
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2021.3076234, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

An Attention-based Deep Learning Approach for
Sleep Stage Classification with Single-Channel EEG
Emadeldeen Eldele, Zhenghua Chen, Chengyu Liu, Min Wu, Chee-Keong Kwoh, Xiaoli Li and Cuntai Guan

Abstract—Automatic sleep stage classification is of great im-
portance to measure sleep quality. In this paper, we propose a
novel attention-based deep learning architecture called AttnSleep
to classify sleep stages using single channel EEG signals. This
architecture starts with the feature extraction module based on
multi-resolution convolutional neural network (MRCNN) and
adaptive feature recalibration (AFR). The MRCNN can extract
low and high frequency features and the AFR is able to improve
the quality of the extracted features by modeling the inter-
dependencies between the features. The second module is the
temporal context encoder (TCE) that leverages a multi-head at-
tention mechanism to capture the temporal dependencies among
the extracted features. Particularly, the multi-head attention
deploys causal convolutions to model the temporal relations
in the input features. We evaluate the performance of our
proposed AttnSleep model using three public datasets. The results
show that our AttnSleep outperforms state-of-the-art techniques
in terms of different evaluation metrics. Our source codes,
experimental data, and supplementary materials are available
at https://github.com/emadeldeen24/AttnSleep.

Index Terms—Sleep stage classification, multi-resolution convo-
lutional neural network, adaptive feature recalibration, temporal
context encoder, multi-head attention.

I. INTRODUCTION

Sleep is a vital process for humans, as it affects all the
aspects in their daily activities. Studies show that humans
having good quality of sleep enjoy better health and brain
functions [1]. On the other hand, interrupted sleep periods can
cause some sleep disorders, such as insomnia or sleep apnea
[2]. In particular, sleep stages (e.g., light sleep and deep sleep)
are important for immune system, memory, metabolism, etc.
[3]–[5]. Therefore, it is highly desired to measure sleep quality
through sleep monitoring and sleep stage classification.

Sleep specialists usually determine the sleep stages based
on the polysomnography (PSG), which consists of electroen-
cephalogram (EEG), electrooculogram (EOG), anelectromyo-
gram (EMG) and electrocardiogram (ECG) [6]. Single-channel
EEG has recently become attractive for sleep monitoring due
to its ease-of-use. In particular, PSG or single-channel EEG
recordings are usually divided into 30-second segments and
each segment is manually checked by sleep specialists and

Emadeldeen Eldele, Chee-Keong Kwoh and Cuntai Guan are with the
School of Computer Science and Engineering, Nanyang Technological Uni-
versity, Singapore (Email: {emad0002, asckkwoh, ctguan}@ntu.edu.sg).

Zhenghua Chen, Min Wu and Xiaoli Li are with the Institute for Infocomm
Research, A*STAR, Singapore, 138632 (e-mail: chen0832@e.ntu.edu.sg;
{wumin, xlli}@i2r.a-star.edu.sg).

Chengyu Liu is with School of Instrument Science and Engineering,
Southeast University, Nanjing, 210096, China (e-mail: chengyu@seu.edu.cn).

The first author is supported by A*STAR SINGA Scholarship. Min Wu is
the corresponding author.

then classified into one of the six stages, i.e., wake (W),
rapid eye movement (REM) and four non-REM stages (N1,
N2, N3 and N4) [7]. This manual process is very exhaustive,
tedious, and time-consuming. As such, automatic sleep stage
classification systems are required to assist sleep specialists.

Many studies have adopted conventional machine learning
methods to classify EEG signals into corresponding sleep
stages. These methods usually consist of two steps, namely,
manual feature extraction and sleep stage classification. First,
they design and extract various features from time and fre-
quency domains. Feature selection algorithms are often applied
to further select the most discriminative features. Second, the
selected features are then fed into conventional machine learn-
ing models for sleep stage classification, such as Naive Bayes
[8], support vector machines (SVM) [9], [10], random forest
(RF) [7], [11], or even ensemble learning based classifiers [12].
However, these methods require domain knowledge to extract
the best representative features.

Recently, deep learning has been employed in different areas
and shown its superiority over conventional machine learning
models without the need of domain knowledge. This motivates
researchers to exploit deep learning techniques for automatic
sleep stages classification. Several studies have designed con-
volutional neural networks (CNNs) [13]–[18] for this task.
For example, successive convolution and pooling layers with
fully-connected layers were used to perform this classification
task in [13]. In [14], the authors used 12 convolution layers
together with 2 fully connected layers. Additionally in [16],
the authors used 2D convolution along with MaxPooling layers
to classify the raw data from three channels (i.e., EEG, EOG,
and EMG). In [15], the authors designed a relatively deep
CNN architecture to show that a better performance can
be achieved by relying on network depth. In [17], authors
converted each raw signal into a log-power spectra and used a
CNN to perform a joint classification and prediction task for
identifying sleep stages. Generally, the CNN models above
have achieved good performance for sleep stage classification.
However, most of them are not able to effectively model the
temporal dependencies among the EEG data.

Recurrent Neural Networks (RNNs) were proposed to cap-
ture temporal dependencies in time-series EEG data. For
example, [19] used a cascaded RNN architecture to classify
sleep stages. Some researchers combined CNN with RNN by
using CNN for features extraction and RNN for modelling
the time dependencies [20]–[23]. For example, [20] used a
CNN architecture to extract features from the raw data, and
then exploited the long short-term memory (LSTM) to learn

https://github.com/emadeldeen24/AttnSleep

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2021.3076234, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

Adapt ive Feat ure
Recalibrat ion

Mult i-Resolut ion
CNN

Class-Aware
Loss

Fu
lly

 C
o

n
n

e
cte

d

S
o

ftm
a

x

30
-s

ec
 s

ig
na

l

2x

Small-kernel CNN

Wide-kernel CNN A
d

d
 &

 N
o

rm
a

lize

 Causal convolut ional MHA

A
d

d
 &

 N
o

rm
a

lize

Temporal Cont ext Encoder

squeeze

scale

excitation

feature
map Fu
lly

 C
o

n
n

e
cte

d

Fu
lly

 C
o

n
n

e
cte

d

Feat ure ext ract ion Classif icat ion

Fig. 1: Overall framework of the proposed AttnSleep model for automatic sleep stage classification.

transition rules through sleep stages. Similarly, in [23], the
authors also used a successive blocks of CNN followed by
LSTM to classify raw EEG signals. In addition, [24] used an
LSTM based encoder-decoder with an attention mechanism
after the encoder to find out the most relevant parts in input
sequences. However, RNNs also have limitations due to their
recurrent nature, i.e., they usually have high model complexity
and it is thus difficult to train them in parallel. Some works
used attention mechanism completely instead of using RNN.
For example, [25] segmented the EEG epochs and used self-
attention to learn both intra-epoch features, and inter-epoch
temporal features.

