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Abstract—Sleep monitoring is essential to people’s health and
well-being, which can also assist in the diagnosis and treatment
of sleep disorder. Compared with contact-based solutions, con-
tactless sleep monitoring does not attach any device to the human
body, hence it has attracted increasing attention in recent years.
Inspired by the recent advances in Wi-Fi based sensing, this
paper proposes a low-cost and non-intrusive sleep monitoring
system using commodity Wi-Fi devices, namely WiFi-Sleep. We
leverage the fine-grained channel state information from multiple
antennas and propose advanced fusion and signal processing
methods to extract accurate respiration and body movement
information. We introduce a deep learning method combined with
clinical sleep medicine prior knowledge to achieve four-stage sleep
monitoring with limited data sources (i.e., only respiration and
body movement information). We benchmark the performance of
WiFi-Sleep with polysomnography, the gold reference standard.
Results show that WiFi-Sleep achieves an accuracy of 81.8%,
which is comparable to the state-of-the-art sleep stage monitoring
using expensive radar devices.

Index Terms—Wi-Fi, Channel State Information, Sleep Moni-
toring

I. INTRODUCTION

SLEEP monitoring has attracted increasing attention from
research communities. Medical research shows that high-

quality sleep is not only beneficial to the adjustment and
recovery of physical function, but also of great significance
to people’s mental health [1][2]. In the fast-paced life today,
however, more and more people are suffering from sleep
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problems. Many health problems such as sleep apnea and
chronic insomnia are closely associated with sleep quality.
Poor sleep quality may be the cause of many diseases such as
diabetes, heart disease, and high blood pressure [3][4]. Moni-
toring people’s sleep quality on a long-term basis will not only
help to find potential health problems timely but also assist
doctors in performing the diagnosis and treatment of a variety
of diseases. According to AASM(American Academy of Sleep
Medicine) [5], sleep can be divided into five stages, i.e.,
Wake, N1, N2, N3, and REM(Rapid Eye Movement). Different
sleep stages have different physiological characteristics and
functions [6]. The basis for measuring sleep quality is the time
distributions during different sleep stages. A high-quality sleep
should include adequate sleep time and reasonable distribution
of sleep stages. Hence, the recognition and classification of
sleep stages is critical for sleep quality monitoring.

Polysomnography (PSG) has been used in clinical and
laboratory settings to monitor sleep through a range of sen-
sors, and it has been regarded as the de-facto standard for
sleep assessment [7][8]. These sensors typically allow for the
measurement of brain activity through electroencephalogram
(EEG), airflow, heart rate, breathing rate, blood oxygen level,
the electrical activity of muscles. PSG requires subjects to
sleep in a laboratory setting. The sensor data will then be
interpreted to determine sleep stages by doctors who have
been well trained. This method, however, is hard to implement
in a home setting due to the lack of medical equipment and
expertise. In addition, a subject’s sleep behavior may be quite
different from her/his daily routine due to the “first night
effect” or frequent clinic visits, making sleep stage monitoring
in clinics not representative [9][10]. In recent years, many off-
the-shelf wearable devices such as wristband and smartwatch,
embedded with heart rate sensor and accelerometer, have been
used to classify sleep stages based on the relationship between
sleep stages and heart rate and motion [11]. However, wearing
sensors the whole night may cause discomfort to subjects,
limiting its use in real life.

Recent studies [12][13][14][15] have shown significant ad-
vancement in wireless sensing using Wi-Fi signals to under-
stand human activities and behaviors. For example, Wang et
al.[16] demonstrate that Wi-Fi signals can be used to detect
body movement in daily life such as walking and sitting,
and Zeng et al.[17] report system to detect human respiration
using commodity Wi-Fi devices in which respiration is always
detectable. Wireless sensing provides a new opportunity for
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non-intrusive sleep monitoring. SMARS [18] makes the first
attempt for sleep monitoring using Wi-Fi signals and studying
three-stage sleep classification (i.e., Wake, REM, NREM).
However, existing studies have some shortcomings which we
articulate as follows.

We first implement SMARS and conduct evaluations. Our
results show that respiration is not always detectable though
it fuses a wide bandwidth. We find clearly many blind spots
where SMARS is not able to detect respiration. This may be
caused by using CSI(Channel State Information) amplitude
only. Second, SMARS fails to distinguish N1, N2, N3 stages
from NREM. Our experimental study shows that the respi-
ration features extracted in SMARS present similar patterns
among N1, N2, and N3. In sleep medicine, N3 stage plays an
important role in cerebral restoration and recovery in humans
[19]. N3 stage is hence often referred to as deep sleep, N1 and
N2 stages are combined as light sleep. Differentiating these
stages is important but challenging due to similar features
among them. In addition, medical research [20] shows that
there is a strong relationship between body movement and
sleep stage, i.e., the rate of body movements decreases with
the stage in the following sequence: Wake >N1 >REM >N2
>N3. SMARS applies a simple threshold to represent motion
statistics, which may not be able to efficiently capture body
movements.

Aiming at overcoming the above challenges, in this paper,
we design a sleep stage monitoring system, named WiFi-Sleep,
to monitor and classify four sleep stages (i.e., Wake, REM,
Light Sleep, Deep Sleep) using commodity Wi-Fi devices.
We propose several novel techniques. First, our study shows
that using CSI amplitude only may cause blind spots. WiFi-
Sleep utilizes CSI ratio, combining both amplitude and phase
signal which complement to each other, to remove blind spots.
Second, high SNR(Signal-to-Noise Ratio) is highly desired to
ensure effective feature extraction from the signal waveform.
To maximize SNR, we propose a novel MRC-PCA (Maximal-
ratio Combining, Principal Component Analysis) method to
fuse all CSI subcarriers. With this method, we can extract more
features such as respiration depth variance and inhale to exhale
ratio, which have not been explored in existing work. These
newly discovered features are used in classifying different
sleep stages[21], which also play an important role in medical
research. Third, we utilize the Doppler-MUSIC(MUltiple SIg-
nal Classification) method to capture body movement which
is useful in sleep stage classification. We further classify all
body movements into MBM(Major Body Movements) and
PLM(Periodic Limb Movements). Finally, WiFi-Sleep intro-
duces the context of physiological characteristics to deep neu-
ron network and adds restrictions of sleep stage transition in
medicine prior knowledge. By utilizing context and transition
properties, sleep stages can be classified more accurately.

