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Abstract— For a brain–computer interface (BCI) system, a cal-
ibration procedure is required for each individual user before
he/she can use the BCI. This procedure requires approximately
20–30 min to collect enough data to build a reliable decoder.
It is, therefore, an interesting topic to build a calibration-free,
or subject-independent, BCI. In this article, we construct a
large motor imagery (MI)-based electroencephalography (EEG)
database and propose a subject-independent framework based
on deep convolutional neural networks (CNNs). The database is
composed of 54 subjects performing the left- and right-hand
MI on two different days, resulting in 21 600 trials for the
MI task. In our framework, we formulated the discriminative
feature representation as a combination of the spectral–spatial
input embedding the diversity of the EEG signals, as well as a
feature representation learned from the CNN through a fusion
technique that integrates a variety of discriminative brain signal
patterns. To generate spectral–spatial inputs, we first consider
the discriminative frequency bands in an information-theoretic
observation model that measures the power of the features in two
classes. From discriminative frequency bands, spectral–spatial
inputs that include the unique characteristics of brain signal
patterns are generated and then transformed into a covariance
matrix as the input to the CNN. In the process of feature
representations, spectral–spatial inputs are individually trained
through the CNN and then combined by a concatenation fusion
technique. In this article, we demonstrate that the classification
accuracy of our subject-independent (or calibration-free) model
outperforms that of subject-dependent models using various
methods [common spatial pattern (CSP), common spatiospectral
pattern (CSSP), filter bank CSP (FBCSP), and Bayesian spatio-
spectral filter optimization (BSSFO)].

Index Terms— Brain–computer interface (BCI), convolutional
neural networks (CNNs), deep learning (DL), electroencephalog-
raphy (EEG), motor imagery (MI), subject-independent.
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I. INTRODUCTION

BRAIN–COMPUTER interface (BCI) is a system that
enables a direct communication pathway between a

human brain and external devices [1]. BCIs have shown
great potential in a variety of clinical applications for com-
munication, control, and rehabilitation [2]–[9]. Furthermore,
recent BCI studies have attracted great attention as future
technology for the next generation [10]–[15]. Over the course
of numerous BCI studies [16]–[21], growing attention has been
dedicated to the analysis of electroencephalography (EEG)
signals, especially by movement imagination, called motor
imagery (MI) [1], [2], [8], [12], [14], [16], [22]. This interest
is due to the ability of MI to allow both healthy and dis-
abled people to self-regulate brain signals without an external
stimulus.

In BCI systems in general, a user’s brain signals can change
over minutes, hours, or days due to the differences in the phys-
iological and psychological characteristics of each individual
at each time [22]. Moreover, the spatial origin, the amplitude
change, and the variability of the brain signals exhibit subject-
specific patterns [23]. If the brain signals are expected to
change occasionally, then a decoding method to compensate
for the changes in the brain signals is indispensable in the
general use of BCIs. However, unfortunately, the process of
calibration is an inconvenient and time-consuming task, which
requires approximately 20–30 min for a reliable decoder to be
built [24], [25]. In the current BCI research, the calibration
process is one of the obstacles that prevents the practical use of
BCI systems. In conclusion, this problem should be addressed
to enable real-world applications of BCIs.

To this end, we construct a large-scale MI EEG database
and propose a novel subject-independent framework based on
spectral–spatial feature representation with deep convolutional
neural networks (CNNs). The main contributions of this article
can be summarized as follows.

1) We built a large MI-based EEG database with 54 healthy
subjects over two sessions. This database is the largest
MI BCI dataset thus far ever reported in the literature,
and it provides a sufficient number of training samples
for deep learning (DL) architectures (CNNs).

2) We proposed a new discriminative spectral–spatial input
to represent a diversity of brain signal patterns across
the subjects and sessions.

3) We represent the MI-induced event-related desynchro-
nization (ERD) patterns through the CNN model
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by applying a spatial fusion technique that combines
spectral–spatial inputs from diverse frequency regions.

The remainder of this article is organized as follows.
Section II discusses the related work. In Section III, we briefly
introduce our large-scale database. Section IV elaborates
the proposed framework. Details of the experimental results
and analysis are discussed in Sections V and VI. Finally,
Section VII concludes this article.

II. RELATED WORKS

Most conventional MI-based BCI systems were developed
based on subject-dependent methods that require calibration
time [25]–[28]. Common spatial patterns (CSPs) are one
of the most widely used methods in MI-based BCI; CSPs
maximize the differences in the variances for the binary
classes [23], [25]. Based on CSP methods, advanced algo-
rithms have been proposed, for example, common spatiospec-
tral pattern (CSSP) [29], filter bank CSP (FBCSP) [28], and
Bayesian spatio-spectral filter optimization (BSSFO) [30]. The
CSSP method is built on an extension of the CSP method with
an embedded time delay [29]. The FBCSP method is based on
composing a frequency range with nonoverlapping and static
frequency bands (e.g., 4–8 Hz, 8–12 Hz,…) [28]. The BSSFO
method constructs a data-driven discriminative filter bank
and bandwidth selection within a Bayesian framework [30].
However, these methods still require the calibration procedure
to train the decoder.

In recent years, various strategies to reduce the cali-
bration time in MI-based BCIs have been proposed. The
zero-calibration method aims to immediately use the BCI
system without the calibration process for a naive BCI user
(e.g., without using training data from new users) and is also
called the subject-independent method [31]–[35]. The exist-
ing zero-calibration methods are usually built on a transfer-
based approach that uses preexisting data from other subjects.
Ray et al. [31] established an MI database, extracted mean-
ingful brain features based on the FBCSP method from a
previously created database, and classified them using a linear
support vector machine (SVM). Lotte et al. [32] used a public
database that was composed of nine subjects and designed
a user-independent model by considering multiresolution fre-
quency decomposition to extract the EEG features, following
the idea of the FBCSP method. Fazli et al. [33] proposed a
zero-calibration ensemble method that extracted a temporal–
spatial filter and built an ensemble model on the basis of linear
discriminant analysis (LDA). In addition, studies that utilize
minimum calibration data have been conducted [34]–[39].
However, these recent zero-training strategies in the literature
have primarily concentrated on the linear properties of the
given training samples and endeavored to extract EEG features
based on conventional subject-dependent methods. At present,
in the field of BCI, there is a great interest in investigating
machine learning technology and applying it to the analysis
of EEG decoding. One prominent example of such advances is
the utilization of DL, which relates to other technology trends,
such as big data and artificial intelligence.