Aside from selecting classification models, sleep staging
also needs to address the data imbalance problem, since hu-
mans spend different time periods in each stage. Oversampling
is a common strategy to address this issue. For example, the
studies in [13], [17], [20] replicated the minority classes for
model training. The authors in [24] applied Synthetic Minority
Over-sampling TEchnique (SMOTE) [26] for oversampling to
balance the data. However, oversampling techniques expand
the training data and thus increase the training time.

To address the above issues, we propose a novel architecture
called AttnSleep for automatic sleep stages classification. First,
we propose a novel feature extraction module based on multi-
resolution CNN (MRCNN) and adaptive feature recalibration
(AFR). The MRCNN extracts features corresponding to low
and high frequencies from different frequency bands, and
the AFR models the features inter-dependencies to enhance
the feature learning. Second, we propose a novel temporal
context encoder (TCE) that deploys a multi-head attention
with causal convolutions to efficiently capture the temporal
dependencies in the extracted features. We also design a class-
aware loss function to effectively address the data imbalance
issue without additional computations. We perform extensive
experiments on three public datasets and experimental results
demonstrate that our AttnSleep model outperform the state-
of-the-arts for sleep stage classification.

Overall, the main contributions of our proposed model can
be summarized as follows.

1) We propose a novel feature extraction technique, i.e., a
multi-resolution CNN module, to extract features cor-
responding to low and high frequencies from different
frequency bands, and an adaptive feature recalibration
to learn the features interdependencies and enhance the
representation capability of the extracted features.

2) We propose a novel temporal context encoder that de-
ploys a multi-head self-attention with causal convolu-
tions to efficiently capture the temporal dependencies in
the extracted features.

3) We design a class-aware loss function to efficiently han-
dle the class imbalance without introducing additional
computations.

4) These novel components are supported by extensive ex-
periments over three public datasets. The results demon-
strate that our proposed model outperforms state-of-the-
arts in sleep stage classification.

The rest of the paper is organized as follows: Section II
illustrates the details of the proposed model. In Section III, we
introduce the datasets, evaluation metrics, experimental setup
and the baseline methods. We then present the comparison
results against the baseline methods and the ablation study
of our AttnSleep model, as well as a sensitivity analysis of
the choice of the number of heads in the MHA. Finally, the
conclusion of the paper is presented in Section IV.

II. PROPOSED METHOD

In this section, we introduce our proposed AttnSleep model
for sleep stage classification from single-channel EEG data.

A. Overview of AttnSleep Model

Fig. 1 illustrates the overall framework of our AttnSleep
model. It consists of three main blocks, namely, 1) feature
extraction, 2) temporal context encoder and 3) classification.

First, the MRCNN with two-branch CNN architectures is
exploited to extract the features from a 30-second EEG signal.
In particular, it extracts high-frequency features by the small
kernel convolutions and low-frequency features by the wide
kernel convolutions. Following MRCNN, we propose an AFR
module to model the inter-dependencies among the features

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2021.3076234, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

extracted by MRCNN. Moreover, AFR can adaptively select
and highlight the most important features, which helps to
enhance the classification performance. Second, we develop
a TCE module to capture the long-term dependencies in the
input features. The core component of TCE is the multi-
head attention supported by causal convolutions. Third, the
classification decision is done by a fully connected layer with
a softmax activation function. We also leverage a class-aware
cost-sensitive loss function to handle the data imbalance issue.
In the following subsections, we will introduce each block in
details.

B. Feature Extraction

Fig. 2 shows the MRCNN and AFR modules for feature
extraction from raw single-channel EEG signals.

1) Multi-Resolution CNN: To extract different types of
features, we develop a multi-resolution CNN architecture as
shown in Fig. 2. We implement two branches of convolutional
layers with different kernel sizes, where the choice of the
kernel sizes is related to the sampling rate of the EEG signals
and aims to explore different frequency bands. This is inspired
by some previous works that used multiple CNN kernel
sizes to extract different frequency features (i.e., low- and
high-frequencies) such as [27], [28]. Additionally, different
sleep stages are characterized by different frequency ranges
[7], and thus, it is becoming important to address different
frequency bands to improve the extracted features. Therefore,
we use different kernel sizes to capture different ranges of
timesteps, and hence address features from different sleep-
related frequency bands. To further explain this, we consider
a dataset with a sampling rate of 100 Hz (100 timesteps are
sampled in one second) to justify the selection of the kernel
sizes of the two branches. First, the wide kernel (with a kernel
of 400) captures timesteps with 4-second windows, and thus
captures a whole cycle of sinusoidal signal down to ∼0.25 Hz
(T = 1/F). This range corresponds to delta band. Second,
for the smaller kernel (with a kernel of 50), each convolution
window captures 50 samples (0.5 second), thus it will be able
to capture a whole cycle of sinusoidal signal down to ∼2 Hz,
which means that data corresponds to alpha and theta bands.

On the other hand, such a combination of features is
important for the non-stationary characteristic of EEG signals
that requires exploring different kinds of features. As shown in
Fig. 2, each branch consists of three convolutional layers and
two max-pooling layers, where each convolution layer includes
a batch normalization layer [29] and uses a Gaussian Error
Linear Unit (GELU) as the activation function. In particular,
Conv1D (64, 50, 6) in Fig. 2 refers to using 1D convolution
layer with 64 filters, a kernel size of 50 and a stride of 6.
Similarly, MaxPooling (8, 2) refers to a maxpooling layer with
a kernel size of 8 and a stride of 2. To reduce overfitting, we
also apply dropout after the first maxpooling in both branches
and after the concatenation of both branches as shown in Fig.
2.

