channel and K is the 
number of the nearest neighbor channels (Because CPz was 
selected as the reference electrode in our experiment, the 
residual three orthotropic nearest channels were selected, i.e., 
K=3) [19]. The epoch [-1.5, 1.5] s of the movement cue onset 
during each trial was selected for analysis. For each 
experimental session, 80 samples were extracted. Totally, for 
the sessions of single-hand movement, there were 80*2 samples, 
and for the sessions of both-hand movement, there were 80*4 
samples. 

2) Feature Extraction and Decoding: Baseline correction 
was first used to eliminate the drift. To suppress the effect of 
movement artifacts on decoding performance, we applied 
artifact subspace reconstruction (ASR) [20]. ASR could 
automatically identify and utilize the clean potions of EEG 

signals as the reference data, and subsequently determine the 
rejection thresholds to reject artifact components and 
reconstruct cleaned data. The cut-off parameter k, which was 
used to define rejection thresholds, was empirically defined as 
10 in this study, and ASR was performed using the open-source 
plug-in function clean_asr in EEGLab [20]. CAR and a fourth-
order [0.01-4] Hz band-pass Butterworth filter were then 
applied. After signal preprocessing, we obtained the 
preprocessed signals for classification. For each window of 1 s, 
we adopted the potential amplitude of EEG signals from each 
channel at each sampling point as a feature. That is, there were 
100 features for each channel. All potential amplitudes of 24 
channels were concatenated into a 2400-dimension feature 
vector, which is defined as Temporal feature. Furthermore, we 
calculated the power sum of the frequency band [0.01, 4] Hz of 
EEG signals from each channel as a classification feature. The 
power sums of 24 channels were concatenated into a 24-
dimension feature vector, which is defined as Spectral feature 
[21]. 

To address feature redundancy and reduce computational 
time, we applied principal component analysis (PCA) to the 
original features [22]. For the Temporal feature, the dimension 
of the feature was reduced from 2400 to 40 by using the PCA. 
For the Spectral feature, the feature dimension was 24, and no 
PCA was performed.  

To address the multi-classification of different movement 
conditions (6 conditions: namely right, left, right-up, right-
down, left-up, and left-down in short), we adopted a one-versus-
one classification strategy. For six kinds of movement 
conditions, 15 binary classification models were yielded. The 
predicted labels were decided by majority voting, and if multi-
labels are voted equally, the final predicted label is randomly 
selected. The decoding was performed on a continuous sliding 
window to observe the decoding performance changing over 
time, and the length of the window was set to be 1 s, and the 
step size was set to be 0.1 s. The decoding of the hand 
movement direction was performed by the LDA and SVM, 
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respectively [23]. 
The LDA model is as follows: 

 𝑓(x) = ω&x + ω', (1) 

where x = [x%, x(, ⋯ , x)]  is the sample vector, ω =
[ω%, ω(, ⋯ ,ω)]  represents the projecting directions of the 
classifier, and ω'  represents the threshold of the classifier, 
which is determined by receiver operating characteristic curve 
(ROC). Mean decoding accuracies were calculated by the 10×8 
cross-validation method over all subjects. 

The SVM classifier is as follows:  
 𝑓(x) = sgn(∑ 𝑦!𝛼!𝐾(𝑥, 𝑥!) + 𝑏*

!$% ), (2) 

where 𝑦! is the classification label, 𝑥! is the i th support vector, 
𝛼!  is the Lagrange factor of 𝑥! , 𝑣  is the number of support 
vector, and 	𝐾 ∙ is the kernel function. In this study, radius basis 
function was used as kernel function, which can be written as 

 𝐾(𝑥, 𝑥!) = exp(−g ∗ ‖𝑥 − 𝑥!‖() (3) 

The parameters of kernel function g and the slack variable c 
are critical for training the SVM model. We randomly divided 
the whole dataset into the calibration set (75%) and evaluation 
set (25%). In the calibration set, we utilized the mesh grid 
method to establish different training models corresponding to 
different parameters c and g and evaluated the training model 
performance by six-fold cross validation. The training model 
with the best decoding performance was selected, and the 
ultimate model performance was tested on the evaluation set. 
The above procedure was repeated ten times at random to obtain 
the average decoding results by using SVM. The SVM 
algorithm in this study was applied based on LIBSVM 2.0 
toolbox supported by Chih-Chung Chang and Chih-Jen Lin et 
al [24]. 

D. Statistics 
We used a two-factor repeated measure analysis of variance 

(ANOVA) on decoding accuracy. The two factors were 
classification feature (Temporal feature and Spectral feature) 
and classifier (LDA classifier and SVM classifier) [25]. The 
significant level was set to be 0.05.  