DL has been shown to be a great success in computer vision,
natural language processing, and many other fields [40]–[46].

As DL methods enabled us to effectively exploit distributed
and hierarchical features through multiple layers of nonlinear
information processing [40]–[44], it is expected to produce
higher performance than traditional classification methods
(e.g., SVM) [45]–[47]. To date, DL has been applied to
MI-based BCIs and contributed to performance improve-
ments [48]–[51], but they are all still limited to subject-
dependent BCI.

There are two key issues to be addressed in utilizing DL
approaches to develop a subject-independent BCI. First, there
is no large-scale MI database with a large number of subjects
and sessions available. This is because establishing a large
database for EEG-based BCI requires a tremendous effort.
Second, there were scarce studies on subject-independent BCIs
based on DL, which requires strategies for extracting discrimi-
native brain features from a large-scale database. Conventional
methods worked well in the subject-dependent case but fared
poorly for the subject-independent case, because brain signals
from different subjects are highly variable, discriminative, and
semantic [22], [24].

In this article, we propose a novel framework of spectral–
spatial feature representation using CNNs from a large-scale
MI EEG database. To the best of our knowledge, this is the
first study to apply a method that has a sufficient number of
EEG training samples and a feature extraction method that is
fit to subject-independent BCI based on DL.

III. DATA ACQUISITION AND EXPERIMENTAL SETUP

A. Participants

The main purpose of our MI database was to capture large
variations between the subjects and the sessions. In the experi-
ment, 54 healthy subjects (aged 24–35: 29 male and 25 female)
participated in experiments of two sessions. Among them,
38 subjects were naive BCI users, and the others had pre-
vious BCI experiment. The interval between the sessions was
between one and two weeks. None of the subjects had a history
of neurological, psychiatric, or any other pertinent disease.

At the beginning of the experiment, the subjects were
seated comfortably in a chair with armrests 60 (±5) cm from
a 20-in LCD monitor (refresh rate: 60 Hz and resolution:
1600 × 1200). During the experiment, participants were
asked to relax and minimize their eye and muscle movements.
Additionally, we provided a monetary incentive for the
participants, approximately 80 dollars for a single experiment.
This study was approved by the Institutional Review Board of
Korea University (approval 1040548-KU- IRB-16-159-A-2),
and all subjects agreed to participate in this experiment with
written consent.

B. EEG Recording

In this experiment, the EEG data were recorded using
62 Ag/AgCl EEG electrodes and four EMG electrodes, with a
sampling rate of 1000 Hz. BrainAmp (Brain Products, Munich,
Germany) was used as the amplifier in the experiment. The
EEG channels were nasion-referenced and grounded to elec-
trode Fpz. The EMG channels were attached at the flexor and
extensor of the left and right forearms. Each flexor digitorum
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Fig. 1. EEG electrode placement of the international 10–20 system and the
EMG placement (62 EEG and 4 EMG recording channels), which indicates
the locations of the electrodes. The EEG electrodes shown in gray were used
for the performance validation.

profundus muscle with the olecranon was used as an EMG
electrode reference. The EEG/EMG electrode configuration
and indexing numbers are shown in Fig. 1. The impedances of
the EEG electrodes were maintained below 10 k� during the
entire experiment and checked before the start of each phase.
The EMG channels attached to collect the subject’s physical
movements were excluded because they were out of scope in
this article.

Basically, an antialiasing filter was applied before digi-
tizing the EEG signals. Then, recorded EEG signals were
downsampled to 100 Hz by the Nyquist theory for our
interesting frequency ranges that are below 40 Hz. For the
performance validation, 20 electrodes from the motor cortex
region were selected (FC-5/3/1/2/4/6, C-5/3/1/z/2/4/6, and
CP-5/3/1/z/2/4/6), as shown in gray circles in Fig. 1.

C. MI Paradigm

In the MI paradigm, all subjects were instructed to perform
two-class MI tasks (movement imagination of the left or right
hand; hand open and close) according to a visual cue (a left
or right arrow) on the monitor. In the experiment, each trial
started with a black fixation cross for a preparation of the
MI task for 3 s at the center of the monitor. Afterward,
the subject was instructed to perform the MI task for 4 s
when the left or right arrow appeared on the monitor. After
each MI task, the screen remained blank for 6 s (±1.5). These
entire procedures were based on the general BCI experimental
setting [1].

The whole experiment is composed of an offline (training)
and an online (testing) phase. As the EEG data were acquired
in the offline phase, a projection matrix of CSP and a classi-
fication model based on CSP and LDA were obtained. Those
CSP and LDA parameters were used for the analysis in the
online phase. In the online phase, the real-time EEG data for
1.5 s were obtained and filtered with the same frequency band
used in the offline phase. Afterward, the projection matrix of
CSP from the offline phase was applied to the online EEG

data, and then, the logarithm variances were taken as features.
Then, LDA parameters were applied to those features, and
finally, the output was presented in the form of a left or right
arrow to the user as real-time visual neurofeedback to acquire
a high-quality EEG signal through user-adaptive training,
which has been used in general BCI research [52]. We pro-
vided flexible break times for individual participants between
the phases.