2) Adaptive Feature Recalibration (AFR): AFR aims to
recalibrate the features learned by MRCNN for improving

MaxPooling (8, 2)

Conv1D (64, 50, 6)

Conv1D (128, 8, 1)

Conv1D (64, 400, 50)

Conv1D (128, 7, 1)

Conv1D (128, 7, 1)

MaxPooling (4, 2)

MaxPooling (4, 4) MaxPooling (2, 2)

GELU

GELU

GELU

GELU

GELUGELU

Residual SE Block

30-sec signal

Conv1D (30, 1, 1)

Conv1D (30, 1, 1)

Adapt ive AvgPooling

Fully Connect ed

Fully Connect ed

ReLU

ReLU

Sigmoid

ReLU

Conv1D (128, 8, 1)

Dropout 0.5 Dropout 0.5

Dropout 0.5

Fig. 2: The MRCNN and AFR modules for feature extraction.
Each convolution block is followed by a Batch Normalization.

its performance. In particular, the AFR models the inter-
dependencies between the features and adaptively selects the
most discriminative features through a residual squeeze and
excitation (residual SE) block [30]. The SE block helps
the lower layers of the network to exploit more contextual
information outside its local receptive field by a context
aware mechanism. In residual SE block, we implement two
convolutions Conv1D (30,1,1) with both the kernel and stride
size as 1 and ReLU as the activation function. Given a feature
map I ∈ RL×d learned by MRCNN, we apply two convolution
operations to I such that F = Conv2(Conv1(I)), where
F = {F1, ..., FN} ∈ RN×d, N is the total number of features,
d is the length of Fi (1 ≤ i ≤ N), and Conv1 and Conv2
are the two convolution operations in AFR module.

Next, the global spatial information is squeezed by using
adaptive average pooling that shrinks F ∈ RN×d to s =
{s1, ..., sN}, where si is the average of the d data points in
Fi ∈ Rd, 1 ≤ i ≤ N . Two fully connected (FC) layers are
then applied to make use of the aggregated information. In
particular, the first layer is followed by a ReLU activation
function to perform dimensionality reduction, and the second
layer is followed by a smoothing sigmoid activation function
to perform dimensionality increasing as shown in Equation 1.

e = σ(W2 (δ(W1(s)))) ∈ RN×d, (1)

where σ and δ refer to sigmoid and ReLU activation functions
respectively, and W1 and W2 represent the two FC layers in
AFR. Then, the feature map F is scaled by e as follows:

O = F ⊗ e ∈ RN×d, (2)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2021.3076234, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

where ⊗ refers to the point-wise multiplication between F and
e. We also add a shortcut connection to combine the original
input I with the enhanced selected features learned from the
residual SE block. The final output of the AFR module is:

X = I + O ∈ RN×d. (3)

Note that we use GELU activation function in the MRCNN
module as it allows some negative weights of the input to
pass through. These negative weights might be important for
the following AFR module, leading to different decisions.
Compared to ReLU, GELU should perform better, as ReLU
suppresses all the negative weights to zeros, and thus the AFR
module will not be able to make use of them. However, we
use ReLU in the AFR module itself as ReLU aims to avoid
exploding/vanishing gradient besides making the computations
faster and easier to converge [31]. On the other hand, GELU
can be a better choice over some other activation functions
that also pass negative values, such as Leaky-ReLU and
PReLU. The reason is that these activation functions allow
strong negative activations to generate undesirable impact
on the sum of activations feeding the next layers, which
generates undesirable effects. Differently, GELU shows more
control to bound the effect of these negative activations. These
conclusions are supported with experiments in Table S.1 in the
supplementary materials.

C. Temporal Context Encoder (TCE)

The TCE layer aims to capture temporal dependencies in
the input features. As shown in Fig. 1, TCE layer consists of
a multi-head attention (MHA) layer, a normalization layer and
two FC layers. Moreover, TCE stacks two identical structures
to generate the final features. As attention mechanism is a key
part in the TCE module, we first introduce the self-attention
mechanism, and then we introduce each component in the TCE
layer.

Sof t max

feat ure map

H
heads

Causal
Conv1D (30, 7, 1)

to
 A

d
d

 &
 N

o
rm

a
li

ze

Causal
Conv1D (30, 7, 1)

Causal
Conv1D (30, 7, 1)

Linear

Fig. 3: Structure of proposed Multi-Head Attention.

1) Self-Attention: We use self-attention to quantify the
interdependence within input features, at which higher weights
are assigned to the regions of interest according to each
position in the input, while lower weights are assigned for
less interesting regions. In particular, given an input Z =
{z1, ..., zN} ∈ RN×d where N is the total number of features,
and d is the length of xi, 1 ≤ i ≤ N , this input is transformed
into another space using a transforming function φ(·). In our
AttnSleep model, φ(·) is a causal convolution function.

Next, we calculate a score αij that indicates the weight at
which i-th position is attending to j-th position, as follows:

αij =
exp (sij)∑d
k=1 exp (sik)

, (4)

sij = φ(zi)φ(zj)
ᵀ. (5)

Each attention output element ai is computed as weighted sum
of the transformed input elements:

ai =
d∑

j=1

αijφ(xj). (6)

The output of the attention layer is A = (a0, a1, . . . , ad) ∈
RN×d.

2) Multi-Head Attention (MHA): MHA is inspired by
the Transformer model [32], which shows great success in
machine translation applications due to its ability to learn
long range relationships in sentences [33]. MHA improves
the self-attention in two main aspects. First, it expands the
model’s capability to focus on different positions, as the
encoding of each head knows about the encodings of the
other heads as well. This improves the model ability to learn
temporal dependencies. Second, splitting the input features
into different partitions increases the representation subspaces.
Therefore, the generated attention weights for each subspace
are more representative to the importance of each partition,
and concatenating these representations produces better overall
representation, which enhances the classification accuracy. In
our AttnSleep model, MHA leverages the causal convolutions
to encode the positional information of input features and cap-
ture their temporal relations. The causal convolutions have an
advantage of fast and parallel processing, which significantly
reduces the model training time compared with RNNs. Next
we illustrate how MHA works in our AttnSleep model.

The output of the AFR module, denoted as X =
{x1, ..., xN} ∈ RN×d, serves as the input of MHA as shown
in Fig. 3. Here, N is the total number of features, and d is
the length of xi, 1 ≤ i ≤ N . More specifically, MHA takes
three duplicates of X as inputs. First, the causal convolutions
generate X̂ from X , i.e., X̂ = φ(X). Second, we pass the
three matrices of X̂ to calculate the attention in Equation 7
according to [32].

ATT (X̂, X̂, X̂) = Softmax(
X̂ · X̂T

√
d

) · X̂, (7)

where (·) is the multiplication operation.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2021.3076234, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

We further expand the attention over H heads for each of
the three matrices. In particular, each matrix X̂ is split into
H subspaces, i.e., X̂ = {X1, · · · , XH}, X̂h ∈ RN× d

H , 1 ≤
h ≤ H . In each subspace h, we calculate the attention Ah

similarly in Equation 8.