In summary, the main contributions of this paper are as
follows:
• We design WiFi-Sleep–the first system to monitor four

sleep stages using commodity Wi-Fi devices in a real
environment.

• We use CSI ratio to eliminate blind spots for better
detection rate and propose the MRC-PCA method to

maximize SNR of respiration waveform so that more
respiration features can be extracted from Wi-Fi signals
with limited bandwidth.

• We introduce prior knowledge of sleep stage transition in
medicine to the deep neural network so that WiFi-Sleep
can distinguish similar sleep stages better.

• We conduct comprehensive experiments with 12 subjects
over 19 nights in a residential home bedroom alike
setting, and evaluate the effectiveness of WiFi-Sleep. The
results show that WiFi-Sleep achieves an accuracy of
81.8%.

The remainder of this paper is organized as follows. The
related works are summarized in Section II. Section III shows
our system workflow. Section IV introduces our respiration
and body movement detection methods, and Section V in-
troduces our four-sleep stage classification method in detail.
Section VI presents experimental evaluations of WiFi-Sleep.
Finally, we conclude this paper in Section VII.

II. RELATED WORK

A. Sleep Stage Classification

Existing sleep stage classification works can be divided into
two categories: contact-based and contactless.

Contact-based sleep monitoring typically uses EEG devices,
smart wristbands, and smartwatches. Sleep stage classification
based on EEG is represented by the work done in [22], [23],
and [24]. In these works, brainwave signals captured by EEG
sensors are collected to match with different sleep stages. Zeo
et al. [25] use dry portable electrodes and achieve about 75%
accuracy[24]. Alickovic et al. [23] use SVM and achieve about
90% accuracy and 92% recall for four-class classification.
However, the drawbacks of these approaches are obvious. EEG
devices are expensive and may cause uncomfortableness for
long-term wearing.

Smart wristbands (e.g., Fitbit Charge 2 [26]) and smart-
watches (e.g., Apple Watch[27]) have been used in sleep stage
classification. These devices can accurately extract physio-
logical information such as body movement and heart rate
by their inertial sensors such as accelerometer, gyroscope,
compass, and infrared heart rate sensor. Study in [26] using
Fitbit achieves 61% accuracy for wake, 81% accuracy for light
sleep, 49% accuracy for deep sleep and 74% accuracy for
REM. This method has been widely used commercially for
long-term sleep monitoring despite its low accuracy.

Contactless sleep monitoring typically uses radar devices
and mobile phone sensors. Radar devices have been used
in DoppleSleep[28] and RF-Sleep[29] to acquire heart rate,
respiratory rate and body movement information more accu-
rately by high-frequency radio signals. RF-Sleep achieves an
accuracy of 79.8% for four-class classification. Contactless
sleep monitoring does not require users to wear any device
and may facilitate long-term sleep monitoring, but radar equip-
ment is very costly. Smartphones have been used in sleep
monitoring such as Sleep Hunter[30][31] utilizing microphone,
accelerometer, light sensor and other sensors to detect events
during sleep such as body movement, snoring, cough, long
breathing, and rapid breathing. This approach offers a cheap
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solution to contactless sleep monitoring, but its accuracy is
far from satisfaction (e.g., Sleep Hunter reports an accuracy
of 64% only for three-class classification) due to the limitation
of smartphone sensors.

B. Wi-Fi Perception

Wi-Fi signals have been used in recent years for activity
recognition, respiration detection and sleep monitoring. The
respiration sensing based on Wi-Fi is represented by the works
done in [12], [32], [33], [17], [34]. The study in [32] uses the
Fresnel zone model to explain the principle of breath detection
based on Wi-Fi, and finds that the effect of breath detection is
closely related to the locations of subjects and Wi-Fi devices.
The studies in [17], [34] discover complementarity of CSI
phase and amplitude, providing the theoretical foundation for
detecting respiration to be used in this paper.

The activity detection based on Wi-Fi is represented by
CRAM [35][16] and Dopple-MUSIC [36]. CRAM puts for-
ward a CSI-speed model to recognize nine kinds of daily
human activities. Dopple-MUSIC is a method to extract speed
spectrum from Wi-Fi signal. The work [36] utilizes informa-
tion from speed spectrum to classify human activities.

The study in SMARS [18] presents a sleep monitoring
system based on Wi-Fi. SMARS extracts respiration rate by
fusing ACF(autocorrelation function) of CSI amplitudes using
MRC, so it can alleviate the blind spots issues. It estimates mo-
tion statistics from fused ACF signal. Wake and sleep can be
then distinguished by motion statistics, and REM and NREM
can be distinguished by observing breathing rate variability
and breathing rate deviation. While this study focuses on three-
stage sleep classification on Wi-Fi devices, our work focuses
on challenging four-stage sleep classification.

III. SYSTEM OVERVIEW

Studies [5][37][20][6] show that sleep stages vary in respi-
ration rate, variability, FIT (fractional inspiration time), depth,
and body movement rate. We summarize these differences in
Table I.

From the table, we observe that different sleep stages
have different body movements and respiration characteristics,
which can be effectively used to classify sleep stages. Based
on this idea, we design WiFi-Sleep, a four-stage sleep moni-
toring system which consists of three modules–data collection,
respiration, and body movement detection, and sleep stage
classification, as shown in Fig. 1.

The system works in a pair of Wi-Fi transceivers with a
subject in the middle. Raw CSI signals will be collected by
Intel 5300 Network Interface Card. We use 1 transmitting 3
receiving antennas to enable 1 x 3 MIMO. Due to network
delay and packet loss, the receiving time of each CSI signal
may be misaligned, hence a fixed sample rate will be used to
re-sample the raw CSI signal. In addition, due to errors from
SFO (Sampling Frequency Offset), CFO (Central Frequency
Offset), and Packet Boundary Detection(PBD) [38], a phase
shift occurs in CSI signals. To eliminate phase shift, we
calculate the CSI ratio on each pair of receiving antennas
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Fig. 1. System overview

[39][17]. In this way, respiratory and body movement infor-
mation can be extracted from the CSI ratio. To suppress noise
and maximize the SNR of detected respiration waveform,
we propose the MRC-PCA algorithm to fuse all channels
from the CSI ratio into one respiratory waveform with the
maximum SNR. For body movement, we employ Doppler-
MUSIC (Multiple Signal Classification) algorithm [36] to
extract the speed spectrum from the CSI ratio. Finally, we
extract a series of features from physiological activities and
build a deep learning based classifier to determine four sleep
stages.