For the experimental environments, we used Psychophysics
Toolbox Version 3 (PTB-3) and OpenBMI toolbox [53], which
can run with MATLAB R2012a+ on Windows OS. The
OpenBMI toolbox is a general-purpose software that we have
developed since 2012, and it includes experimental codes as
well as the modules for data analysis of BCI.1

IV. SPECTRAL–SPATIAL FEATURE

REPRESENTATION (SSFR)

To create a generalized feature representation from a large-
scale MI dataset, we considered the following questions:

1) how to extract discriminant ERD patterns from contin-
uous EEG data that include a diversity of brain signals
in the frequency and spatial domains;

2) how to construct m × m input matrices C from the EEG
epoch X (time samples × channels × trials) that would
be suitable to be fed into the CNN architecture;

3) how to design a CNN framework that could represent
the diversity of spectral–spatial features from the input
matrices C;

A. Spectral–Spatial Input Generation

Let us denote Xn = {xi }n
i=1 ∈ R

T ×M as a set of single-trial
EEGs, and let Yn = {yi}n

i=1 be the matching class labels,
where n is the number of EEG trials, T is the number of
sample points, and M is the number of channels.

An individual’s EEG signal Xn was bandpass-filtered with a
fifth-order Butterworth filter based on the predefined frequency
bands B. We define B as a set of predefined frequency bands,
B = {bk}K

k=1 (e.g., [8, 30 Hz], [11, 20 Hz], and so on), where
K is the number of frequency bands. The frequency bands
included conventional frequency bands in reference to previous
findings [23] and empirically extend the additional frequency
bands; the details are shown in Fig. 2. Then, the filtered-
EEG signals were segmented between 1000 and 3500 ms
after stimulus onset (i.e., 2500 data samples × 20 channels
× 200 trials) for an individual subject.

From a large-scale MI database, all single-trial EEGs
Xsource = concat{X1,X2,…,XN } were placed in sequence
from the first subject (N = 1) to the last subject (N = 54),
and the matching class labels Ysource = concat{Y1,Y2,…,YN }
were sequentially concatenated, where N is the number of
training subjects. Note that the target subject (the test subject)
is always excluded from the training.

Given a certain frequency band bk and concatenated
EEG signals Xsource, the filtered EEG signals Ek were

1https://github.com/PatternRecognition/OpenBMI
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Fig. 2. Entire frequency information used in this article. Left: total number of
frequency indices. The x-axis is the frequency range. The y-axis is the order
of the frequency. Right: rearranged frequency indices according to the value
of mutual information. The bottom (N = 1) of the y-axis has the highest
mutual information value.

deterministically obtained. The bandpass filtering is applied
as follows:

Ek = bk

⊗
Xsource (1)

where
⊗

is the bandpass filtering operation.
After the bandpass filtering based on predefined frequency

bands, a standard CSP algorithm [25]–[28] is utilized, in which
Wk ∈R

U×U is analytically obtained from Ek by calculating
a generalized eigenvector problem, where U is the number of
spatial filters to be obtained from the CSP algorithm.

Before measuring the discriminative power between the
classes, a feature vector for each frequency band bk is obtained
through a matrix multiplication between the filtered EEG
signals Ek and the spatial filters Wk . The variance of the
spatially filtered signals is calculated, and then, the logarithm
is computed for the feature

Vk = log
(
var

(
WT

k · Ek
))

. (2)

Since it is uncertain which frequency bands can compose
discriminative brain features, we encode these uncertainties
using mutual information over the frequency bands bk and
features Vk . Mutual information is a measure of the mutual
dependence between two random variables and the uncertainty
of the random variables

I(Vk ;Ysource) = H(Vk) − H(Vk | Ysource) (3)

where H(·) is the entropy and H(· |·) is the conditional entropy.
Since the value of mutual information is obtained for each

frequency band, frequency bands bk are rearranged in the
descending order (bp) from largest to smallest in terms of
the value of the mutual information in Fig. 2. This method is
used to select informative subsets of the original features [54],
and on the basis of our belief, it would help us to discover
the frequency band that could contribute to composing dis-
criminative ERD among large-scale MI data. On the basis of
the rearranged frequency bands bp in Fig. 2, the spectral EEG
signals Ek and the spatial filters Wk were also rearranged to
Ep and Wp according to the new frequency order bp .

From the spectrally and spatially optimized EEG epoch (Wp

and Ep), the covariance matrix C p is calculated

C p = cov
(
WT

p ·Ep
)

(4)

where the input set C = {C1,C2,…,CP }∈R
U ×U × P , U is the

number of spatial filters, and P is the number of frequency
indices.

B. Feature Representation Using CNN

In this article, we utilize the CNN approach to learn repre-
sentation from a set of spectral–spatial inputs (C). The CNN
model consists of several computational blocks [40]–[43];
here, the proposed framework is composed of three convo-
lutional layers, a concatenation layer for fusion, and a fully
connected layer. Given the CNN input C p for each frequency
band bp , the outcome of the CNN layer at the Lth layer
can be obtained as f L(C p) (see [40]–[43]). To design the
CNN, the characteristics of each spectral–spatial input (C p) for
each frequency band (bp) should be taken into consideration.
In the CNN layers, the spectral–spatial inputs are individually
passed through the CNN model for each frequency band. Each
outcome of the convolutional layer is considered as an input
into the subsequent computational block. From the diverse
frequency bands (bp), each convolutional feature is extracted
by the CNN, as shown in Fig. 3

GL
p = fL (Cp) (5)

where GL
p is the outcome of C p at the Lth convolutional

layer, f (·) denotes the CNN model, and f L(·) composes L
convolutional layers of f (·), f L (·) = f (·;�1, �2, . . . ,�L ),
where � is the weight matrix of each layer.

The whole CNN framework is trained to reduce the
loss function by stochastic gradient descent [40]–[43]. Here,
the cross-entropy loss function is used, and feature maps are
processed by a rectified linear (ReLU) function.

C. Feature Fusion and Classification

In this section, a feature fusion process is presented by
integrating discriminant spectral–spatial inputs. Our approach
starts by utilizing multiple frequency bands bp , as shown
in Fig. 2. Each frequency segment in bp represents the diver-
sity of ERD patterns that contain the inherent information.
Our main motivation is to integrate all the segments (bp) that
contain the discriminant ERD patterns in the brain signals.

For the integration of multiple convolutional features,
we encode the convolutional features and transform them into
a linear vector representation as the outcome feature for a
concatenation fusion layer, where the high-dimensional convo-
lutional feature vectors are transformed into a low-dimensional
vector for the fusion process.