Ah = ATT (X̂h, X̂h, X̂h) ∈ RN× d
H . (8)

Finally, all the H representations are concatenated together
to produce the final output as follows:

MHA(X̂, X̂, X̂) = Concat(A1, · · · , AH) ∈ RN×d. (9)

3) Add and Normalize layer: The TCE has two Add &
Normalize layers, which add the output of the previous layer
to the input of that layer through a residual connection, and
then normalize the sum. This operation can be expressed as
LayerNorm(x+ SubLayer(x)), where LayerNorm refers
to applying layer normalization [34], SubLayer refer to either
the MHA or the two FC layers as shown in Fig. 1, and x is the
input of the SubLayer. Using the residual connections helps
the model to utilize the lower-layer features by propagating
them to the higher layers if they are useful. Additionally, the
normalization operation helps to speed up the training process.

4) Feed-Forward layer: The outputs of the MHA layer are
fed into a feed-forward neural network, which is a combination
of two FC layers. This layer employs ReLU activation function
to break the non-linearity in the model and consider the
interactions among latent dimensions. This operation can be
modeled as Fout =W4(δ(W3(x))), where W3 and W4 refer
to the the two FC layers in the TCE module, as shown in Fig.
1.

D. Class-aware Loss Function and Optimization
Basically, we can apply the standard multi-class cross-

entropy in Equation 10 as the loss function for our model.

L = − 1

M

K∑
k=1

M∑
i=1

yki log(ŷi
k), (10)

where yki is the actual label for i-th sample and ŷi
k is the

predicted probability of i-th sample for the class k, M is the
total number of samples and K is the number of classes. Note
that various sleep datasets are imbalanced, i.e., the amount of
data for each class varies a lot. The loss function in Equation
10 equally penalizes the miss-classification of all the classes,
and thus the trained model may be biased towards the majority
classes.

We propose a class-aware loss function to address the above
issue, which uses a weighted cross-entropy loss as follows:

L = − 1

M

K∑
k=1

M∑
i=1

wk y
k
i log(ŷi

k), (11)

wk = µk ·max(1, log(µkM/Mk)), (12)

where wk represents the weight assigned to the class k, µk

is a tunable parameter, and Mk is the number of samples in
class k.

The choice of the class weight wk relies on two factors i.e.
the number of samples of this class (controlled by M/Mk),
and the distinctness of this class (controlled by µk). With
analyzing the public sleep data, we can reach out to two
conclusions. First, class N2 has a large number of samples,
while classes N1 and N3 have much fewer number of samples
(i.e., N1 and N3 are minority classes). Second, we observe that
signals of N3 have significantly higher magnitude than other
classes as shown in Fig. 4. Hence, the model can easily make
correct predictions for N3 samples. Meanwhile, N1 samples
are not distinguishable from those in classes N2 and REM as
shown in Fig. 4. Therefore, we assign the highest µk to N1,
the lowest to N3 and assign similar values to the other three
classes W, N2 and REM as follows.

µk =

 a/K k = N3
b/K k =W,N2, REM
c/K k = N1

where a, b, c are hyperparameters that change for each
dataset. To fulfill the above recommendation, we chose a <
b < c. Note that we use µk to scale down the M/Mk value
so we keep the values of µk less than 1 by dividing them by
K. As such, the values of a, b, c are better to be kept less
than K to scale down the weights. Additional experiments on
the effect of the different variants of a, b, and c values are
provided in Section S.II the supplementary materials.

Finally, we use Adam [35] as the optimizer to minimize our
class-aware loss in Equation 11 and learn model parameters.

Fig. 4: The amplitude of the extracted features differs among
5 classes. This snapshot is from Sleep-EDF-20 dataset [36].

III. EXPERIMENTAL RESULTS

In this section, we first introduce the experimental setup.
Then, we demonstrate the evaluation results of our proposed
AttnSleep.

A. Datasets and Evaluation Metrics

In our experiments, we used three public datasets, namely,
Sleep-EDF-20, Sleep-EDF-78 and Sleep Heart Health Study

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2021.3076234, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

TABLE I: Details of three datasets used in our experiments (each sample is a 30-second epoch).

Datasets #Subjects EEG Channel Sampling Rate W N1 N2 N3 REM #Total Samples

Sleep-EDF-20 20 Fpz-Cz 100 Hz 8285 2804 17799 5703 7717 4230819.6% 6.6% 42.1% 13.5% 18.2%

Sleep-EDF-78 78 Fpz-Cz 100 Hz 65951 21522 69132 13039 25835 19547933.7% 11.0% 35.4% 6.7% 13.2%

SHHS 329 C4-A1 125 Hz 46319 10304 142125 60153 65953 32485414.3% 3.2% 43.7% 18.5% 20.3%

(SHHS) as shown in Table I. For each dataset, we used a single
EEG channel for various models in our experiments.

Sleep-EDF-20 and Sleep-EDF-78 were obtained from the
PhysioBank [36]. Sleep-EDF-20 contains data files for 20
subjects, while Sleep-EDF-78 is an expanded version with 78
subjects. The participants were involved in two studies. The
first is Sleep Cassette (SC* files), which studies age effects
on sleep and it was conducted on healthy participants aged
from 25 to 101 years. The second is Sleep Telemetry (ST*
files), which addressed the temazepam effects on sleep in
22 Caucasian males and females without having any other
medication. For these two datasets, each PSG file contains two
EEG channels (Fpz-Cz, Pz-Oz) with a sampling rate of 100
Hz, one EOG channel and one chin EMG channel. Following
previous studies [13], [15], [17], [18], [37], we adopted the
data from Sleep Cassette study and used the single Fpz-Cz
channel as the input for various models in our experiments.

SHHS [38], [39] is a multi-center cohort study of the
cardiovascular and other consequences of sleep-disordered
breathing. The subjects suffer from various diseases including
lung diseases, cardiovascular diseases and coronary diseases.
To minimize the impact of these diseases, we followed the
study in [40] to select subjects, who are considered to have a
regular sleep (e.g., Apnea Hypopnea Index or AHI less than
5). Eventually, 329 out of 6,441 subjects were selected for our
experiments. Notably, we selected the C4-A1 channel with a
sampling rate of 125 Hz. Further details about the datasets
can be found in Section S.III in our supplementary materials.
For the three datasets, we applied the following preprocessing
steps. First, we excluded any UNKNOWN stages that don’t
belong to any of the sleep stages. Second, we merged stages
N3 and N4 into one stage (N3) according AASM standard.
Third, we include only 30 minutes of wake periods before
and after the sleep periods to add more focus on the sleep
stages [20].

We adopted four metrics to evaluate the performance of var-
ious models for sleep stage classification, namely, the accuracy
(ACC), macro-averaged F1-score (MF1), Cohen Kappa (κ)
[41], and the macro-averaged G-mean (MGm). Both MF1 and
MGm are common metrics to evaluate the performance of the
models on imbalanced datasets [42]. Given the True Positives
(TPi), False Positives (FPi), True Negatives (TNi) and False
Negatives (FNi) for the i-th class, the overall accuracy ACC,
MF1 and MGm are defined as follows.