IV. RESPIRATION AND BODY MOVEMENT DETECTION

A. Respiration Sensing with CSI Ratio

1) Wi-Fi CSI: Wi-Fi CSI describes how the
OFDM(orthogonal frequency-division multiplexing) signals
get attenuated, faded, and scattered by surrounding objects
during propagation. In an indoor environment, Wi-Fi signals
propagate from transmitter to receiver through multiple paths,
leading to multi-path distortions. Mathematically, Wi-Fi CSI
is the superposition of all path signals:

H(f, t) =
L∑
i=1

Aie
−j2π di(t)λ (1)

where L is the number of paths, λ is the wavelength, Ai
is the amplitude attenuation and di(t) is the length of the
ith propagation path. According to [17], all the paths can be
grouped into static path and dynamic path. The static paths are
composed of the LoS(line of sight) path and reflected paths
from the walls and static objects in the environment, which
do not change over time. While the dynamic paths are the
signal paths induced by the moving targets, we assume there
is only one subject in the lab and there is only one reflection
path corresponding to the subject’s chest movement caused
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TABLE I
RESPIRATION AND BODY MOVEMENT CHARACTERISTICS IN DIFFERENT SLEEP STAGES, DATA FROM [40][41][20]

Sleep Stage Respiration Rate
& Variability

Respiration FIT
& Depth Body Movement Rate

Wake Low Rate (∼14.1 bpm) &
High Variability (∼57%)

Low FIT (∼0.46) &
Variable Depth Highest

Light Sleep High Rate (∼15.5 bpm) &
Medium Variability (∼47.5-52%)

Low FIT (∼0.46) &
Variable or Stable Depth

Higher in N1
Lower in N2

Deep Sleep High Rate (∼15.8 bpm) &
Low Variability (∼45%)

Medium FIT (∼0.47) &
Stable Depth Lowest

REM High Rate (∼15.8 bpm) &
High Variability (∼54%)

High FIT (∼0.48) &
Variable Depth Medium

by respiration. When the target moves a short distance, the
signal attenuation of the dynamic path can be considered as a
constant [42]. Furthermore, due to the fact that the transmitter
and receiver are not clock-synchronized, a time-varying phase
offset is introduced in the obtained CSI. Mathematically, the
CSI can be denoted as:

H(f, t) = e−jφ(t)(Hs +Ae−j2π
d(t)
λ ) (2)

where φ(t) is the time-varying phase offset, Hs is the static
component corresponding to the static path, A and d(t) is
the signal attenuation and the length of the dynamic path,
respectively.

2) CSI Ratio: The CSI ratio refers to the quotient of the
CSI readings from two adjacent antennas at the same receiver
[34]:

Hratio(f, t) =
H1(f, t)

H2(f, t)
(3)

where H1(f, t) is the CSI of the first antenna and H2(f, t)
is the CSI of the second antenna. As demonstrated in [34],
with this division operation between two antennas, most of
the noise in the original CSI amplitude and the time-varying
phase offset are canceled out. The CSI ratio of two antennas
obtained is much more noise-free and sensitive compared to
the original CSI reading from a single antenna when sensing
subtle movements [34]. Another big advantage of this “CSI
ratio” is that phase information can now be utilized together
with the amplitude for sensing. Note most of the existing
works use CSI amplitude for sensing because CSI phase is
not stable due to the lack of hard synchronization between
transmitter and receiver. The phase of the ratio is stable as
the time-varying random offsets are the same at both antennas
and are thus canceled by the division operation. We further
combine the phase and amplitude of the CSI ratio which are
complementary to each other in terms of sensing capability to
remove the “blind spots” reported in [43].

B. Respiration Enhancement by MRC-PCA

To obtain a respiration waveform with higher SNR, we
propose a novel MRC-PCA method to fuse all subcarriers of
CSI ratio into one respiration waveform. In most cases, this
method can obtain respiration waveforms better than a single
subcarrier with the highest SNR.

The CSI signal is a combination of respiration waveform
and noise. The SNR of each subcarrier usually varies because
it combines respiration waveform and noise with different

Line of SightLine of Sight

1st Fresnel Zone

2nd Fresnel Zone

nth Fresnel ZoneBoundariesBoundaries

Negative AreaNegative Area

Positive AreaPositive Area

Fig. 2. Fresnel zone model

magnitudes. MRC can fuse subcarriers with different SNR
by providing a different gain for each subcarrier, which is
proportional to the root mean square of signal energy and
inversely proportional to the root mean square of noise energy.
The combined signal is the weighted average of all subcarriers.
For independent Gaussian noise, MRC is the best among all
fusion methods for its highest expected SNR[44].

Though MRC is a general diversity fusion strategy with
successful applications in wireless communications, it is not a
trivial task to apply MRC in fusing CSI signal. MRC requires
the gain value of each subcarrier to be positive, however, the
direction of respiratory waveform carried by each subcarrier
is also affected by the frequency of a subcarrier and the
location of the subject. This phenomenon can be explained
by the Fresnel model. As shown in Fig. 2, in the 2nd, 4th,
and 6th Fresnel zone, CSI amplitudes have the same direction
with respiratory waveform (positive direction), which means
positive gains. However, in the 1st, 3rd, and 5th Fresnel zone,
CSI amplitudes have the opposite direction with respiratory
waveform (negative direction), which means negative gains.
As shown in Fig. 3(a), it can be seen that subcarriers C1 and
C3 have high SNR, subcarriers C0 and C2 have low SNR,
subcarriers C0 and C2 have the same respiratory waveform
direction as the ground truth from the thoracoabdominal
belts, and subcarriers C1 and C3 have a reverse respiration
waveform. As a result, the direct use of MRC will cause the
positive and negative respiratory waveform which will cancel
each other, resulting in weakening the effective information in
the signal.

