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
Abstract—Background: Depression has become a

leading mental disorder worldwide. Evidence has shown
that subjects with depression exhibit different spatial
responses in neurophysiological signals from the healthy
controls when they are exposed to positive and negative
stimuli. Methods: We proposed an effective
electroencephalogram-based detection method for
depression classification using spatial information. A
face-in-the-crowd task, including positive and negative
emotional facial expressions, was presented to 30
participants, including 16 depression patients and 14
healthy controls. Differential entropy and the genetic
algorithm were used for feature extraction and selection,
and a support vector machine was used for classification.
A task-related common spatial pattern (TCSP) was
proposed to enhance the spatial differences before the
feature extraction. Results and discussion: We achieved
a leave-one-subject-out cross-validation classification
result of 84% and 85.7% for positive and negative stimuli,
respectively, using TCSP, which is statistically
significantly higher than 81.7% and 83.2%, respectively,
acquired without the TCSP (p<0.05). We also evaluated
the classification performance using individual
frequency bands and found that the contribution of the
gamma band was predominant. In addition, we evaluated
different classifiers, including k-nearest neighbor and
logistic regression, which showed similar trends in the
improvement of classification by employing TCSP.
Conclusion: The results show that our proposed method,
employing spatial information, significantly improves the
accuracy of classifying depression patients.
Index Terms— Depression, EEG classification,
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I. INTRODUCTION
EPRESSION, as a common illness worldwide, is

classified as a mood disorder and described as feelings
of sadness or anger that interfere with a person’s everyday
activities [1]. According to the World Health Organization, it
is likely to be the leading global disease by 2030 [2].
Depression disorder is a pathological process that causes

many symptoms, resulting in limited mental and physical
functionality [3]. It is often accompanied by cognitive
impairments, which may increase the risk of Alzheimer’s
disease and suicide and accelerate cognitive decline [4]. The
earlier depression is detected, the easier it is to treat. As a
low-cost, noninvasive acquisition, and high temporal
resolution technique, electroencephalography is widely used
in neural systems and rehabilitation engineering [5][6].
Acharya et al. proposed a typical computer-aided system for
electroencephalogram (EEG)-based diagnosis of depression,
which primarily includes an offline and online system [7].
This paper is focused on the experimental paradigm, emotion
feature extraction, feature selection, machine learning, and
the dataset for training and testing, particularly on spatial
information feature extraction and selection. This focus was
chosen because many studies have shown that subjects with
depression exhibit different spatial responses in
neurophysiological signals compared to healthy controls,
when they are exposed to stimuli [8–11].
Many studies have been conducted on depression; some

studies focused on the resting-state [11–15], whereas others
focused on tasks [16–18]. For example, Li et al. performed a
study on the EEG-based brain electrical source of mildly
depressed subjects, which suggested that depressed subjects
spent more time viewing negative emotional faces, causing a
dysregulation in temporal pole activity [19]. Liao et al.
collected 54 resting-state EEG signals, 6 s in length, from 12
patients with depression and 12 healthy controls [11], and
Yang et al. extracted 24 resting-state EEG signals, 8 s in
length, from 17 depressed patients and 17 control subjects;
both studies resulted in a classification accuracy above 80%
[13]. Wu et al. recorded the EEG for a resting-state session,
followed by an emotion-induction session, from 55
participants (24 with major depressive disorder (MDD) and
31 healthy controls), considering that the ability to distinguish
MDD using resting-state EEG reaches a bottleneck, which
provides a higher accuracy than emotion-induction EEG of
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above 83% [14]. Li et al. conducted an experiment on the
facial expression viewing task (emotional and neutral blocks)
involving 48 college students, 24 of whom were considered
depressed and 24 healthy, which provided an accuracy of
85.62% for the detection of depressed and healthy students
using a convolutional neural network [15]. The participants of
our experiment were from the Shanghai Mental Health Center
and included 16 patients with depression (Dep) and 14
healthy controls (HC); the participants were presented with
the face-in-the-crowd task stimuli of six human faces.
EEG signals are nonstationary and nonlinear signals,