Let us denote C p as the features on the Lth layer, which can
be represented as GL

p= S= {s1, s2,…,sP }∈R
D of the set P

D-dimensional convolutional features. Thus, a D-dimensional
vector was obtained in each frequency band (bp), and all
the individual D-dimensional vectors were concatenated as
follows:

Sconcat
(p×d) = ad , . . . , Sconcat

(p×d)−(p−1) = zd (6)

where Sconcat∈R
(P×D). Here, P is the number of inputs at

the Lth layer, D is the dimension of the first fully connected
layer of the CNN, and a = s1, z = sp .
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Fig. 3. Proposed subject-independent framework based on deep CNNs.

The concatenated fusion layer Sconcat , which is the output
of the algorithm, was connected with a fully connected layer,
as shown in Fig. 3. Finally, the value of the two outputs that
indicate left- or right-hand MI was obtained from the soft-max
classifier.

D. Parameter Setting

In the training session, 53 subjects (i.e., N = 1, . . . , 53)
over two sessions (a total number of 21 200 trial samples)
were used to train the CNN. In the 30 predefined frequency
bands (i.e., K = 1, . . . , 30) in Table I, 20 rearranged frequency
bands (i.e., P = 1, . . . , 20) were selected in this article.
Therefore, 424 000 samples (20 frequency bands × 53 subjects
× 200 trials × 2 sessions) were utilized as inputs for the CNN
architecture.

Specifically, all spatial filters of the CSP (U = 10)
were used in this article. Based on (4), all EEG epochs
were transformed into covariance matrices (M × M; here,
M = 20), and zero padding was applied (M̂ × M̂; here,
M̂ = 28). Thus, the M̂ × M̂ matrix was used for the input
of the CNN architecture. The dimension of the first fully
connected layer neurons’ activations of the CNN D was 256,
and the number of layers L was 4. The learning rate of η
was 0.00001, and a 50% drop-out rate was applied in the
training phase. A filter size of 3 × 3 was used. For the
batch size, we used 100 samples for each mini-batch. Adam
optimizer was used for the optimization algorithm. All learning
parameters were determined by our iterated experiments. The
entire experiment was conducted on a desktop computer with
a dual-core i7-7700 4.2-GHz processor and 16-GB memory.
TensorFlow was basically used to implement the algorithms
(e.g., concatenate); see Algorithm 1.

E. Performance Evaluation

For the performance comparison, we evaluated the decoding
accuracy of the proposed method by comparing the previous
subject-independent approaches [31], [32] as well as subject-
dependent approaches [23], [28]–[30].

Specifically, a fused model [31], an MR FBCSP (multires-
olution FBCSPs) method [32], and a pooled CSP method [32]

were implemented as subject-independent approaches. For
the fused model, the EEG signals were decomposed using
six frequency bands, as in [31]. The MR FBCSP method
also used decomposition with three sub-decompositions of
different resolutions, which included 20 different features [32].
Additionally, we evaluated the basic ensemble method (Pooled
CSP [32]), which concatenates all the given training samples
and obtains the CSP filters from the concatenated samples.

Additionally, CSP [23], CSSP [29], FBCSP [28], and
BSSFO [30] were evaluated as subject-specific methods for
comparison. For the analysis of the CSP algorithm, a widely
used frequency band (8–30 Hz) was utilized to obtain the
spatial patterns [23]. The CSSP method is implemented uti-
lizing time delay embedding from 1 to 15 [29]. The FBCSP
method is decomposed using nine frequency bands, as in [28].
In BSSFO, 30 particles were used for the analysis and were
iterated 10 times to achieve robust classification results [30].
For all the subject-specific methods, bandpass filtering was
applied with a fifth-order Butterworth filter at the frequency
band. With respect to spatial filtering, the two highest and two
lowest spatial patterns were used for the analysis.

For the classifier (except for in the proposed method),
we used linear classifiers (LDA) that are specified by the
discriminant functions for a binary classification problem. This
is because LDA not only achieved the highest accuracy in the
subject-independent environment previously [32] but also is
widely utilized in the subject-dependent environment [37].

Fig. 4 shows an example of how we utilized the training
and testing samples according to the method of analysis. For
the subject-dependent validation, the offline data from session2
(the black box) was used to derive the classifier parameters,
and the online data from session2 (the gray box) was used for
the performance validation using pretrained parameters. For
the subject-independent validation, we utilized a leave-one-
subject-out cross-validation (LOSO-CV) procedure [31], [32].
For example, assume that subject1 is the target subject (the test
subject). Except for the target subject, all the training samples
(the black boxes) were used to train the classifier, and then,
the online data from session2 for the target subject (the gray
box) were used for the performance evaluation. The same test
data were used in both environments.
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Algorithm 1 Spectral–Spatial Feature Representation Algorithm
Input: A set of training samples from a large-scale MI database.

• x ∈ R
T ×M : EEG data with T sample points and M channels.

• X={xi}n
i=1: an individual’s single trial in an EEG epoch, where n is the total number of trials.

• Y = {yi}n
i=1: class labels, where yi ∈ {+1,−1}.

• K = number of spectral filter bands.
• P= number of selected spectral filter bands.
• u= half the number of spatial patterns in a spatial pattern learning algorithm.

Output: Spectral-spatial convolutional features S.

• S ∈R
1×(D×P): D and P are the dimension of the first fully-connected layer and the number of inputs, respectively.