III. RESULTS  

A. Neural Signatures 
Fig. 3 shows the average MRCPs associated with six kinds 

of movement conditions. All average MRCPs were calculated 
by using EEG signals at electrode Cz from -1.5 s to 1.5 s with 
respect to the movement cue onset across all subjects. The 
amplitude of MRCPs was steady during the preparation period, 
and the negative offset of MRCPs appeared at around 300 ms 
and reached the maximum amplitude at about 500 ms, and the 
latter was consistent with the actual movement onset recorded 
by FASTRACK. In addition, the amplitude of the MRCPs in the 
movement period was larger than that in the non-movement 
period, which is in accord with the finding in [26]. 

As shown in Fig. 3, by comparing MRCPs under different 
movement conditions, we found larger negative offset 
amplitudes under the conditions of both-hand movement.   
Furthermore, larger negative offset amplitudes were observed  

 
Fig. 3. The averaged MRCPs across all subjects at Cz channel 
from -1.5 s to 1.5 s of motion execution under six types of 
movement conditions. “Left” and “Right” refer to the right-
hand movement in left and right directions. “Up” and “Down” 
refer to the left-hand movement in up and down directions in 
the 2-D horizontal plane. Note that time 0 s refers to the time 
point when the movement cue appears, and time 0.5 s is the 
onset of the actual movement. 

under the condition of left-hand movement in up direction than 
in down direction. Given the same left-hand movement 
conditions, larger negative offset amplitudes could also be 
observed under the condition of right-hand movement in left 
direction than in right direction. For the single-hand movement, 
the average negative offset maximums of the MRCP for right-
hand movements in right and left directions were -6.15 μV and 
-7.99 μV, respectively. For the left-hand movement in down 
direction, the negative offset maximums of the MRCP for right-
hand movements in right and left directions were -8.52 μV and 
-10.09 μV, respectively. For the left-hand movement in up 
direction, the negative offset maximums of the MRCP for right-
hand movements in right and left directions were -11.97 μV and 
-12.90 μV, respectively. MRCPs associated with six kinds of 
movement conditions at electrode C1 and C2 are showed and 
described in Supplementary Fig. 1 and Fig. 2, respectively.   

Fig. 4 shows the average MRCPs at electrodes C1, Cz, and 
C2 associated with the single-hand movement and both-hand 
movement. The MRCPs associated with the single-hand 
movement were the average results of MRCPs obtained under 
the right-hand movements in directions left and right. The 
MRCPs associated with the both-hand movement were the 
average results of MRCPs obtained under the left-hand 
movements in directions up and down and right-hand 
movements in directions left and right. For avoiding the effect 
of amplitudes at electrode Cz on electrodes C1 and C2, no 
WAVG filter was performed in this step. As shown in Fig. 4, 
for the single right-hand movement, larger negative offset 
amplitude was obtained on contralateral electrode C1 than on 
ipsilateral electrode C2, although the statistics test was not 
significant (-3.89 μV VS -2.67 μV, paired t-test, p = 0.3280). 
On electrode C1, similar negative offset amplitudes were  
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Fig. 4. The averaged MRCPs at Cz, C1 and C2 channel from -1.5 s to 1.5 s of motion preparation and execution under conditions 
of single-hand movement and both-hand movement. The shadows shown in figures are the standard deviation of MRCPs across 
all subjects. Note that time 0 s refers to the time point when the movement cue appears, and time 0.5 s is the onset of the actual 
movement. 

 
Fig. 5. Comparison of EEG signals contaminated by movement 
artifacts before and after applying ASR for cleaning and 
reconstructing data. 

obtained for the single-hand and both-hand movement (both 
containing right-hand movement), and were -3.89 μV and -4.27 
μV, respectively (paired t-test, p = 0.1999). On electrode Cz, a 
larger negative offset amplitude was obtained for both-hand 
movement than single-hand movement (-3.54 μV VS -4.99 μV, 
paired t-test, p = 0.0481). On electrode C2, a larger negative 
offset amplitude was obtained for both-hand movement, which 
contained left-hand movement than single-hand movement (i.e., 
single right-hand movement) (-5.41 μV VS -2.67 μV, paired t-
test, p = 0.0300). 