To fuse signals with different directions and SNRs, we
propose the MRC-PCA method for subcarrier fusion. We
first calculate the SNR of each subcarrier. Since respiration
waveform and noise cannot be separated directly, we use the
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Fig. 3. a) Original signals with different SNRs and directions; b) Signals multiplied by gains from MRC-PCA.

power spectral density to estimate SNR. We calculate the ratio
of signal energy within the range of normal respiratory rate
and signal energy above the normal respiratory rate as SNR. In
order to correctly fuse signals from subcarriers with different
respiratory waveform directions, we correct respiration wave-
form direction by PCA. We first multiply the signal by MRC
gain and apply a bandpass filter within the respiratory rate
range to each subcarrier. By multiplying MRC gain, we can
limit the upper bound of noise rate for further operations. The
bandpass filter removes noise to ensure PCA is maximizing the
amplitude of respiration rather than noise. Then we calculate
the first principal component of subcarriers. Since the first
principal component is maximizing the variance of signal, it
will adjust the gain of each subcarrier to make respiratory
waveform direction consistent. PCA is able to fuse signals
with positive or negative gain, however, it maximizes signal
variance instead of maximizing SNR. The sign of the first
principal component represents the direction of the respiratory
waveform. We add this sign to the MRC gain as the final
gain value to each subcarrier. In this way, all subcarriers
with positive or negative gain can be fused together correctly
with maximum SNR. As shown in Fig. 3 (b), Using the gain
determined by PCA, the respiratory waveform directions of
all subcarriers become consistent with respiration waveform
direction. The gains of all subcarriers are then adjusted by
their SNRs using MRC method. Subcarrier C3 has the highest
SNR, which contributes most to the fused waveform, while
the other subcarriers also make a relatively small contribution
for noise canceling. Finally, the weighted average is calculated
and all subcarriers are fused into one respiratory waveform.

We compare three signal processing methods, i.e., MRC,
selecting the best subcarrier with the highest SNR, and MRC-
PCA. As shown in Fig. 4 (b), it can be seen that with MRC
alone, some respiratory signals will cancel each other, resulting
in a low SNR of the fused waveform. MRC-PCA considers
the SNR and respiratory waveform direction of each subcarrier
together, and the fused waveform has a better effect than the
single subcarrier selected with the best SNR.

C. Body Movement Detection Using Doppler-MUSIC

Human body movement statistics during sleep (e.g., rolling
over, kicking leg) are also important features for sleep stage
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Fig. 4. Comparison of respiration waveforms using three processing methods.

classification, especially for four-stage sleep monitoring. To
detect and recognize different types of human body move-
ments, we employ the MUSIC algorithm to extract Doppler
speed spectrum from CSI ratio signals. MUSIC performs
eigenstructure analysis for the M ×M correlation matrix Rx
of the consecutive M CSI ratio samples X . The correlation
matrix Rx is denoted as

Rx = E[XXH ] (4)

where H is the hermitian (conjugate transpose) of the vector.
There are M eigenvalues for the correlation matrix Rx. MU-
SIC algorithm divides these eigenvalues into two subspaces:
the signal subspace Es and noise space En. The signal
subspace Es corresponds to the largest L eigenvalues for the
signals through L different paths, while the noise subspace
En corresponds to the smallest M − L eigenvalues. Due to
the signal subspace and the noise subspace are orthogonal, the
Doppler speed spectrum function can be further expressed as:

P (v)MUSIC =
1

~aH(v)EnEHn ~a(v)
(5)

where v is the Doppler speed, and ~a(v) is the Doppler
speed vector [1, e−j2πf

v∆t2
c , e−j2πf

v∆t3
c , ..., e−j2πf

v∆tM
c ]T ,

in which ∆ti is the time interval between the (i−1)th sample
and the ith sample, and f is the carrier frequency.

In our implementation, a sliding window method is applied
to trade off the processing cost and speed resolution. The
window size is set as 1s with a step size of 0.1s. In Fig. 5, the
upper one shows the speed spectrum obtained from Doppler-
MUSIC for 4000s data collected during sleep. The speed
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spectrum shows how the energy of each speed component
varies over time, where high energy components are colored
in yellow and low energy components are colored in blue.
We observe that when the subject keeps still, all the speed
components are at a low energy level. However, if the subject
moves her/his body or part of the body, the speed components
in the range of −0.5m/s ∼ 0.5m/s correspond to high
energy. Thus, we can employ the energy variance of the speed
spectrum to detect whether there is body movement. As shown
in the lower figure of Fig. 5, the energy variance of the speed
spectrum for movement is significantly larger than that for
still. More importantly, the magnitudes of energy variance
can reflect different scales of body movements during sleep.
Specifically, MBM is at the largest magnitude, including body
turns and rolling over. While PLM is at a smaller magnitude.
A larger movement scale results in a greater energy variance.
We set two different thresholds (the red line in Fig. 5) to
detect MBM and PLM. These two thresholds are calibrated
using MBM and PLM detected by PSG devices by maximizing
F1-score, detailed in Section VI. Then the features can be
extracted from the movement information to classify sleep
stages.

D. Feature Extraction

After obtaining a clear respiration waveform and speed
spectrum, we need to design and extract useful features from
respiration and body movement data.

To obtain respiration rate features, we first need to extract
the respiration rate in a robust way. Existing methods generally
apply a window in the time domain and use STFT (Short
Time Fourier Transform) to extract the frequency with the
maximum energy as the respiratory rate. Since the resolution
in the frequency domain is related to the size of the window
in the time domain, the larger window we use, the higher the
respiration rate resolution we obtain. However, the presence
of undetectable duration in the window will affect respiratory
detection, result in an incorrect respiratory rate, and a larger
time window will prolong the duration of this influence. This
may run into a paradox in selecting an appropriate window
size.

To solve this problem, we use the ACF [45] method
to extract respiratory rate. For a finite length discrete time

signal y(n), the autocorrelation function Ryy(τ) is defined as
follows.