ACC =

∑K
i=1 TPi

M
, (13)

MF1 =
1

K

K∑
i=1

2× Precisioni ×Recalli
Precisioni +Recalli

, (14)

MGm =
1

K

K∑
i=1

√
Specificityi ×Recalli, (15)

where Precisioni = TPi

TPi+FPi
, Recalli = TPi

TPi+FNi
and

Specificityi =
TNi

TNi+FPi
. M is the total number of samples

and K is the number of classes or sleep stages.
We also used per-class precision (PR), per-class recall

(RE), per-class F1-score (F1), and per-class G-mean (GM)
to evaluate each our model. They are calculated as in binary
classification by considering one class as the positive class and
the other four classes as the negative class.

TABLE II: Confusion matrix of proposed model applied on
Fpz-Cz channel from EDF-20 dataset

Predicted Per-class metrics
W N1 N2 N3 REM PR RE F1 GM

W 7432 437 109 24 283 89.6 89.7 89.7 93.5
N1 358 1097 593 6 750 47.1 39.1 42.8 61.6
N2 288 308 15769 493 941 89.1 88.6 88.8 90.3
N3 33 1 535 5119 15 90.7 89.8 90.2 94.1

REM 184 485 702 4 6342 76.1 82.2 79.0 88.0

TABLE III: Confusion matrix of proposed model applied on
Fpz-Cz channel from EDF-78 dataset

Predicted Per-class metrics
W N1 N2 N3 REM PR RE F1 GM

W 60545 3607 565 57 1177 92.3 91.8 92.0 93.9
N1 3481 8443 6559 102 2937 45.3 39.2 42.1 60.8
N2 565 3712 59800 2027 3028 83.5 86.5 85.0 88.5
N3 31 12 2276 10686 34 82.3 82.0 82.1 90.0

REM 984 2849 2440 106 19456 73.1 75.3 74.2 85.0

B. Scoring Performance of AttnSleep

Tables II, III and IV show the confusion matrices of the
proposed model applied on the Fpz-Cz channel in both Sleep-
EDF datasets and on C4-A1 channel in SHHS dataset. The
confusion matrix is calculated by adding up all the scoring
values of the testing data through the 20 folds. Each row
represents the number of samples classified by experts, while
each column represents the number of epochs predicted by our

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2021.3076234, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

TABLE IV: Confusion matrix of proposed model applied on
C4-A1 channel from SHHS dataset.

Predicted Per-class metrics
W N1 N2 N3 REM PR RE F1 GM

W 38604 2798 2188 304 2425 90.3 83.3 86.7 90.6
N1 856 3747 2385 46 3270 30.6 36.7 33.2 59.5
N2 1675 2823 123242 6891 7494 87.4 86.7 87.1 88.5
N3 214 19 7051 52695 174 87.5 87.6 87.5 92.3

REM 1405 2858 6143 308 55239 80.5 83.8 82.1 89.1

model. The tables also show the per-class precision, recall, F1
score and G-mean value for each class.

Notably, stage N1 achieves the lowest performance with the
F1 less than 50%, where it is often misclassified to classes
W, REM and N2. In counterpart, class N3 achieves the best
performance for Sleep-EDF-20 and SHHS datasets, but it
decreases for Sleep-EDF-78 as it is the minority class on this
dataset. Most of the misclassifications in the different datasets
are with class N2 as it is the majority class.

C. Baselines and Experimental Setup

In our experiments, we compared our model with five
baselines, namely, DeepSleepNet [20], SleepEEGNet [24],
ResnetLSTM [43], MultitaskCNN [17] and SeqSleepNet [37].
Brief descriptions for each baseline are as follows.

• DeepSleepNet [20] exploits a custom CNN architecture
followed by an LSTM with a residual connection for
sleep stage classification.

• SleepEEGNet [24] employs the same CNN architecture
as DeepSleepNet [20] followed by an encoder-decoder
with attention mechanism.

• ResnetLSTM [43] implements a ResNet architecture for
feature extraction, followed by an LSTM to classify EEG
signals into different sleep stages.

• MultitaskCNN [17] starts by converting the raw EEG
signals into power spectrum images, and then applies a
joint classification and prediction technique using a multi-
task CNN architecture for identifying sleep stages.

• SeqSleepNet [37] also converts the raw EEG signal into
power spectrum images and then uses a hierarchical RNN
structure to classify multiple epochs at once.

In particular, we used the published codes for DeepSleepNet
[20], SleepEEGNet [24], MultitaskCNN [17] and SeqSleep-
Net [37], and re-implemented ResnetLSTM [43]. To evaluate
the performance of various models, we adopted a subject-
wise 20-fold cross-validation by dividing the subjects in each
dataset into 20 groups. For example, subject-wise 20-fold
cross-validation on Sleep-EDF-20 dataset with 20 subjects is
thus leave-one-subject-out (LOSO) cross-validation. For each
round, we selected one group of subjects as testing data
and the remaining 19 groups as training data. Eventually we
combined the predicted sleep stages for the testing samples
from all the 20 rounds to calculate various performance
metrics. We chose the neural network hyperparameters based
on the performance across these folds. In addition, we noticed
that AttnSleep performance stabilizes before reaching 100

Fig. 5: Training and testing accuracy and loss comparison for
a random fold (i.e. fold 10 on subject 16) in Sleep-EDF-20
dataset.

epochs, so we trained all the models for 100 epochs in each
round to fairly compare their average training time. Fig. 5
shows the performance graph of our model showing both
the loss and accuracy during AttnSleep training. Our model
shows a stable performance during training, and we notice
that it converges quickly. Additionally, it can be seen that the
validation loss stabilizes even with the continual decrement in
the training loss, which reflects the robustness of our model
against overfitting.

We built our model using PyTorch 1.4 and trained it on
a Tesla K40 GPU. We applied a batch size of 128, and
the Adam optimizer with the learning rate starting with 1e-
3 then reducing to 1e-4 after 10 epochs. The weight decay
of Adam was set to 1e-3, the betas (b1, b2) were used as
(0.9, 0.999) respectively, the epsilon value was 1e-08 and the
amsgrad was set to true. All the convolutional layers were
initialized using a Gaussian distribution with a mean of 0 and
a variance of 0.02. For the TCE module, we used 5 heads
in MHA and the dimension of each feature d was 80 for
Sleep-EDF dataset, and 100 for SHHS dataset because of its
higher sampling rate, and hence its longer signal length. For
the two fully connected layers, the input dimension was d
and the output dimension was set to 120, and vice versa for
the second fully connected layer. A detailed description can
also be found in Table S.3 in our supplementary materials.
Our source codes and supplementary materials are publicly
available at https://github.com/emadeldeen24/AttnSleep.