similar to many other physiological signals [20]. To analyze
these signals, linear and nonlinear features are typically used,
such as the power spectrum density, Lempel-Ziv complexity,
variance, mobility, fluctuations, Higuchi fractal, approximate
entropy, Kolmogorov entropy, correlation dimension,
Lyapunov exponent, and permutation entropy [2][8][9]. To
analyze our hypothesis effectively, it was necessary to select
optimal features, as some dimension features may mislead the
classifiers. The BestFirst, GreedyStepwise (GSW),
GeneticSearch, and RankSearch approaches, based on
correlation feature selection, are typical data mining search
methods, and the BayesNet, support vector machine (SVM),
k-nearest neighbor (KNN), logistic regression (LR), linear
discriminant analysis (LDA), and random forest approaches
are widely used for discriminating classes [8–10][21].
Hosseinifard et al. extracted four nonlinear features from
EEG signals and obtained the highest classification accuracy
of depressed patients and controls by using the correlation
dimension and LR approaches, among the KNN, LDA, and
other nonlinear feature selection methods, with a genetic
algorithm employed to select features [6]. Li et al. calculated
eight linear features and nine nonlinear features from theta
(4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz) waves, which
yielded high accuracy using GSW and KNN for the beta
frequency band [9]. As the electrode channels are located in
different areas on the surface of the human’s head, the
channel dimension contains spatial information of EEG.
When EEG channels are chosen, the optimal spatial
information should be selected. The common spatial pattern
(CSP) has been proven to be one of the most effective
algorithms for a brain-computer interface (BCI) for the
optimization of the spatial-spectral filter, and many novel
approaches have been proposed accordingly [22][23]. This
paper presents an effective EEG-based detection method for
depression classification by employing spatial information,
namely the task-related common spatial pattern (TCSP).
Subject-independent k-fold cross-validation (CV) [24][25]

and leave-one-subject-out (LOSO) CV [26–28] are two
widely used EEG classification strategies. In fact, when k = 1,
the LOSO method is a special case of the k-fold technique. As
the LOSO approach can enjoy more training data and adjust
super-parameters on each subject, it will always achieve
better results compared with the k-fold method. When
detecting a potential depression patient, we chose the LOSO
strategy to evaluate the model for detecting depression
patients in this study, to make the best use of the existing data.

In this study, we conducted an emotion-induction
experiment for the Dep group and HC group, who responded
to the face-in-the-crowd task stimuli of six human facial
expressions. We used two types of emotion stimuli: positive
and negative. Differential entropy (DE) and genetic algorithm
(GA) were used for feature extraction and feature selection,
and SVM was used for classification, which has been
recognized as making a significant contribution to EEG
classification in previous studies [8][10][21][30][31]. TCSP
was used to enhance the spatial differences before the feature
extraction.
The remainder of this paper is organized as follows.

Section II explains the experiment protocol, EEG signal
processing, feature extraction and feature selection, machine
learning, and assessment methods. Section III presents the
results and Section IV provides a discussion. Finally, Section
V summarizes the conclusions of the study.

II. RESEARCH METHODOLOGY

The objective of our experiment was to develop an
effective EEG-based detection method for depression
classification by employing spatial information. Fig. 1 shows
the block diagram of EEG signal processing used in our study,
which mainly consists of the experiment protocol,
preprocessing, feature extraction, feature selection, machine
learning, and statistical analysis.

A. Participants and Procedure
This study was approved by the Institutional Review Board

of the Shanghai Mental Health Centre (SMHC) [32][33]. The
Dep group included 16 right-handed diagnosed outpatients
with depression (male/female = 6/10, 37.75 ± 14.19 years old,
12.06 ± 2.91 years of education), recruited from SMHC. The
HC group included 14 right-handed healthy participants
(male/female = 4/10, 40.86 ± 12.29 years old, 11.54 ± 3.75
years of education) with no personal history of neurological
or psychiatric illness. Before the experiments were conducted,
all participants underwent an interview in which the Hamilton
rating scale for depression (HAMD, Dep: 24.5 ± 7.40, HC:
7.27 ± 6.94) was administered. The self-rating anxiety scale
(SAS, Dep: 61.3 ± 9.74, HC: 35.5 ± 5.13) and self-rating
depression scale (SDS, Dep: 0.89 ± 0.08, HC: 0.48 ± 0.09)
were assessed by the subjects.
The face-in-the-crowd task stimuli consisted of six human