B. Movement Artifacts Suppressed by ASR Cleaning 
    This study focused on single-hand and both-hand center-out 
movement, and the removal of movement artifacts is critical. 
ASR is an automatic method to remove transient or large-
magnitude artifacts contaminating EEG data, which are usually 
caused by movement. Fig. 5 shows a typical example for 
movement artifacts suppressed by using ASR for cleaning and 
reconstructing EEG signals. For the raw signals without using 
ASR, a large-magnitude-and-slow wave was observed. By 
applying the ASR cleaning, the large-magnitude related 
components were rejected, and the reconstructed EEG signals 
showed well modality without evident movement artifacts 
contamination. 

 
Fig. 6. Grand average decoding performance comparison 
among models built by using Temporal and Spectral features 
with LDA and SVM classifiers. The continuous 6-class 
classification was executed on shifted windows from -2 s to 2s 
of movement cue onset. Note that time 0 s refers to the time 
point when the movement cue appears, and time 0.5 s is the 
onset of the actual movement. After 0 s, actual movement 
information started to be involved in shifted windows. 

C. Multi-classification Performance  
Fig. 6 illustrates the 6-class continuous decoding 

performance comparison by using two kinds of decoding 
features and two classifiers. TABLE I shows the confusion 
matrices of each type of models on the window of [0.5 1.5] s. 
The average decoding accuracies were calculated across all 
subjects. The decoding was done on shifted windows with a 
length of 1 s and a step size of 0.1 s, and the center time point 
of each window was used to represent this window. During the 
time period from -2 s to 2 s of the movement cue onset, 31 
windows were involved. As shown in Fig. 6, the decoding  
performance was steady before 0 s, and gradually increased  
after 0 s. The decoding accuracies of models built by Temporal 
feature with SVM classifier, Temporal feature with LDA 
classifier, Spectral feature with SVM classifier, and Spectral 
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TABLE I. CONFUSION MATRICES OF FOUR TYPES OF MODELS BY USING TEMPORAL AND SPECTRAL 
FEATURES WITH LDA AND SVM CLASSIFIERS, RESPECTIVELY. THE RESULTS WERE AVERAGEDACROSS ALL 

SUBJECTS. 

 
TABLE II. SUBJECT-INDEPENDENT SIX-CLASS CLASSIFICAITON PEAK ACCURACY AND PEAK TIME USING 

DIFFERENT TYPES OF MODELS. 

Subject 
No. 

LDA Classifier SVM Classifier 
Peak Accuracy [%] Peak Time [s] Peak Accuracy [%] Peak Time [s] 

Temporal Spectral Temporal Spectral Temporal Spectral Temporal Spectral 
S1 74.13 56.75 0.5 0.9 81.83 61.67 0.8 0.8 
S2 55.00 42.12 1.4 0.9 61.00 48.50 1.2 0.9 
S3 70.92 65.88 1.1 1.2 80.50 71.67 1.1 0.9 
S4 55.33 47.25 1.0 0.8 62.67 52.00 0.9 0.9 
S5 56.46 47.38 0.9 1.5 67.00 52.83 0.9 1.4 
S6 71.12 61.37 0.7 1.1 78.17 66.17 1.0 1.2 
S7 71.75 50.67 1.8 0.9 78.33 58.67 1.1 0.9 
S8 53.71 38.33 0.8 0.9 52.83 36.00 1.0 0.8 

Mean± 
Std 

63.55± 
9.09 

51.22± 
9.47 

1.03± 
0.41 

1.03± 
0.23 

70.29± 
10.85 

55.94± 
11.15 

1.00± 
0.13 

0.98± 
0.21 

feature with LDA classifier peaked at 0.8 s, 0.9 s, 0.9 s, and 0.9 
s, and were 69.02%± 11.45%, 61.91%± 9.48%, 54.72%± 
11.04%, and 49.31%± 9.42%, respectively. Furthermore, for 
the models mentioned above, decoding accuracies on the 
movement cue onset (0 s) were 46.60%± 10.56%, 
39.33%±8.55%, 40.40%±8.03%, and 37.40%± 6.82%, 
respectively. For the 6-class classification, the chance level was 
16.67%, and the decoding performance of both preparation 
period (-2 s to 0 s) and movement period (0 s to 2 s) was all 
above chance level. As shown in TABLE I, relatively high true 
positive rate (TPR) results were obtained except the movement 
condition of left, under which the decoding accuracy was lower 
than under other movement conditions by 5% to 20%. Given 
the low TPR obtained under the movement condition of left, the 
predicted labels were mainly mistaken for the movement 

condition of right. Overall, according to the TPRs among four 
types of models, the best performance was obtained by using 
Temporal feature with SVM classifier, which was in accord 
with the 6-class classification results shown in Fig. 6. 