D. Comparison with state-of-the-art approaches

We evaluated the performance of our AttnSleep model
against various state-of-the-art approaches. We compared their
performance in terms of overall accuracy, macro F1-score,
cohen kappa, macro G-mean and the average training time
on three datasets.

Table V shows the comparison among DeepSleepNet [20],
SleepEEGNet [24], ResnetLSTM [43], MultitaskCNN [17]
and our AttnSleep. We observe that our AttnSleep achieves
better classification performance than the other four ap-
proaches, due to its powerful feature extraction module as
well as the TCE with attention mechanism. In particular, our
AttnSleep achieves better MF1 and MGm on Sleep-EDF-78

https://github.com/emadeldeen24/AttnSleep

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2021.3076234, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

and SHHS, indicating that the designed cost-sensitive loss
function is helpful to handle imbalanced data. In addition, we
can observe that our AttnSleep achieves lower performance
for class N1 than [20], [24]. As shown in Fig. 4, W, REM and
N1 have similar features in our framework. Therefore, our
AttnSleep tends to misclassify N1 as other classes including
W and REM, which is also demonstrated in the confusion
matrices in Tables II, III and IV.

Note that all the five methods in Table V use a single epoch
(i.e., 30-second EEG signal) as the model input. Differently,
SeqSleepNet [37] takes 3 epochs as input and then predicts the
label for the middle epoch. For fair comparison, we compare
our AttnSleep with SeqSleepNet in Table VI by using 3 epochs
as input. As shown in Table VI, our AttnSleep outperforms
SeqSleepNet in terms of all the four metrics (ACC, MF1, κ and
MGm). By comparing Tables V and VI, we also observe that
using more epochs as input includes more temporal relations
and helps our AttnSleep model to achieve better performance.

In addition, the training time of our method is much less
than other methods as shown in Tables V and VI. First,
DeepSleepNet [20], SleepEEGNet [24] and SeqSleepNet [37]
all exploit LSTMs which slow down the training due to
the recurrent processing in LSTM. Second, MultitaskCNN
[17] and SeqSleepNet [37] require additional computation to
pre-train a DNN-based filter bank before training the main
model. Differently, our AttnSleep model captures the temporal
dependency among EEG data using TCE instead of LSTM,
and can thus benefit from parallel computation to achieve the
reduced training complexity.

E. Ablation Study
Note that our AttnSleep consists of MRCNN, AFR and

TCE modules together with the class-aware loss function. To
analyze the effectiveness of each module in our AttnSleep, we
present an ablation study conducted on Sleep-EDF-20 dataset
as shown in Fig. 6. Specifically, we derive five model variants
as follows and the first four variants do not use the class-aware
loss function.

1) MRCNN: MRCNN module only.
2) MRCNN+AFR: MRCNN and AFR without TCE.
3) MRCNN+TCE: MRCNN and TCE without AFR.
4) MRCNN+AFR+TCE: training MRCNN, AFR and

TCE together, without the class-aware loss function.
5) AttnSleep: training MRCNN, AFR and TCE together,

with the class-aware loss function.

We can draw the following three conclusions based on the
ablation study as shown in Fig. 6. First, AFR can enhance the
classification performance, which demonstrates the necessity
of modeling the feature inter-dependencies. This is further
demonstrated by comparing the third and fourth variants (i.e.,
MRCNN+TCE vs. MRCNN+AFR+TCE). Second, by com-
paring MRCNN and MRCNN+TCE (similarly MRCNN+AFR
vs. MRCNN+AFR+TCE), we conclude that capturing the
temporal dependencies with TCE is important for sleep stage
classification. Moreover, TCE is even more important than
AFR as MRCNN+TCE outperforms MRCNN+AFR. Third,
AttnSleep achieves significantly better MF1 and MGm than
other four variants, indicating that the proposed class-aware
cost-sensitive loss function can effectively address the data
imbalance issue without any added computation overhead.
We also conduct the ablation study for Sleep-EDF-78 and
SHHS dataset, which can be found in Fig. S.3 and S.4 in
our supplementary materials.

F. Sensitivity Analysis for the Number of Heads in MHA

As MHA is one key component of our model, it is im-
portant to study how the number of heads affects the model
performance. In particular, we fix the other parameters and
test different number of heads in MHA. Note that the number
of heads should be dividable by the length of features d.
As d is 80 for Sleep-EDF-20 dataset, we run our model
using 1, 2, 4, 5, 8 and 10 heads. Fig. 7 shows the model
performance on Sleep-EDF-20 dataset in terms of accuracy
and MF1 score. Overall, the model performance is quite stable
when we use different number of heads. With increasing the

TABLE V: Comparison among AttnSleep and state-of-the-art models. The best values on each dataset are highlighted in bold.

Per-Class F1-score Overall Metrics

Dataset Method W N1 N2 N3 REM Accuracy MF1 κ MGm Avg Training
time / fold

Sleep-EDF-20

DeepSleepNet [20] 86.7 45.5 85.1 83.3 82.6 81.9 76.6 0.76 86.9 2.5 hrs
SleepEEGNet [24] 89.4 44.4 84.7 84.6 79.6 81.5 76.6 0.75 85.3 1.5 hrs
ResnetLSTM [43] 86.5 28.4 87.7 89.8 76.2 82.5 73.7 0.76 81.8 1.2 hrs

MultitaskCNN [17] 87.9 33.5 87.5 85.8 80.3 83.1 75.0 0.77 83.1 2.6 hrs
AttnSleep (ours) 89.7 42.6 88.8 90.2 79.0 84.4 78.1 0.79 85.5 21 mins

Sleep-EDF-78

DeepSleepNet [20] 90.9 45.0 79.2 72.7 71.1 77.8 71.8 0.70 81.6 7.2 hrs
SleepEEGNet [24] 89.8 42.1 75.2 70.4 70.6 74.2 69.6 0.66 82.3 4.6 hrs
ResnetLSTM [43] 90.7 34.7 83.6 80.9 67.0 78.9 71.4 0.71 80.8 3.4 hrs

MultitaskCNN [17] 90.9 39.7 83.2 76.6 73.5 79.6 72.8 0.72 82.5 5.3 hrs
AttnSleep (ours) 92.0 42.0 85.0 82.1 74.2 81.3 75.1 0.74 83.6 1.7 hrs

SHHS

DeepSleepNet [20] 85.4 40.5 82.5 79.3 81.9 81.0 73.9 0.73 82.6 14.4 hrs
SleepEEGNet [24] 81.3 34.4 73.4 75.9 77.0 73.9 68.4 0.65 82.7 6.4 hrs
ResnetLSTM [43] 85.1 9.4 86.3 87.0 79.1 83.3 69.4 0.76 76.4 5.2 hrs

MultitaskCNN [17] 82.2 25.7 83.9 83.3 81.1 81.4 71.2 0.74 80.4 6.2 hrs
AttnSleep (ours) 86.7 33.2 87.1 87.1 82.1 84.2 75.3 0.78 84.0 2.1 hrs

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2021.3076234, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

TABLE VI: Comparison of the performance of AttnSleep against SeqSleepNet with 3 epochs as input.