faces, which were selected from the Ekman emotion database
[28]. There were three types of expressions (positive,
negative, and neutral) without hair, glasses, beard, or other
facial accessories. The experiment contained 4 blocks, 2
positive and 2 negative target blocks, and each block had 144
trials. During the positive blocks, 72 positive, 36 negative,
and 36 neutral stimuli were presented to the participants, and
during the negative blocks, 72 negative, 36 positive, and 36
neutral stimuli were presented to them. As shown in Fig. 1,
each trial was displayed for 1500 ms against a black
background. Then, an interstimulus interval of 1000 ms was
presented, during which a fixation cross appeared alone in the
center of the screen. The experiment followed a GO-NOGO
paradigm [31–36].
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Fig. 1. Block diagram of EEG signal processing. After frequency filtering, feature extraction of the time information and feature selection of the
channel information were applied to the EEG signals. There were three classification strategies: (a) a traditional method using all channels
without feature selection, (b) a typical method using feature selection without employing the TCSP, and (c) our proposed method using a GA with
the TCSP. The EEG signal of one trial consists of the number of channels times the number of samples (N-channels * T-samples). In case (a),
M-trials represents the set of trials, and N-features represents the set of features. In case (b), k-dimensions represents the selected features
subset of N-features. In case (c), N-spatial filters represents the projection of N-channels after using the TCSP matrix. By employing the TCSP
matrix, it was expected that the EEG-based classification performance of depression patients could be enhanced.

The participants were comfortably seated 80 cm away from a
17-inch LCD-screen and were asked to judge whether the
present image contained the target face during the stimulus
onset asynchrony. During the positive block, the participants
were asked to press button “1” if positive face stimuli were
found, and during the negative blocks, the participants were
asked to press button “5” if negative face stimuli were found.
There was a break period of 1 min between blocks, and the
whole experiment took approximately 30 min for each subject.
The EEG signals were recorded at a sampling frequency of

1000 Hz from 64 channel surface electrodes (QuickCap™,
Brain Products Inc., Gilching, Bavaria, Germany), and the
interelectrode impedance was maintained below 5 kΩ. Data
recording was referenced to the tip of the nose. Artifacts from
vertical and horizontal eye movements and blinks were
removed offline by an ocular correction algorithm using a Brain
Vision Analyzer (Brain Products Inc., Gilching, Bavaria,
Germany). Fifty-nine electrodes were selected from the 64
electrodes that covered the whole scalp. As shown in Fig. 1, we
preprocessed the EEG signals so that we could extract optimal
features. The artifact-free data were band-pass-filtered between
0.05 and 100 Hz. The data were segmented from 200 ms before
stimulus onset to 1000 ms post stimulus. Segmentations with
artifacts (>±100 μV) or those leading to incorrect answers were
excluded. In this study, we selected the EEG signal 200 ms
before the stimulus onset as the baseline-EEG and the EEG
signal 1000 ms post-stimulus as the task-EEG.

B. Task-related Common Spatial Pattern Matrix

Research over the past decade has shown that spatial
information can effectively contribute to the detection of Dep
[9–13]. The objective of this study was to find an effective
method to process the detection between Dep and HC. The
common spatial pattern is a mathematical procedure widely
used in signal processing to separate a multivariate signal into
additive subcomponents [30][31], with the effects of feature
extraction [22][23]. Traditional CSP and its variants
considerably contribute to the classification performance
during motor imagery and emotion recognition
[37][38][39–42]. Based on the filter bank common spatial
pattern framework, Park et al. proposed a filter bank
regularized CSP [22]. When calculating the estimated
covariance, the trials of subjects that exclude the interested one
are used to calculate the estimated covariance. In our study,
there were two participant groups (Dep and HC) and two task
stimuli (positive and negative emotions). For session 1
(positive stimuli blocks), we labeled the trials of Dep as class 1
and the trials of HC as class 0. Additionally, we labeled the
trials of Dep as class 1 and the trials of HC as class 0 for session
2 (negative stimuli blocks). When calculating the estimated
covariance, we used all the trials of the subjects that exclude the
interested/test one (Dep as class 1 and health as class 0), which
implies that the EEG trials of covariance 1 increase with
depression, and the EEG trials of covariance 0 increase with
health. As shown in Fig. 2, we obtained the training dataset and
test dataset according to the LOSO strategy and calculated the
TCSP projection matrix using the training dataset. We then put
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the estimated TCSP projection matrix into the test dataset to
differentiate Dep from HC.

Fig. 2. Use of TCSP projection matrix to enhance the classification.