TABLE II shows the subject-independent peak accuracies 
and peak times. For the peak accuracy, the two-factor repeated 
measure ANOVA found that there were significant difference 
between classification features (F(1,28) = 13.74, p = 0.0009), 
and no significant difference between classifiers (F(1,28) = 
2.53, p  = 0.1226). Furthermore, no significant interaction was 
found between classification feature and classifier (F(1,28) = 
0.08, p = 0.7812). For the peak time, the two-factor repeated 
measure ANOVA found that there were no significant 
difference between classification features (F(1,28) = 0.02, p = 
0.8958), and no significant difference between classifiers  
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(F(1,28) = 0.16, p  = 0.6948). Furthermore, no significant 
interaction was found between classification feature and 

classifier (F(1,28) = 0.02, p = 0.8958). The best decoding 
performance was obtained by using Temporal feature and SVM

TABLE III. ONE-VERSUS-ONE BINATY CLASSIFICATION ACCURACIES BY USING TEMPORAL AND SPECTRAL 
FEATURES WITH LDA AND SVM CLASSIFIERS. THE RESULTS WERE AVERAGED ACROSS ALL SUBJECTS. 

classifier, with the average peak accuracy of 70.29%± 10.85%. 

D. Binary Classification Performance  
TABLE III presents the one-versus-one binary classification 

results by using Temporal and Spectral features with LDA 
classifier and SVM classifier, respectively. With 6 kinds of 
movement conditions, 15 binary combinations were yielded. 
The decoding accuracies were calculated on the window [0.5 
1.5] s, because the average peak time calculated by four types 
of models was 1.01 s (as shown in TABLE II). From TABLE 
III, we can see that slightly worse classification results were 
similarly obtained by left-and-right classification combinations 
in four types of models. This result was in accord with the TPRs 
shown in TABLE I, which showed the TPRs under the 
movement condition of left was lower than other movement 
conditions, and the predicted labels were mainly mistaken for 
the movement condition of right. By comparing the binary 
classification results between using Temporal feature and 
Spectral feature, better classification results were obtained by 
using Temporal feature with 5% to 10% higher than using 
Spectral feature for each binary classifier. This conclusion was 
also in accord with the results shown in Fig. 6 and TABLE II. 

IV. DISCUSSION 
In this paper, we investigated the neural signatures and 

decoding of the hand movement direction under conditions of 
single-hand movement and both-hand movement by using EEG 
signals. Neural signatures were represented in the forms of the 
MRCPs at electrodes C1, Cz and C2. The decoding models by 
using Temporal and Spectral features with LDA and SVM 
classifiers were built. This paper is the first work to investigate 
the neural signatures and decoding of hand movement 
parameters under single-hand and both-hand movement 
conditions. 

We found that different negative offset amplitudes were  

obtained under six types of movement conditions (as shown in 
Fig. 3). Different negative offset amplitudes might be in favor 
of the 6-class movement directions classification. Furthermore, 
larger negative offset amplitudes were observed under the 
condition of both-hand movement than under the condition of 
single-hand movement. This result was consistent with the 
findings in [15]. Similar results were observed under the 
condition of left-hand movement in the up direction than in the 
down direction, and were also observed under the condition of 
right-hand movement in the left direction than in the right 
direction. These results may be explained according to the 
findings in [27]. It showed that the negative offset maximum of 
MRCP might be related to the torque-level, and the negative 
offset maximum of MRCP in the task with the high torque was 
higher than that in the same task with the low torque. In our 
experiment, the torque-level for the both-hand movement was 
higher than that for the single-hand movement. Furthermore, 
according to the findings in [28], the torque-level for the 
movement away from the torso (i.e., the left-hand movement in 
the up direction in our study) was higher than that for the 
movement toward the torso (i.e., the left-hand movement in the 
down direction in our study), and also the torque-level for the 
right arm with the leftward motion was higher than that for the 
right arm with the rightward motion. Besides, for the single-
hand (right hand) movement, the lateralization effect was 
observed with a larger negative offset amplitude of MRCP at 
electrode C1 than at electrode C2 (as shown in Fig. 4). For the 
both-hand movement, no lateralization effect was observed.  

Experimental results showed that, for 6-class movement 
directions decoding, the decoding model built by using the 
Temporal feature and SVM classifier reached the grand average 
peak accuracy at 70.29%. The differences of negative offset 
amplitudes in MRCPs between different movement conditions 
could be indicative of the good decoding performance. 
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Furthermore, as mentioned in [29], EEG signals are nonlinear 
and unsteady. From this aspect, the models built by using SVM 
classifier outperforming those built by using LDA classifier 
might be because the former can better capture the nonlinear 
information.  