Per-Class F1-score Overall Metrics

Dataset Method W N1 N2 N3 REM Accuracy MF1 κ MGm Avg Training
time / fold

Sleep-EDF-20 SeqSleepNet [37] 87.7 43.8 88.2 86.5 84.0 84.6 78.0 0.79 85.3 2.5 hrs
AttnSleep (ours) 90.3 47.9 89.8 89.0 85.0 85.6 80.9 0.80 88.2 31 mins

Sleep-EDF-78 SeqSleepNet [37] 91.8 46.0 85.0 77.5 81.0 82.6 76.3 0.76 84.3 7.3 hrs
AttnSleep (ours) 92.6 47.4 85.5 83.7 81.5 82.9 78.1 0.77 85.6 1.9 hrs

SHHS SeqSleepNet [37] 84.2 47.3 87.2 85.4 88.6 85.6 78.5 0.80 85.4 15.2 hrs
AttnSleep (ours) 88.3 46.3 88.7 87.6 87.4 86.6 79.7 0.81 87.9 2.9 hrs

Fig. 6: Ablation study conducted on Sleep-EDF-20 dataset.

number of heads from 1, 2 to 4 and 5, we can observe a
slight improvement on the performance, since using more
heads allows the model to find more meaningful features and
feature interactions. Meanwhile, when the number of heads
further increases (H equals to 8 and 10), i.e., the length of
features in each head becomes smaller, which leads to a slight
performance decrease. In our experiments, we eventually set
H as 5 on Sleep-EDF-20 dataset. For other two datasets, we
also set H as 5, and the detailed sensitivity analysis can be
found in Fig. S.5 and S.6 in our supplementary materials.

IV. CONCLUSION

We proposed a novel architecture for sleep stage classifica-
tion from single channel raw EEG signals called AttnSleep.
The AttnSleep relies on extracting the features from EEG
signals using two modules: the multi-resolution convolutional
neural network (MRCNN) and the adaptive feature recal-
ibration (AFR). These two modules are followed by the
temporal context encoder (TCE) module, which captures the
temporal dependencies among the extracted features by using
a multi-head attention (MHA) mechanism. We also proposed
a class-aware cost-sensitive loss function to handle the issue
of data imbalance. The experimental results on three public
datasets demonstrated that our model outperforms state-of-
the-art methods under various evaluation matrices. Besides,

Fig. 7: The performance of our AttnSleep model on Sleep-
EDF-20 dataset by using different number of heads in MHA.

an ablation study was performed to show the effectiveness of
each module in the proposed method. Finally, we conducted a
sensitivity analysis to demonstrate the impact of the number of
heads in MHA. The results indicated that our method is quite
stable with different number of heads. For future directions,
we will consider transfer learning and domain adaptation
techniques, which adapt the model trained on labeled dataset
to classify the unlabeled sleep data in other datasets.

REFERENCES

[1] F. S. Luyster, P. J. Strollo, P. C. Zee, and J. K. Walsh. Sleep: A Health
Imperative. Sleep, 35(6):727–734, 2012.

[2] P. H. Finan, P. J. Quartana, B. Remeniuk, E. L. Garland, J. L. Rhudy,
M. Hand, M. R. Irwin, and M. T. Smith. Partial Sleep Deprivation
Attenuates the Positive Affective System: Effects Across Multiple Mea-
surement Modalities. Sleep, 40(1), 2016.

[3] G. Rauchs, B. Desgranges, J. Foret, and F. Eustache. The relationship
between memory systems and sleep stages. Journal of Sleep Research,
14:123–40, 2005.

[4] S. Sharma and M. Kavuru. Sleep and metabolism: an overview.
International Journal of Endocrinology, 2010, 2010.

[5] J. Tank, A. Diedrich, N. Hale, F. E. Niaz, R. Furlan, R. M. Robertson,
and R. Mosqueda-Garcia. Relationship between blood pressure, sleep k-
complexes, and muscle sympathetic nerve activity in humans. American
Journal of Physiology-Regulatory, Integrative and Comparative Physi-
ology, 285(1):R208–R214, 2003.

[6] Sharon A. Keenan. Chapter 3 an overview of polysomnography. In
Christian Guilleminault, editor, Handbook of Clinical Neurophysiology,
volume 6 of Handbook of Clinical Neurophysiology, pages 33 – 50.
Elsevier, 2005.

[7] P. Memar and F. Faradji. A novel multi-class eeg-based sleep stage
classification system. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 26(1):84–95, 2018.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2021.3076234, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

[8] S. I. Dimitriadis, C. Salis, and D. Linden. A novel, fast and efficient
single-sensor automatic sleep-stage classification based on complemen-
tary cross-frequency coupling estimates. Clinical Neurophysiology,
129(4):815–828, 2018.

[9] G. Zhu, Y. Li, and P. Wen. Analysis and classification of sleep stages
based on difference visibility graphs from a single-channel eeg signal.
IEEE Journal of Biomedical and Health Informatics, 18(6):1813–1821,
2014.

[10] S. Seifpour, H. Niknazar, M. Mikaeili, and A. M. Nasrabadi. A
new automatic sleep staging system based on statistical behavior of
local extrema using single channel eeg signal. Expert Systems with
Applications, 104:277–293, 2018.

[11] X. Li, L. Cui, S. Tao, J. Chen, X. Zhang, and G. Zhang. Hyclasss:
A hybrid classifier for automatic sleep stage scoring. IEEE Journal of
Biomedical and Health Informatics, 22(2):375–385, 2018.

[12] A. R. Hassan and M. I. H. Bhuiyan. Computer-aided sleep staging using
complete ensemble empirical mode decomposition with adaptive noise
and bootstrap aggregating. Biomedical Signal Processing and Control,
24:1–10, 2016.