As shown in Fig. 1, after frequency filtering, the EEG signal
X of one trial consists of channels and time sampling points
(N-channels * T-samples). Based on the CSP, our objective was
to find the TCSP projection matrix, which could transform X in
the original sensor space into a new space, where the time series
can contain more discriminative information.
The averaged spatial covariance matrices of class 1 (X1) and

class 0 (X2) were calculated respectively as shown below:
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where T denotes the transpose of a matrix, trace(.) denotes
the sum of the diagonal elements of the matrix, X1i (i=1, … m1)
and X2i (i=1,… m2) are the EEG training data, and m1 and m2 are
the numbers of the EEG training data in class 1 and class 0,
respectively. The composite covariance in class 1 and class 0
can be diagonalized as,

1 2= +R R R (3)
= TR U U (4)

where λ is an N-channels * N-channels diagonal matrix, in
which the diagonal elements are the eigenvalues of R, sorted in
descending order, and U is the eigenvector matrix of R.
The whitening matrix and eigen decomposition were then

calculated as
1= TP U  (5)

1 1 2 2,T TS PR P S PR P  (6)
and diagonalized as

1 1 1 1 2 2 2 2,T TS B B S B B   (7)
where S1 and S2 share the same eigenvalues. Thus, we

obtained B1=B2=B and λ1+λ2=I, i.e., the larger the eigenvalues
for S1, the smaller the eigenvalues for S2.

TW B P (8)
Then we obtained the TCSP projection matrix, which was a

spatial filter. We could obtain X’ (N-spatial filters* T-samples)
by using the TCSP projection matrix to transform X in the

original sensor space into a new space, enhancing the
discriminative information.

C. Feature Extraction and Feature Selection
As is well known, entropy can be utilized to describe the

degree of signal irregularity in dynamical systems. Previous
studies have shown that changes in entropy may reflect changes
in brain activation when conducting cognitive tasks [41]. DE
has been proven to be an effective feature in emotion
recognition [36–39]. In this study, delta (1–4 Hz), theta (4–8
Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–80 Hz)
waves and wideband EEG (EEGW) were extracted by wavelet
packet decomposition.
Fig. 1 shows three classification strategies: (a) a traditional

approach using all channels without feature selection, (b) a
typical strategy using a GA without employing the TCSP, and
(c) our proposed method using a GA with the TCSP. In
strategies (a) and (b), DE is extracted from delta, theta, alpha,
beta, and gamma as well as EEGW. In strategy (c), the TCSP is
used to enhance the feature performance; thus, DE is extracted
from the new delta, theta, alpha, beta, and gamma waves as well
as EEGW, as constructed using the TCSP projection matrix.
The formula for calculating DE can be expressed as

    log dDE P x P x x




  (9)

Here, x denotes a random variable, and P(x) is the probability
density function of x. We assume that the EEG signals obey a
Gaussian distribution: x ~ N (μ, σ2). Then, the DE calculation
can be simplified as

21 log 2πe
2

DE  (10)

For a segment of EEG, the DE estimation is equivalent to the
logarithm energy spectrum in a particular frequency band [43].
In addition, the logarithm energy spectrum can effectively
eliminate the problem of low-frequency energy typically
having a relatively higher magnitude than high-frequency
energy in EEG [44].
Feature selection is widely used to improve performance

because some dimension features will mislead the classifiers
[30][31]. This method will also reduce the computational
complexity compared with that when all the features are used.
The GA is a metaheuristic inspired by the process of natural

selection in evolutionary algorithms, which is a global
optimization solution. Using the GA, chromosomes were coded
in this study as follows.
For each trial, the number of features was FD. A vector of

length FD defined one chromosome FGA= {f1, …, fi, …, fFD},
fi∈ (0 1). Each bit in the chromosome corresponded to one of
the features and indicated whether the corresponding feature
was selected or not. We used a learning curve to obtain the
optimal number of features FS within the range of 2–59 and
initialized FS as 2. When feature selection began, a random
candidate chromosomes population was first generated. We
initialized the population size as Pn = 100, indicating that there
were 100 random candidate chromosomes in the optimization
problem. Furthermore, a fitness function was used as the
optimization objective [8][10]. Here, we used the
corresponding classifier as the fitness function, and the fitness
value of each chromosome was the classification during
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training. After calculating the fitness value of each candidate
chromosomes, we used a roulette wheel selection algorithm to
select the potentially useful chromosomes for recombination,
with a selection rate of 0.5. We randomly (crossover rate 0.7)
chose the parent chromosomes among the potentially useful
chromosomes to create new chromosomes by recombination.
According to the selection rate, we needed 50 kid chromosomes.
Then, the kid chromosomes mutated randomly with a mutation
rate of 0.001, producing a new population of 100 chromosomes.
The chromosome selection, crossover, mutation, and
population were updated and iterated until the function no
longer produced improved results when given a certain FS.
Then, we obtained a potentially optimal subset of chromosomes
{FGA1, FGA2, …, FGA100} and chose the optimal chromosome
with the maximum fitness value, max (fitness ({FGA1, FGA2, …,
FGA100}). By calculating the learning curve of FS, we obtained
the final optimal chromosome, max (max (fitness ({F (GA1, j), F
(GA2, j), …, F (GA100, j)})), j∈ (2 59). The features of this
chromosome could produce the best classification performance
in the training dataset; therefore, when a new subject EEG was
given to the classifier, we could choose the corresponding
selected features.