Procedures:
Xconcat = concat{X1, X2, . . . , XN} � Concatenate all training samples: N is the number of training subjects
Yconcat = concat{Y1, Y2, . . . , YN}
for k = 1 to K do

Ek=bk
⊗

Xconcat � bk is the predefined bandpass filter, Ek=
{
ei

k

}(N×n)

i=1
Solve WT

k (�(+) + �(−))Wk = I � Perform a CSP algorithm
Ŵk = the first u and the last u column vectors in Wk.
for i = 1 to (N×n) do

vi
k= log[var(ŴT

k ·ei
k)] � Refer to Section III-Eq.2, Vk=

{
vi

k

}(N×n)

i=1
end
I (Vk; Yconcat)= H (Vk) - H (Vk | Yconcat) � Refer to Section III-Eq.3

end
Rearrange the frequency bands bp from the largest MI value to smallest MI value.
for p = 1 to P do

Rearrange the spectral filters and spatial filters (Ep , Wp).
for i = 1 to (N×n) do

ci
p= cov(ŴT

p ·ei
p) � Spectral-spatial input generation, Cp=

{
ci

p

}(N×n)

i=1
end
Gp = f(Cp) � Refer to Section III-Eq.5

end
S = concat{G1, G2, . . . , GP} � Feature fusion process: refer to Section III-Eq.6

TABLE I

FREQUENCY BANDS’ INFORMATION

V. RESULTS

Table II shows the averaged decoding accuracies across
all subjects for individual methods. The decoding accuracies
for the subject-independent methods are 65.65% (±16.11),
67.37% (±16.01), 68.59% (±15.28), and 74.15% (±15.83)
for the pooled CSP, fused model, MR-FBCSP, and the pro-
posed method, respectively. In the multiple comparison test
of the subject-independent methods and the proposed method,
the result of an ANOVA test with Bonferroni was [F(3,212) =
2.9184, p = 0.0351]. The results of a paired t-test between
the subject-independent methods and the proposed method
were p < 0.001. In case of the subject-dependent meth-
ods, the decoding accuracies are 68.57% (±17.57), 69.68%
(±18.53), 70.59% (±18.56), and 71.02% (±18.83) for CSP,

CSSP, FBCSP, and BSSFO, respectively. In the multiple
comparison test of the subject-dependent methods and the
proposed method, the result of the ANOVA test with Bon-
ferroni was [F(4,265) = 0.7373, p = 0.5672]. The results of a
paired t-test between the subject-dependent methods and the
proposed method were p < 0.05.

Tables III and IV show the performance changes of the
proposed method according to the kernel size and the number
of feature maps, as shown in Fig. 3. The decoding accuracies
with the change in kernel size are 73.98% (±15.57), 74.15%
(±15.83), and 73.72% (±16.06) for 2 × 2, 3 × 3, and
5 × 5 kernels, respectively. The decoding accuracies according
to the number of feature maps are 73.51% (±16.33), 73.90%
(±16.65), and 74.15% (±15.83) when the first feature map
was 5, 8, and 10, respectively. Note that other parameters are
based on Section IV-D.

Fig. 5 shows the scatter plots that demonstrate the perfor-
mance comparison for individual subjects. The x-axis is the
classification performance of the competing methods, and the
y-axis is the performance of the proposed method. The top
row depicts the subject-dependent approaches in the order of
CSP, FBCSP, and BSSFO, and the bottom row displays the
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TABLE II

PERFORMANCE COMPARISON OF SUBJECT-DEPENDENT AND SUBJECT-INDEPENDENT METHODS

TABLE III

CLASSIFICATION PERFORMANCE ACCORDING TO THE KERNEL SIZE

TABLE IV

CLASSIFICATION PERFORMANCE ACCORDING TO THE

NUMBER OF FEATURE MAPS

subject-independent approaches in the order of pooled-CSP,
fused model, and MR FBCSP. The percentages of subjects
who showed higher performance in the proposed method than
in the other methods are 74.1% (40 of 54, p ≤ 0.001),
79.6% (43 of 54, p ≤ 0.001), 77.8% (42 of 54, p ≤
0.001), 64.8% (35 of 54, p ≤ 0.001), 57.4% (31 of 54, p ≤
0.001), and 51.9% (28 of 54, p ≤ 0.001) for pooled-CSP, fused
model, MR FBCSP, CSP, FBCSP, and BSSFO, respectively.
A paired t-test is used for the statistical analysis. Additionally,
the percentages of subjects who achieved 80% classification
performance in each method are 22.2% (12 of 54), 29.6%
(16 of 54), 25.9% (14 of 54), 33.3% (18 of 54), 37.0%
(20 of 54), 37.0% (20 of 54), and 44.0% (24 of 54) for pooled-
CSP, fused model, MR FBCSP, CSP, FBCSP, BSSFO, and the
proposed method, respectively.

Figs. 6 and 7 show the performance changes by the number
of subjects and the frequency bands. Fig. 6 shows the perfor-
mance changes according to the number of subjects. To avoid
the computational cost, the certain test subject (participant
N = 39) and the number of frequency bands (i.e., bp ,
p = 1, . . . , 20) were determined. The x-axis indicates that
the number of subjects (N) increased in steps of one from
N = 5 to N = 53. In each increasing step, a certain
number of subjects for the training were randomly selected
from among all subjects, and the classification performance
was validated with the test subject. Note that the composition
of a certain number of subjects was randomly changed over
five iterations, and the classification performance was obtained
from the average of five iteration results. For example, assume
that we have ten subjects (i.e., N = 1, . . . , 10). Ten subjects
were randomly selected among all subjects for each iteration.

Fig. 4. Example of data validation according to the method of analysis.
Black box: training samples. Gray box: testing samples.

At each iteration, the total number of samples (i.e., 10 subjects
× 200 trials × 2 sessions × 20 frequency bands) was used to
train the proposed CNN model, and it was then applied to the
test subject. In Fig. 6, the box plot presents the mean value
and the standard deviation of all the results. The accuracies are
77.80% (±4.66), 80.40% (±5.41), 84.60% (±0.55), 80.60%
(±6.51), 83.20% (±3.63), and 84.0% (±1.30) when 5, 10, 20,
30, 40, and 53 subjects were used, respectively.