Ryy(τ) =
∑
n∈Z

y(n)y(n− τ) (6)

where τ represents time lag.
Since the respiratory waveform is a periodic signal, Ryy(τ)

has the maximum value when τ reaches a full period; Ryy(τ)
has the minimum value when τ reaches a half period. As
shown in Fig. 6, for a respiratory waveform, the autocorrela-
tion function presents the periodic transformation of peak and
valley alternations, and the periodicity is consistent with the
original signal. Then, the respiratory rate rr(y) is extracted
using the following formula.

rr(y) =
1

T
=

1

peak
(1)
yy

(7)

where peak(1)yy is the time lag of the first peak of ACF, which
is equal to respiratory period T . Then, the respiration rate
resolution |∆rr(y)| is

|∆rr(y)| = 1

rs
|rr(y)′| = 1

rs

(
peak

(1)
yy

)2 (8)

where rs is the sampling rate of CSI signals.
According to Eq. 8, a higher rs results in a smaller |∆rr(y)|,

indicating that the ability to detect small changes in respiration
rate is higher, and the resolution is not related to the window
size. Therefore, ACF can effectively break the paradox in
STFT mentioned above.

With the above process, we can obtain respiration rate and
body movement information. For respiration, we first use the
respiration rate as a feature. Considering that the stability of
respiratory rate at different sleep stages differs from person to
person [5][37] (i.e., the respiratory rate is stable during light
sleep and deep sleep, and it fluctuates greatly during wake and
REM), we use the variance of respiratory rate within a sliding
window as a feature to describe the fluctuation of respiratory
rate. In addition, we also consider other features such as
smoothed respiration rate and its first-order derivative, IQR
(Interquartile Range) of respiration rate, and so on. In addition
to respiration rate features, we also extract several features
from the respiratory effort. It has been found that the respira-
tory depth is more irregular and the tidal volume is smaller in
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REM than that in NREM [46]. When the subject and Wi-Fi
devices are stable, the deeper the subject breaths, the larger the
amplitude CSI signal changes. However, this ratio converting
respiratory depth to CSI signal depends on the locations of
subjects and Wi-Fi devices, which are usually unknown. As a
result, it is still challenging to sense respiratory depth using
Wi-Fi devices. WiFi-Sleep does not sense respiration depth
directly but obtains respiration depth variance in an indirect
way. We select a small window and assume that the subject
has a stable location during this period, which is common
during sleep. We keep MRC-PCA parameters the same in this
window and normalize the obtained respiration waveform, the
relative respiration depth is the same as the ground truth. As
shown in the lower figure of Fig. 6, we detect the peak of each
respiration cycle and calculate the depth variance as a feature.
Beside respiration depth, Fractional Inspiratory Time (the ratio
of the time of inspiration to the total breath time) is also
different in different stages, WiFi-Sleep divides inspiration
and expiration segments, so FIT and I/E ratio (the ratio of
Inspiratory to Expiratory) and their variance are also added
as features. Fractional Inspiratory Time is also meaningful
in medicine because low values may reflect severe airways
obstruction and can also occur during speech, higher values
are observed when snoring [47].

For body movement, there are two kinds of body movements
during bedtime–MBM and PLM. MBM is movement and
muscle artifact obscuring the EEG for more than 15s. MBM
contains body turns. It mostly occurs in the wake stage and
usually marks the transition from deeper stages to lighter
stages. PLM includes spontaneous sleep-related movements,
frequently involving flexion of the toe, ankle, knee, and hip.
Each movement lasts for 0.5s to 10s and occurs at an interval
between 5s to 90s. PLM is most frequent during N1 and
N2 stages. The movements become less frequent during N3
and REM stages. To use MBM and PLM well, two major
characteristics of body movement are amplitude and frequency.
Body movements and their amplitude are obtained in Section
IV-C. We classify body movements with high amplitude or
more than 15s in a 30s moving window as MBM, and others
as PLM. We use WMA (Weighted Moving Average) with the
Gaussian kernel function to calculate the frequency of MBM
and PLM. As shown in Fig. 7, body movements obtained in
Fig. 5 are classified into MBM and PLM. The 5th movement
lasts for more than 15s, so it is MBM.

In the end, we extract 13 features of respiration rate and
body movement in total which will be used for sleep stage
classification.

Before classifying sleep stages, we need to do some amend-
ments to features. We find that body movement will influence
respiration detection. The durations with body movements are
sparse during the whole night, so we remove these durations
and use linear interpolation to provide complete respiratory
features for subsequent sleep stage classification. As shown
in Fig. 8, there is a body movement at around 60s, which
leads to an incorrect respiration rate in this period. We cut
and complete this period using linear interpolation.

We also need to detrend and standardize features. Removing
a trend from our data set allows us to focus on the fluctuations
rather than absolute values of the features. Traditional detrend
uses a line to fit data points as the baseline and then calculates
the difference between data points and the baseline. For a
relatively short time, this method can effectively remove the
overall trend of the data, and pay more attention to data
fluctuation. However, we have to use the features of about
8 hours in the whole night, the overall trends of the features
can be complex in such a long time. A simple linear fitting
cannot represent the overall trend well. We can achieve a better
detrend effect if we use a higher-order polynomial curve as
the baseline, and we find that this method is effective for
respiratory rate. As shown in the upper figure of Fig. 9, before
detrend, the respiratory rate throughout the night tends to be
high at both ends and low in the middle. After detrending,
the trend is reduced and the fluctuations associated with sleep
stages are highlighted in the lower figure of Fig. 9. Finally,
we detrend and standardize all features, and feed them to the
classifier.

V. SLEEP STAGE CLASSIFICATION
We build a deep learning based classifier which consists of

CNN-BiLSTM (Convolutional Neural Network, Bi-directional
Long Short-Term Memory) layers, duration constraint, and
transition constraint, as shown in Fig. 10. WiFi-Sleep aims
to classify four-class sleep stages, i.e., wake (W), light sleep
(L), deep sleep (D) and REM (R).

A. Sleep Stage Classification Based on Context

In the previous section, we extract physiological features
that are closely related to sleep stages. However, physiological
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features at each moment are not isolated, there are stages
where the physiological features are stable like deep sleep, also
stages where the physiological features are changing, e.g., the
respiratory rate during light sleep may be gradually increasing
from low during “wake” to high during “deep sleep”. If we
use only the respiratory rate in a moment to determine sleep
stages, it will be difficult to distinguish light sleep and deep
sleep stages. The transition between the two stages may also
have some physiological features. The transition in the whole
night follows sleep cycle, as shown in Fig. 11. According to
the sleep stage interpretation manual by the American Medical
Association [5], a tendency may rise to shift to a lighter
sleep after body movement at a deeper sleep. For example,
if a body movement occurs during deep sleep, it will turn to
light sleep, while a body movement occurs during light sleep,
it will turn to wake. Therefore, by taking the physiological
features before and after the current moment as context, and
taking the transition of the sleep stage in the sleep cycle into
consideration, we may obtain better classification results.