As shown in Fig. 6, the decoding performance higher than 
chance level (16.67%) was observed both in the movement 
preparation period (-2 s to 0 s) and in the movement execution 
period (0 s to 2 s). The decoding performance kept steady 
during the movement preparation period and gradually 
increased and peaked during the movement execution period. 
Since, in our experiment, the movement direction cue was 
presented at -4 s, the motion intention was already involved in 
EEG signals during the movement preparation period (-2 s to 0 
s), which could lead to higher decoding accuracy than chance 
level during the preparation period. Besides, after 0 s, the actual 
movement started to be executed. With the shifted windows, 
more neural information related to hand motor was gradually 
involved in the decoding window, leading to the increment of 
decoding performance.  

Compared to the latest studies [15] on unimanual and 
bimanual actions decoding, we could obtain a better decoding 
result. The grand average participant-specific peak accuracy 
reached 38.6% at 1.11s for 7-class classification in [15], and 
reached 70.29% at 1.00 s for 6-class classification in our study. 
However, one should note that since the movement parameter 
to be decoded (movement type in [15], and movement direction 
in our study), EEG amplifier, and subjects were different 
between the mentioned work and our work, the direct 
comparison in decoding accuracy is unfair. 

This work has vital values in the following implications.  The 
cooperation of both hands was common, such as one hand to 
operate steering wheel and the other hand to operate gear lever 
in the human-vehicle interaction system. From this aspect, the 
discrimination of single-hand movement from both-hand 
movement should be explored. Furthermore, though the 
discrimination of unimanual and bimanual reach-and-grasp 
actions has been studied in [15], the primary purpose of their 
study was for bimanual neuroprostheses. The tasks in daily life 
were abstracted to decode different types of actions, such as 
holding the spoon and jar. However, in practice, for most 
human-machine interaction systems, decoding the hand 
movement parameters (such as direction and velocity) of 
operators is more useful. Thus, this work can lay a foundation 
for the future development of an active human-machine 
collaboration system based on EEG signals and open a new 
research direction in the field of decoding hand movement 
parameters from EEG signals. 

However, there are still some limits in this work, which need 
to be addressed in our future work. First, although the relatively 
good averaged performance was obtained by using the 
Temporal feature and SVM classifier, subject differences in 
decoding performance were observed. As presented in TABLE 
II, when using the Temporal-SVM model, relatively low peak 
accuracies were obtained for Subjects 2, 4, 5, and 8. One 
possible method to address the problem is to build the subject-
specific models by using different features and classifiers [30] 
[31]. Second, in our study, we focused on the movement 
direction decoding from EEG signals. To better apply both-

hand movement decoding-based BCIs to human-machine 
interaction systems, more types of movement kinematics 
parameters should be decoded, such as velocity, acceleration, 
trajectory construction, and also more kinds of information 
should be fused to improve the stability and scalability of 
systems, e.g., the priori-knowledge of hand movement given a 
specified task, machine states, and environment information. 
Third, in this work, we analyzed the discrimination of the 
single-hand movement from both-hand movement in an offline 
way. To apply the proposed method to develop brain-controlled 
assistive devices, we should design a corresponding brain-
machine interface and test it online. Finally, in our experiment, 
to explore the feasibility of decoding single-hand and both-hand 
movement directions, we assumed the right-hand movement in 
horizontal directions (right or left). Considering that, in human-
machine collaboration systems, two hands often move in 
different directions, we preliminarily set the left-hand 
movement in vertical directions (up or down) rather than 
horizontal directions. In other words, we took the four-class 
both-hand movements and two-class single-hand movements as 
an example to explore the feasibility to decode single-hand and 
both-hand movement directions. It is a challenge to differentiate 
multiple types of movements from EEG signals. This work tries 
to extend the hand movement decoding to 6 classes to prove the 
concept. We will study more classes in the future. 

Our future work will be focused on addressing these limits 
mentioned above, including improving decoding performance, 
decoding more types of movement parameters and more 
combinations of movement directions, using more subjects, and 
conducting the online test. 

V. CONCLUSION 
Our study shows the feasibility of discriminating single-hand 

and both-hand movement directions by using the low-frequency 
EEG signals. Neural signatures were presented in the form of 
MRCPs. Larger negative offset amplitudes were observed 
under the condition of both-hand movements. By using EEG 
potentials as features with the SVM classifier, peak decoding 
accuracy was obtained at 70.29% for six-class classification. 
This work first explores the decoding of single-hand and both-
hand movement directions and can contribute to developing an 
active human-machine collaboration system. 
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