Fig. 7 shows the performance variations with a different
number of frequency bands. The classification performance
was validated by increasing the number of frequency bands
(bp) from a single optimal frequency band (i.e., b1) to all
frequency bands (i.e., bp , p = 1, . . . , 30). The classification
performance was obtained by LOSO-CV for all subjects
(N = 1, . . . , 54). For example, assume that we selected one
subject for the test data (N = 1) and the remaining subjects
for the training data (N = 2, . . . , 54) and ten frequency
indices (i.e., bp , p = 1, . . . , 10) were used to train the
CNN model (i.e., 53 subjects × 200 trials × 2 sessions
× 10 frequency bands); then, the trained CNN model was
applied to the test data. This procedure was repeated for all
54 subjects, and the averaged value of the 54 iteration results
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Fig. 5. Scatter plot of individual classification performance in our MI database. Top row: subject-dependent methods, CSP, FBCSP, and BSSFO. Bottom
row: subject-independent methods, pooled CSP, fused model, and MR FBCSP. The horizontal axis is the decoding accuracies of the other methods, and the
vertical axis is the decoding accuracies of the proposed method.

was presented. The decoding accuracies shown in Fig. 7 are
52.84% (±6.70), 68.00% (±14.74), 71.68% (±15.27), 73.56%
(±16.04), 74.15% (±15.83), 74.26% (±15.95), and 73.59%
(±16.15) for 1, 5, 10, 15, 20, 25, and 30 bands, respectively.

VI. DISCUSSION

A. Statistical Significance Tests of Experimental Results

For statistical significance tests of the experimental results
on our dataset, the null hypothesis in this article is that the pro-
posed method produces the same mean accuracy as the com-
peting methods. We computed an ANOVA test with Bonferroni
for a multiple comparison test. In addition, we computed the
p-values using a paired t-test to assess whether the differences
in the classification accuracies between two methods are at a
significant level. In an ANOVA test of subject-independent
methods, the proposed method significantly outperforms the
competing methods [F(3,212) = 2.9184, p = 0.0351]. In a
paired t-test, the proposed method also significantly outper-
forms other methods, pooled CSP [t(53) = −5.8110, p <
0.001], fused model [t(53) = −6.1649, p < 0.001], and MR
FBCSP [t(53) = −5.0649, p < 0.001]. In the multiple compar-
ison test of the subject-dependent methods and the proposed
method, the result of the ANOVA test showed no significant
difference [F(4,265) = 0.7373, p = 0.5672]. In a paired t-
test, the differences in the classification accuracies between
the proposed method and subject-dependent methods are at a
significant level, CSP [t(53) = −3.5823, p < 0.001], CSSP
[t(53) = −2.8723, p = 0.0058], FBCSP [t(53) = −2.5877,
p = 0.0124], and BSSFO [t(53) = −2.0430, p = 0.046].

B. Effect of the Number of Subjects and Frequency Bands

Due to the lack of a large public MI database, the previ-
ous studies using DL could work only in subject-dependent
environments [48]–[51]. With the use of our large-scale MI
database, it is interesting to investigate how many data are
truly needed to develop an acceptable subject-independent
model with a DL network (i.e., what is the number of training
samples required to train the CNN?).

Our MI database includes a large number of subjects over
multiple sessions. Therefore, the database includes a variety of
brain signals, which represent inherent features for individual
subjects and EEG variability over different sessions.

Fig. 6 shows the performance changes according to the
number of subjects. Fig. 6 also shows that the classification
performance varies with the composition of the subjects used
to train the CNN. For the training of the CNN, a particular
number of subjects were randomly chosen among all subjects
in each increasing step. The arbitrary selection process was
repeated five times, and the averaged performance was calcu-
lated based on the results of five iterations, as described in
Section V. In Fig. 6, it can be seen that there were enormous
performance variations over each iteration. For example, when
five subjects were used, the results of the first and second
iterations showed significant differences in the classification
performance. This could be interpreted as the presence of
significant differences in the data between different subjects,
and therefore, a small number of training samples could either
help or harm the actual training. This has been confirmed in
the real world by other researchers who considered negative
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Fig. 6. Classification performance changes with the number of subjects. One subject was chosen for the test data, and 20 frequency indices were used for
this experiment. The composition of subjects for training was increased in steps of one from n=5 to n=53 and was randomly changed for each iteration. The
box plot shows the classification performance over five iterations.

transfer (an indication that knowledge transfer has a negative
impact on target learning) [55].

The larger the number of training samples that are utilized,
the better the classification performance that can be obtained,
as shown in Fig. 6. From this perspective, we can explain
the differences in the classification performance between
the subject-dependent and subject-independent environment,
as shown in Table II. The results in Table II show that while the
CNN works equally well as other conventional approaches in
the subject-dependent condition, it works much better than the
conventional approaches in the subject-independent condition.
Fig. 6 clearly shows that more training samples contribute to
better classification performance. With both the large dataset
and DL, our proposed method outperformed the subject-
dependent methods.

In addition, the investigation of user-specific frequency
bands was primarily considered in the subject-dependent BCI
study to improve the decoding accuracy. One prominent strat-
egy [30] is to stochastically find multiple frequency ranges
that are optimal for individual subjects. However, from the
perspective of subject-independent BCI, it is difficult to find
or define specific frequency bands due to the unavailability
of training data from the target subjects [22]. Therefore,
we included standard frequency bands (e.g., mu rhythm and
beta rhythm) that have been widely used in MI studies [23]
and additional frequency bands that are empirically determined

and overlap with each band, as shown in Fig. 2. The reason
why we deployed a large number of overlapping frequency
bands is that there is no single frequency range that is the
most discriminative for all subjects. Therefore, we decided to
use a filter bank that consisted of a broad variety of frequency
bands, to provide a greater diversity of EEG patterns from all
training samples. As the number of frequency bands increased
in Fig. 7, the classification performance also improved, which
is in line with our previous belief that each frequency segment
in bp represents the diversity of EEG patterns that contained
the inherent information. Furthermore, as shown in Fig. 7,
the performance improvement slows down after 20 frequency
indices (bp, p > 20). We determined that 20 frequency indices
are the proper size of the filter bank (bp , p = 20, . . . , 30)
to show performance superior to that of a single optimal
frequency band (b1). Furthermore, an increase in the filter
bank leads to an increase in the number of training samples,
which is beneficial to the CNN training. As an example,
a strategy of changing the configuration of the filter bank to
increase the number of training samples is similar to that of
data augmentation [22].