WiFi-Sleep uses a CNN-BiLSTM neural network to utilize
the context of physiological features and the sleep stage
transition information. CNN layers use a sliding window with
the current moment as the midpoint. The window slides the
same duration as sleep stage episode length, so the output of
CNN layers has the same sample rate as sleep stages.

For a CNN network, if we select a larger sliding window
and use a deeper network, the network can see the contextual
features for a longer time. However, it may not use fine-grained
features around the current moment well because features are
smoothed out by too many convolutional and pooling layers.
Using a smaller sliding window can alleviate this problem,
but there is less contextual information available. This problem
also exists in image processing, and multi-scale CNN [48] has
been proposed to solve this problem. For the middle layer of
a CNN with a larger sliding window, the neuron output has a
receptive field smaller than the sliding window, so the effect
is similar to a neural network with a smaller sliding window.
In WiFi-Sleep, we adopt a multi-scale CNN network structure
shown in Fig. 12. This structure can capture features with both
longer and shorter durations at the same time.

CNN layers take the physiological features in a period of
time as context. However, it is not able to use the context of
the whole night. CNN is also not good at utilizing transition

features because it cannot see the classification result of
earlier and later episodes. BiLSTM neural network is able
to remember the classification results and hidden information
from former and latter BiLSTM nodes. It is able to use
the whole night as context and capture transition features.
Therefore, we use the multi-scale CNN and BiLSTM together
to form the CNN-BiLSTM network. Neural networks with
BiLSTM layers are more time-consuming in training, hence
we pre-train CNN with an additional FC (Fully Connected)
layer to predict stages, and connect the output before this
layer to BiLSTM. This training strategy is more efficient. The
classification loss Lclass used for both CNN and BiLSTM is
cross-entropy loss.

B. Duration Constraint
Each sleep stage lasts for a period of time. In each sleep

cycle, N1 lasts for 1 to 7 minutes, N2 lasts for 10 to 25
minutes, and N3 lasts for 20 to 40 minutes. The amount
of REM in each cycle progresses throughout the night from
being minimal initially to 30% of the cycle eventually. Usually,
the initial sleep cycle lasts for 70 to 100 minutes, and the
remaining cycles last for 90 to 120 minutes each. There may
be brief wakefulness in REM and light sleep, and there is
only a unidirectional conversion or no conversion between
some stages. There are some regularities of the sleep stage
duration. However, deep learning only aims at minimizing
prediction errors. As a result, these rules will sometimes be
broken and may not achieve the best prediction. We find that
sleep stages predicted by CNN-BiLSTM usually have frequent
transitions. This phenomenon is more serious between stages
that are difficult to distinguish, such as deep sleep and light
sleep.

To eliminate frequent transitions, we apply a duration
constraint by two steps–calculating stage duration expectation
and adding a loss to punish sleep stages that have too short
durations. The loss is defined on the expected stage duration
to ensure that it is differentiable. We calculate stage duration
expectations by DP (Dynamic Programming).

Let the jth output of BiLSTM at time i be Aij , we first
apply the LogSoftmax function to turn network outputs into
log probabilities Bij .

Bij =
exp (Aij)∑
k exp (Aik)

(9)
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Fig. 14. a) Confusion matrix of WiFi-Sleep; b)Sleep stage classification
performance of 7 users.

We assume that the sleep stage of time i is j, let Cij be the
expected duration of stage j that lasts till time i, let d be the
unit duration.

Cij =

{
0 (i = 0)

B(i−1)j
(
C(i−1)j + d

)
+
(
1−B(i−1)j

)
d (i 6= 0)

(10)
We punish stages that have too short durations, the loss

Lduration is defined as follows.

Lduration =
∑
i>0

∑
j

ReLU
(
Tj − C(i−1)j (1−Bij)

)
(11)

where Tj is the minimum duration of stage jth. We choose 10
minutes for Wake, Light Sleep and REM stages, respectively,
and 20 minutes for Deep Sleep.

C. Transition Constraint

Medical research shows that the transition of sleep stages
follows a certain rule [49]. In the normal sleep process, the
transition of sleep stage follows Light → Deep → Light →
REM, as shown in Fig. 11. However, we find that there are
unexpected transitions in predicted stages. For example, there
are transitions between Deep Sleep and REM, or from Wake to
REM directly. These transitions affect the accuracy and should
not exist in sleep medicine.

To eliminate these unexpected transitions, we add a CRF
(Conditional Random Field) layer after BiLSTM. The CRF
layer is trained to maximize the likelihood of the ground
truth sleep stage sequence. We use negative log-likelihood as
CRF loss LCRF. The feature function used in CRF consists
of two parts–the transition score matrix and the output of the
CNN-BiLSTM network. We manually set the score of three
unexpected transitions mentioned above to negative infinity,
so that they will never happen. Other parameters are learned
during training.

We apply both duration and transition constraints to improve
accuracy. If we only apply stage duration constraint, the
unexpected stages will only be prolonged, and if we only add
the transition constraint, the network will turn one unexpected
transition into two continuous legal transitions, such as turning
Deep → REM into Deep → Light → REM.

We use joint optimization to train the CNN-BiLSTM-CRF
network, the total loss Ltotal is a combination of each partial
loss, where α, β and θ are weights.

Ltotal = αLclass + βLduration + θLCRF (12)

VI. EVALUATION

We implement a prototype system using commodity WiFi
devices, and conduct extensive experiments to evaluate WiFi-
Sleep by comparing it with the state-of-the-art. We also
evaluate the performance of WiFi-Sleep in detecting human
respiration and body movement to fully discover its capability.