[13] O. Tsinalis, P. M. Matthews, Y. Guo, and S. Zafeiriou. Automatic
sleep stage scoring with single-channel eeg using convolutional neural
networks. arXiv preprint arXiv:1610.01683, 2016.

[14] A. Sors, S. Bonnet, S. Mirek, L. Vercueil, and J. Payen. A convolutional
neural network for sleep stage scoring from raw single-channel eeg.
Biomedical Signal Processing and Control, 42:107–114, 2018.

[15] M. Sokolovsky, F. Guerrero, S. Paisarnsrisomsuk, C. Ruiz, and S. A.
Alvarez. Deep learning for automated feature discovery and classifica-
tion of sleep stages. IEEE/ACM Transactions on Computational Biology
and Bioinformatics, pages 1–1, 2019.

[16] S. Chambon, M. N. Galtier, P. J. Arnal, G. Wainrib, and A. Gramfort. A
deep learning architecture for temporal sleep stage classification using
multivariate and multimodal time series. IEEE Transactions on Neural
Systems and Rehabilitation Engineering, 26(4):758–769, 2018.

[17] H. Phan, F. Andreotti, N. Cooray, O. Y. Chén, and M. De Vos.
Joint classification and prediction cnn framework for automatic sleep
stage classification. IEEE Transactions on Biomedical Engineering,
66(5):1285–1296, 2019.

[18] F. Li, R. Yan, R. Mahini, L. Wei, Z. Wang, K. Mathiak, R. Liu, and
F. Cong. End-to-end sleep staging using convolutional neural network
in raw single-channel eeg. Biomedical Signal Processing and Control,
63:102203, 2021.

[19] N. Michielli, U. R. Acharya, and F. Molinari. Cascaded lstm recurrent
neural network for automated sleep stage classification using single-
channel eeg signals. Computers in Biology and Medicine, 106:71–81,
2019.

[20] A. Supratak, H. Dong, C. Wu, and Y. Guo. Deepsleepnet: a model
for automatic sleep stage scoring based on raw single-channel eeg.
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
25(11):1998–2008, 2017.

[21] Z. Chen, M. Wu, W. Cui, C. Liu, and X. Li. An attention based cnn-lstm
approach for sleep-wake detection with heterogeneous sensors. IEEE
Journal of Biomedical and Health Informatics, 2020.

[22] Z. Chen, M. Wu, K. Gao, J. Wu, J. Ding, Z. Zeng, and X. Li. A novel
ensemble deep learning approach for sleep-wake detection using heart
rate variability and acceleration. IEEE Transactions on Emerging Topics
in Computational Intelligence, pages 1–10, 2020.

[23] A. Malafeev, D. Laptev, S. Bauer, X. Omlin, A. Wierzbicka, A. Wich-
niak, W. Jernajczyk, R. Riener, J. Buhmann, and P. Achermann. Auto-
matic human sleep stage scoring using deep neural networks. Frontiers
in Neuroscience, 12:781, 2018.

[24] S. Mousavi, F. Afghah, and U. R. Acharya. Sleepeegnet: Automated
sleep stage scoring with sequence to sequence deep learning approach.
PloS One, 14(5):e0216456, 2019.

[25] Tianqi Zhu, Wei Luo, and Feng Yu. Convolution-and attention-based
neural network for automated sleep stage classification. International
Journal of Environmental Research and Public Health, 17(11):4152,
2020.

[26] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer.
Smote: synthetic minority over-sampling technique. Journal of Artificial
Intelligence Research, 16:321–357, 2002.

[27] Wenyi Huang, Junsheng Cheng, Yu Yang, and Gaoyuan Guo. An im-
proved deep convolutional neural network with multi-scale information
for bearing fault diagnosis. Neurocomputing, 359:77–92, 2019.

[28] Wei Dai, Chia Dai, Shuhui Qu, Juncheng Li, and Samarjit Das. Very
deep convolutional neural networks for raw waveforms. In 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 421–425, 2017.

[29] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Proceedings of the
32nd International Conference on International Conference on Machine
Learning, page 448–456, 2015.

[30] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 7132–7141, 2018.

[31] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evalua-
tion of rectified activations in convolutional network. arXiv preprint
arXiv:1505.00853, 2015.

[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in
Neural Information Processing Systems, pages 5998–6008. 2017.

[33] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina N. Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. In Proceedings of the Association for Computational
Linguistics, pages 4171–4186, 2019.

[34] J. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[35] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
In International Conference for Learning Representations, 2015.

[36] A. L. Goldberger, L. Amaral, L. Glass, J. M. Hausdorff, R. G. Ivanov,
P.and Mark, J. E. Mietus, G. B. Moody, C. Peng, and H. E. Stanley.
Physiobank, physiotoolkit, and physionet: components of a new research
resource for complex physiologic signals. Circulation, 101(23):e215–
e220, 2000.

[37] H. Phan, F. Andreotti, N. Cooray, O. Y. Chen, and M. De Vos. Seqsleep-
net: end-to-end hierarchical recurrent neural network for sequence-to-
sequence automatic sleep staging. IEEE Transactions on Neural Systems
and Rehabilitation Engineering, 27(3):400–410, 2019.

[38] G. Zhang, L. Cui, R. Mueller, S. Tao, M. Kim, M. Rueschman,
S. Mariani, D. Mobley, and S. Redline. The national sleep research
resource: towards a sleep data commons. Journal of the American
Medical Informatics Association, 25(10):1351–1358, 2018.

[39] S. F. Quan, B. V. Howard, C. Iber, J. P. Kiley, F. J. Nieto, G. T. O’Connor,
D. M. Rapoport, S. Redline, J. Robbins, J. M. Samet, et al. The sleep
heart health study: design, rationale, and methods. Sleep, 20(12):1077–
1085, 1997.

[40] P. Fonseca, N. den Teuling, X. Long, and R. M. Aarts. Cardiorespiratory
sleep stage detection using conditional random fields. IEEE Journal of
Biomedical and Health Informatics, 21(4):956–966, 2017.

[41] J. Cohen. A coefficient of agreement for nominal scales. Educational
and Psychological Measurement, 20(1):37–46, 1960.

[42] Y. Tang, Y. Zhang, N. V. Chawla, and S. Krasser. Svms modeling for
highly imbalanced classification. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), 39(1):281–288, 2009.

[43] Y. Sun, B. Wang, J. Jin, and X. Wang. Deep convolutional network
method for automatic sleep stage classification based on neurophysio-
logical signals. In 11th International Congress on Image and Signal
Processing, BioMedical Engineering and Informatics (CISP-BMEI),
pages 1–5, 2018.