To summarize, a large-scale MI database is essential for
the enhancement of classification performance, and a proper
configuration of the filter bank is also an essential factor in
profoundly influencing the decoding accuracy of the subject-
independent BCI based on DL.
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Fig. 7. Classification performance variations according to the number of
frequency indices. The mean performance for all subjects was obtained by
LOSO-CV.

C. Consideration of the Proposed Input and Features

In this article, one of the main objectives is to construct
generalizable brain features. In fact, the signal variability,
the amplitude change, the temporal onset variations, and the
spatial origin of the EEG segments are different from subject
to subject. If we use simple features, such as the logarithm and
variance of the EEG signals, it is difficult to extract significant
and generalizable features that can include the information for
different subjects.

As it is known, CSP maximizes the variance differences
between binary class signals. The principle of CSP is to
perform a linear spatial transformation to project the high-
dimensional EEG data into a low-dimensional spatial subspace
with such a projection matrix, where each row represents a
spatial filter that consists of the weights for each channel.
Specifically, the first and last columns of the spatial filters are
the most important spatial filters, which results in the largest
variance of one task and the smallest variance of the other.
Overall, CSP-based methods were used to form a subset of
the most discriminant spatial filters (i.e., one or more spatial
filters).

With the feature representation and CNN architecture pre-
sented in this article, we believe that the learning process
should be based on the most important spatial filters as well
as the relations between each column of spatial filters that
would be helpful to construct generalizable brain features
from a large database. Therefore, we started with the idea of
combining CSP from various frequency bands which, in turn,
could capture relations between the columns of spatial filters.
To support our idea, there were many studies in the past that
were relevant to our idea and that utilize the relationships
between the features, such as the connectivity or correlation
between other feature dimensions, to improve the classification
performance or the predictions in research on traditional
neuroscience, MI, and other subjects [56]–[59].

In addition, to understand how much the given input is
related to the MI signals, let us study the first and last columns

of spatial filters that are the most significant information in
CSP, which demonstrates the largest variance of one class
and the smallest variance of the other class. From these
insights, if we apply CSP to the EEG signals and examine the
covariance matrix of the given input, one side of the covariance
matrix would have relatively high values compared with the
other side due to the largest and smallest spatial filters. For
example, the first spatial filter was meant to maximize the
left class of MI, and therefore, the left diagonal components
in the left MI input would have comparatively high values.
To understand this aspect in more detail, let us investigate
the comprehension about what features are learned from the
networks and how those features are related to MI signals.

The inputs (covariance matrices) are shown at the top
part of Fig. 8, and it can be seen that one side of the
diagonal components in the covariance matrix has relatively
high values (red) due to the discriminating effect of the spatial
filters. This can be interpreted as follows: the given input
is a representation of the MI signals (left or right motor
imagination). To see what features have been primarily learned
and to understand how CNNs work due to the large number
of interacting and nonlinear operations, we visualized the
activation of each convolutional network layer in Fig. 8 of the
CNN [60]. In Fig. 8, the relative value of the activation in each
convolutional layer is displayed in color. A larger amount of
red tells us that there is more activation in each convolutional
network layer. Through more active regions in the activation
map, it is possible to see what features the network learned.

From each activation map, it can be seen that the proposed
method effectively exploited the distributed and hierarchical
features through multiple layers. On the first activation mapped
in the first layer, the network focused on the simplistic features,
such as straight edges and simple colors in the given input.
As the layers become deeper, the learning process is based
on the values according to the MI class in the covariance
input. On the last activation map of the last layer, the network
focused not only on the most important spatial filters (for the
left class, more red appears on the upper left corner, while for
the right class, more red appears on the lower right corner) but
also on correlations (more red dots appear on the lower left and
upper right part) between different feature dimensions. From
this observation, we can conclude that the most important
spatial filters are significant for the classification in addition
to the relations between the other feature dimensions that are
critical for the classification.

This result could shed light on why the proposed method
outperformed other CSP-based methods that use few spatial
filters and linear characteristics to classify brain signals. When
only a few spatial filters of CSP are used, the correlations
between different feature dimensions in the inputs are lost,
which leads to degraded classification performance. In our
strategy, as we consider all input information as well as the
correlations between all the dimensions, our approach can
outperform other methods.

To summarize, the proposed feature shows a high level
of performance through learning the most significant spatial
filters as well as the relationships between different feature
dimensions that are related to MI. This study is the first attempt



KWON et al.: SUBJECT-INDEPENDENT BCIs BASED ON DEEP CNNs 3849

Fig. 8. Visualization of the proposed input and the 28 × 28 activations on
each convolutional layer. For the interpretability of the visualization, two filters
in each convolutional layer were shown. The activations in each convolutional
layer show the corresponding response of the given input. For example, in the
right class, as the lower right has the class-specific discriminative regions
according to the most important spatial filters (showing red colors), the lower
right in the activation map primarily shows a set of significant regions.
Furthermore, the lower left and the upper right tend to show discriminative
patterns from the relations between other feature dimensions. In nearly every
case, we have found that someone can guess what class a neuron represents
by observing a set of optimized and preferred images.

to exploit generalizable brain features in the CNN pipeline for
subject-independent BCI.

D. Consideration of the Proposed Framework

In this article, the proposed framework is composed of
three convolutional layers, a concatenation layer for fusion,
and a fully connected layer. The input of our framework is
the covariance matrix, which has a dimension of 28 × 28.
Since the input dimension is relatively small, we hypothesize
that significant features could be extracted through a few
convolutional layers rather than many convolutional layers.
Based on these considerations, we used three layers in the
CNN. Similarly, we think that similar features could be
extracted regardless of whether the number of feature maps in
the convolutional layer is large or small. Based on these con-
siderations, we decided to start with ten feature maps. Because
of the small input size, we also used a small kernel size. The
above-mentioned considerations might also be beneficial to
overcome a possible overfitting problem due to the relatively
small number of free parameters in the proposed model.