A. Implementation of WiFi-Sleep

We implement WiFi-Sleep using two GigaByte Mini PCs
equipped with Intel 5300 wireless cards as a WiFi transceiver
pair. Both operate at the 5GHz WiFi channel with a bandwidth
of 20MHz. The transmitter sends standard WiFi data packets
at a rate of 200Hz to the receiver which is equipped with
three omnidirectional antennas and configured to capture CSI
signals. We install an open-source Linux CSITool [50] in
the receiver to collect CSI data from 30 subcarriers for each
antenna. A Lenovo laptop with Intel Core i7-8550U CPU and
8G RAM is connected to the receiver via an Ethernet cable for
processing CSI data using Python in real-time. We calculate
the features from CSI data in a sliding window of 20 minutes
and apply CNN with 8 convolution layers and 8 max-pooling
layers (each layer has 16 channels) to generate 128 features
as the input to BiLSTM. The size of the hidden layer and
output layer for BiLSTM is set to 16. The CRF layer is then
connected to impose the transition constraint and outputs the
final classification result of the sleep stage. In sleep medicine,
PSG cuts the whole night’s sleep duration into 30s episodes.
Sleep diagnostic experts label one sleep stage for each episode.
For consistency, WiFi-Sleep also updates the final sleep stage
classification result once every 30 seconds.

B. Experimental Methodology

1) Data Collection: We deploy WiFi-Sleep in a sleep
laboratory at Peking University which is set up for sleep study
in medical science. Fig. 13 illustrates our experimental setting
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TABLE II
COMPARISON OF DIFFERENT SLEEP STAGE CLASSIFICATION SYSTEMS

Approach Accuracy
RF-Sleep (four-stage) 79.8%
SMARS (four-stage) 69.4%

WiFi-Sleep (four-stage) 81.8%

in which the transceiver pair is placed close to the bed. This
setting is recommended to ensure weak respiratory signals can
be picked up during sleep regardless of different sleep pos-
tures. We collect 19 nights of sleep data from 12 subjects aged
from 20 to 42. The data collection procedure is applied with
a formal approval obtained from the Human Subject Review
Committee at Peking University. Each subject is required to
sign a data protection agreement before participating. CSI data
of total size 24.1GB is recorded. 15.5 GB data of 12 nights
collected from 5 subjects is used to train the neural network,
and 8.6GB data of 7 nights collected from the other 7 subjects
is used for testing. Note that no data from the same subject is
used for both training and testing to demonstrate the generality
of WiFi-Sleep.

For all the experiments, we resort to the PSG system, i.e.,
medical gold standard, to label the ground truth of sleep stages.
As shown in Fig. 13, the PSG system requires subject to
wear massive sensors including EEG (Electroencephalogra-
phy), EOG (Electrooculography), EMG (Electromyography),
ECG (Electrocardiography), and thoracoabdominal belts to
record the physiological information. Meanwhile, the sleep
laboratory is equipped with infrared cameras for 7/24 mon-
itoring. Specifically, the ground truth of the respiratory rate
is recorded by the thoracoabdominal belts sensor, while the
ground truth of body movement is provided by the EMG
sensor and infrared camera. By analyzing all the information
collected by PSG, three sleep diagnostic experts label each
sleep stage manually according to AASM rules [5], providing
the ground truth for sleep stage classification.

2) Comparison methods: As there is a lack of four-stage
sleep monitoring systems using commodity WiFi devices,
we compare WiFi-Sleep with both radar-based approach and

SMARS. Specifically, we select RF-Sleep [29] and SMARS
[18] as the baselines. RF-Sleep performs four-stage classifica-
tion by employing low-power radar devices. SMARS achieves
an accuracy of 88.4% for three-stage classification (i.e., Wake,
REM, and NREM) with a pair of commodity WiFi devices.
However, it didn’t attempt to identify four sleep stages. We
enhance SMARS by putting all its features into a four-class
SVM classifier to perform four-stage classification.

C. Sleep Stage Classification Performance

1) Overall Performance: We first evaluate the accuracy
of WiFi-Sleep for four-stage classification (i.e., Wake, REM,
Light sleep, and Deep sleep) and compare its performance
with the state-of-the-art. As shown in Table II, RF-Sleep [29]
achieves an accuracy of 79.8% for four-stage classification
using radar devices. SMARS achieves an accuracy of 69.4%
for four-stage classification using WiFi devices. In compari-
son, WiFi-Sleep achieves an average accuracy of 81.8% for
four-stage classification, outperforming both RF-Sleep and
SMARS. Fig. 14a shows the confusion matrix of WiFi-Sleep.
We observe an accuracy of higher than 76% for all the stages.
Specifically, the “Wake” stage achieves the best accuracy of
88%, while the “Deep” stage has the lowest accuracy of 76%.
Note that even the lowest accuracy of WiFi-Sleep is better
than that of SMARS for four-stage sleep classification. The
performance improvement benefits from two aspects: i) the
respiration waveform and body movement information provide
more features, and ii) a specialized neural network with inputs
of stage duration and transition between different stages is
designed. Fig. 14b shows the precision, recall and F1-score
for different users. The standard deviation of the F1-score is
only 3.58%, which suggests that WiFi-Sleep is reliable for
user diversity.

2) Feature Evaluation: To validate the effectiveness of
our features extracted from respiration waveform and body
movement, we group the features into three categories:
• Basic Features in SMARS [18] : Respiration rate, Respi-

ration rate statistics (variation and deviation), and Motion
statistics;
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TABLE III
ACCURACY OF DIFFERENT FEATURE SETS

Feature Set Accuracy
Basic Features 73.9%

Basic Features + Enhanced Respiration 76.2%
Basic Features + Enhanced Respiration + Body Movement 81.8%

TABLE IV
THE IMPACT OF EACH MODULE IN WIFI-SLEEP

Methods Accuracy
CNN-BiLSTM 73.7%

CNN-BiLSTM + duration constraint 78.4%
CNN-BiLSTM + transition constraint 76.7%

WiFi-Sleep 81.8%

• Enhanced Respiration Features: Respiration depth vari-
ation, Fractional Inspiratory Time, and ratio between
inhalation time and expiration time;

• Body Movement Features: Major body movement, and
Periodic limb movements frequencies.

We first evaluate the performance of features in
SMARS [18], then gradually add more exclusive features in
WiFi-Sleep to demonstrate its superiority to the state-of-the-
art. Table III shows the classification accuracy increases when
adding more features related to sleep. In detail, the enhanced
respiration features and body movement features improve the
overall accuracy by 2.3% and 5.6%, respectively. The results
show that the more features we add, the higher accuracy we
achieve.

3) Parameter Evaluation: To investigate the impact of
each module in WiFi-Sleep, i.e., context utilization, dura-
tion constraint, and transition constraint, we gradually enable
each module and analyze the results. Table IV shows the
performance increases with more modules added. Compared
with original CNN-BiLSTM, WiFi-Sleep improves the overall
accuracy by about 8%. As shown in Fig. 15, WiFi-Sleep
effectively mitigates the unreasonable sleep stage and achieves
good classification results in the case of the whole night.

Impact of Duration Constraint. To investigate the impact
of duration constraint, we compare CNN-BiLSTM with and
without duration constraint. As shown in Fig. 15 (b), the purple
boxes illustrate the pieces of sleep stage that last only for

a very short time without duration constraint. By adding the
duration constraint module, Fig. 15 (c) shows that these pieces
are mostly eliminated. Fig. 16 shows duration distribution for
Light Sleep, Deep Sleep, and REM before and after adding du-
ration constraint. Due to the “Wake” stage lasts for an arbitrary
amount of time, we ignore its duration distribution. Obviously,
the duration distribution without constraint is very different
from the ground truth, while with the constraint, the result
becomes more similar to the ground truth. Specifically, the
duration of light sleep and REM stages are much shorter than
the ground truth. By adding duration constraint, the predicted
stages are prolonged and the distribution is much closer to the
ground truth. Overall, duration constraint improves accuracy
by 4.7%.

Impact of Transition Constraint. To investigate the impact
of the transition constraint, we compare CNN-BiLSTM with
and without transition constraint. The brown boxes in Fig. 15
(c) show two invalid transitions at the 1st and 7th hours.
By adding transition constraint in Fig. 15 (d), these invalid
transitions are all eliminated. To intuitively understand the
impact of the transition constraint, we conduct statistics for
invalid transitions in the result of the test set. There are three
kinds of invalid transitions: wake ↔ deep sleep, REM ↔
deep sleep, and wake → REM. As shown in Fig. 17, there
is no invalid transition in the ground truth. Without transition
constraint, there are a total of 11 invalid transitions in our test
set results. By adding the transition constraint, we eliminate
all invalid transitions. Overall, transition constraint improves
the accuracy by 3.0%, and adding both duration and transition
constraints together improves the performance by 8.1%.

D. Respiratory Detection Performance

In this section, we evaluate the performance of WiFi-Sleep
in respiration detection and the impact of our two techniques
(i.e., CSI ratio and MRC-PCA) on accurate respiration wave-
form.

1) Overall Performance: We evaluate the respiration de-
tection performance in terms of detection rate, SNR, and
respiration rate error. For the detection rate, we remove the
period with major body movement in advance because neither
thoracoabdominal belts nor Wi-Fi is able to monitor respiration
correctly under major body movements. We use the method
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Fig. 21. Upper figure shows two energy variance thresholds set for PLM and
MBM and their body movement detection accuracy, lower figure shows speed
spectrum energy variance and two threshold lines marked in green and red,
respectively.

in Section IV-B to calculate SNR. Fig. 18 shows that WiFi-
Sleep achieves a detection rate of 97.8% and the highest SNR.
For respiration rate error, we calculate the CDF (Cumulative
Distribution Function) shown in Fig. 19. WiFi-Sleep achieves
an average error of 0.23 bpm and a 90% error of 0.29 bpm.

2) Impacts of CSI ratio and MRC-PCA: In order to verify
the effectiveness of CSI ratio and MRC-PCA, we take dif-
ferent signals as input to evaluate the detect rate, SNR, and
respiration rate error. The signals are as follows:
• CSI: using CSI amplitude of one subcarrier.
• MRC-PCA: using CSI amplitudes of 90 subcarriers from

3 receiving antennas.
• CSI ratio: using CSI ratio of one subcarrier from 1

receiving antenna.
• WiFi-Sleep (CSI ratio + MRC-PCA): using CSI ratio of

90 subcarriers from 3 receiving antennas.
From Fig. 18, we can see that CSI ratio improves the

detection rate by about 5.9% and improves SNR by about 2.4
dB, which is useful for the respiration feature extraction. We
also observe that MRC-PCA greatly improves the detection
rate by 35.4% and SNR by 8.0 dB. By combining MRC-PCA
and CSI ratio, WiFi-Sleep achieves near 98% detection rate,
implying the respiration can be always detected. Similarly,
compared with original CSI amplitude, CSI ratio, MRC-PCA,
and WiFi-Sleep reduce the 90% respiration rate error from 6.9
bpm to 6.2 bmp, 0.77 bpm, 0.29 bpm, respectively.

E. Body Movement Detection Performance

In this section, we evaluate the performance of body move-
ment detection and the impact of the two thresholds to detect
PLM and MBM.

1) Overall Performance: Because the duration with body
movement represents only a small percentage of the whole
night, accuracy can be easily affected by a large duration
without body movement, so it is not a good indicator for
performance evaluation of body movement. We evaluate the
performance of body movement detection by F1-Score, which
takes both the precision and the recall into consideration and
evaluates the performance better. Because body movement
usually lasts for a couple of seconds, the marked time point
for the same body movement may have a deviation of several

seconds from that of ground truth. Therefore, we consider
each of our body movement detection correct if the detected
duration has more than 50% overlap time with the ground
truth. As shown in Fig. 21, the final F1-Score for MBM and
PLM reaches 86.8% and 95.3%, respectively. The confusion
matrix of body movement detection is shown in Fig. 20.

2) Thresholds Evaluation: As mentioned in Section IV-C,
WiFi-Sleep uses two thresholds on spectrum energy variance
to detect PLM and MBM. For PLM, the threshold is set
to 0.32. For MBM, the threshold is set to 4.7. We change
these two thresholds and compare the result using different
thresholds. The result is shown in Fig. 21. As we increase
the threshold, the precision gradually increases and the recall
gradually decreases. We can see that F1-Score drops if either
of the thresholds increases or decreases, implying the threshold
we choose is reasonable.

VII. CONCLUSION AND FUTURE WORK

In conclusion, we design WiFi-Sleep–a non-intrusive sleep
monitoring system based on commodity Wi-Fi devices to
achieve four-stage sleep monitoring. WiFi-Sleep is a low-cost
real-time system that can be easily applied in real scenarios
for long-term sleep monitoring. For future work, we will
investigate detecting sleep patterns related to sleep disorders
such as chronic insomnia, restless legs, and sleep apnea, and
further improve our system.
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