To determine the convergence process of the proposed
framework, we investigated the evolution of the classification

Fig. 9. Effect of the number of epochs on the classification performance in
the training phase. Blue line: averaged accuracy over five iterations. Magenta
region: standard deviation of the mean accuracy.

results during the training phase. The training process con-
verged within approximately 20 epochs for all subjects. Thus,
we chose 20 epochs for early stopping, as shown in Fig. 9.
The total number of free parameters is 72 264 076.

Our approach starts by utilizing multiple frequency bands.
We believe that those frequency bands have discriminant
brain features. Thus, we trained all frequency bands indi-
vidually to obtain frequency-wise features through the con-
volutional layers. Then, we used the concatenation fusion
technique and integrated all frequency-wise features, which
transformed high-dimensional convolutional features into a
vector with low dimensionality for parameter and dimension
reduction [61], [62].

In the training environment (i.e., 53 subjects and 20 fre-
quency bands), the time duration was 12 min for each indi-
vidual subject. The testing session of the proposed method
requires a duration of approximately 0.15 ms to classify a
single trial. With the subject-independent approach, the BCI
system is pretrained before being employed by a new subject.
Therefore, the testing time is of more concern than the training
time in the BCI system. The test time duration of other
methods in the training (testing) phase was 48.18 s (0.051 s),
853.418 s (0.036 s), and 1049.6679 s (0.022 s) for pooled CSP,
fused model, and MR FBCSP, respectively.

E. Consideration of the Performance Results

From the individual classification performance shown
in Fig. 5, it can be seen that the proposed method would sacri-
fice a certain percentage of the excellent subjects’ performance
while significantly improving some moderate subjects’ perfor-
mance. We suggest that the reason is that the proposed method
could construct generalizable features. Generally, those who
showed a low classification performance should require a
number of training samples to extract discriminant brain
features. However, the experimental process for moderate
users in a subject-dependent environment would end before
acquiring many samples that can help them construct their
own brain features. In this article, we provide a large number
of training samples from a variety of subjects and various
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frequencies’ information. This could be helpful in constructing
generalizable features for moderate performers and improving
their classification performance.

However, excellent subjects might have their own inherent
brain features and thus might not need many training sam-
ples. In other words, excellent subjects might already have
discriminative features. This means that generalizable brain
features could deteriorate the classification performance of
excellent subjects. In our opinion, this aspect is not a major
concern, as we know that it is very difficult to improve
the performance for moderate and poor subjects while it
is much easier to achieve high performance for excellent
subjects. For example, one can use the resting state of the
brain signal to predict whether this subject is an excellent
BCI user [63]. Once we know that a subject is an excellent
BCI user, we can apply user-specific or adaptation methods
with very few trials to refine the classifier, to achieve good
classification performance [37], [39]. Furthermore, even for
moderate BCI users, we can also apply adaptation methods
based on a pretrained model. If the initial value of the classifier
parameters is stable and generalized, adaptation methods will
be effective for those who are naive BCI users or experienced
to create their own decoder for the long-term use of BCIs.

F. Consideration of Current Issues in Motor Imagery

In current MI-based BCI, the intrasubject and intersub-
ject variability of brain signal is one of the fundamental
issues [23]–[27]. In a recent interesting study, they showed
that a large number of BCI users have performance variations
over both subjects and sessions [64]. In fact, many researchers
have also raised similar questions in that there would be a high
level of subject-wise signal variability on EEG signals when
the participants perform the MI tasks [22]. Here, we believed
that the variability of brain signals in individual subjects is
inevitable; therefore, we should find out solutions to prevent
performance degradation by the signal variability. To do
this, we examined this issue as to how subject-wise signal
variability affects performance degradation and how we can
obtain better classification performance despite these signal
variability.

In Fig. 6, as more subjects were used for training, we could
see that performance degradation by subject-wise signal vari-
ability was reduced (high mean accuracy and low variation).
In Fig. 7, utilizing multiple frequency indices allows the
model to achieve a robust result while preventing performance
deterioration. Additionally, in Fig. 2, we can observe how
the range of frequency bands can be key to obtaining robust
performance despite the signal variability. Here, the rearranged
frequency indices were chosen according to the value of the
mutual information, and most rearranged indices were located
on narrow frequency bands. This finding appears to indicate
that narrow frequency bands are regions that can extract
discriminate features and thus provide solid classification
performance and further could even reduce subject-wise signal
variability.

Beyond the MI area, other EEG-based studies have also
focused on these signal variability in individual subjects.

Reference [7] showed individual difference and subject vari-
ability of brain signal between the control and schizophrenia
participants in the ERP task. Reference [65] showed clear
individual difference of brain signal through visual and audi-
tory ERP tasks. In summary, variability of brain signal in
individual subjects is unavoidable and it is crucial to develop
new algorithms to mitigate the performance deterioration and
obtain robust performance.

G. Limitations and Future Study

This article has several limitations that call for future
investigations. First, the proposed method is based on the
CNN structure, and there are several new architectures that
are worthwhile to explore [61], [62]. These new architectures
might be useful to further boost the performance. Second,
we could also use other types of inputs, such as a frequency-
by-time matrix or channel-by-time matrix, to allow the deep
neural nets to learn the most discriminant features for clas-
sification. Third, we need a more informative visualization
tool to interpret the outcome of a DL model, such as in [60]
and [66], for a better understanding of the neurophysiological
patterns of the MI. Finally, a fast adaptation method based on
a pretrained model can be developed for the long-term use
of BCI [37], [39].

VII. CONCLUSION

In this article, we proposed a subject-independent CNN
framework for an MI-based BCI system. Spectral–spatial input
generation is used to represent the general brain signal patterns
from a large-scale MI database. The experimental results
indicate that the proposed method significantly outperformed
previous subject-independent as well as conventional subject-
dependent approaches. In conclusion, this article demonstrates
the superior performance and promising potential of the
proposed feature representation coupled with a deep neural
network method. This article could pave the way for a practical
implementation of a subject-independent BCI.
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