D. Machine Learning and Assessment Methods
The SVM has been employed widely in different

classification and regression problems. The performance of the
SVM is affected by the kernel function, which may be a linear,
radial basis, sigmoid, or polynomial function [25][45]. A
library for support vector machines was used for classification,
using the SVM-SVC (support vector classification, SVC)
model with a linear function, C-SVC of cost 1. Additionally, we

used the KNN and LR approaches [46], which are widely used
in BCIs, to make our results more robust.
The performance accuracy (ACC), precision, recall, and F1

score were calculated in this study. As the LOSO classification
strategy was used, ACC was equal to the recall, the precision
was 1, and F1 was always larger than ACC.
In addition, the Wilcoxon signed-rank test was used to

calculate the statistically significant difference of our
experiment results, e.g., the statistical significance of the
accuracy enhancement using the TCSP.

III. RESULTS
Based on the face-in-the-crowd task stimuli, we recorded and

preprocessed the EEG signals; the frame flow chart is shown in
Fig. 1. We selected the EEG signal 200 ms before the stimulus
onset as the baseline-EEG and the EEG signal 1000 ms
post-stimulus as the task-EEG. We evaluated the TCSP
performance with the two EEG signals.

A. TCSP Performance under Task-EEG
To observe the performance improvement with the TCSP,

we utilized three classification strategies: (a) a traditional
method using all channels without feature selection; (b) a
typical method using feature selection without employing the
TCSP, where we used a GA; and (c) our proposed method using
a GA with the TCSP. Table I presents the results of the
task-EEG under positive and negative stimuli, respectively.
The average ACC and standard deviation (SD) are used here.
We achieved a LOSO CV classification result of 84% and

85.7% for positive and negative stimuli, respectively, by using
the TCSP, and a classification result of 81.7% and 83.2%,

TABLE I. LOSO CV CLASSIFICATION PERFORMANCE FOR TASK-EEG

Bands

ACC ± SD (100%)
Task-EEG under Positive-Stimuli Task-EEG under Negative-Stimuli

Channels without
Feature Selection

Feature Selection with GA Channels without
Feature Selection

Feature Selection with GA

Without TCSP With TCSP Without TCSP With TCSP

EEGW 0.603±0.133 0.698±0.089 0.757±0.079 0.615±0.128 0.736±0.082 0.768±0.089
Delta 0.562±0.126 0.615±0.083 0.632±0.083 0.593±0.127 0.627±0.081 0.638±0.076
Theta 0.568±0.139 0.612±0.072 0.627±0.081 0.596±0.131 0.632±0.078 0.653±0.075
Alpha 0.583±0.126 0.628±0.079 0.652±0.077 0.609±0.118 0.646±0.081 0.681±0.083
Beta 0.595±0.138 0.697±0.082 0.738±0.082 0.612±0.129 0.728±0.080 0.776±0.087

Gamma 0.627±0.119 0.739±0.091 0.789±0.075 0.643±0.122 0.789±0.089 0.807±0.089
6-Bands 0.665±0.121 0.817±0.079 0.840±0.064 0.686±0.126 0.832±0.080 0.857±0.071

Fig. 3. LOSO classification performance bar chart of different bands for (a) task-EEG under positive-stimuli and (b) task-EEG under negative-stimuli.
The spatial information contributes to the classification performance, and the TCSP can enhance the spatial differences. ACC is higher when the
TCSP is used than when it is not used. ACC in the 6-Bands case achieves the best classification performance.
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Fig. 4. LOSO classification performance line chart for task-EEG under
positive and negative stimuli

respectively, without using the TCSP. When using all the
channels without feature selection, the classification results
were only 66.5% and 68.6% for the positive and negative
stimuli, respectively, which are significantly lower than the
values obtained when using feature selection.
From Fig. 3 and Fig. 4, we can observe that the classification

performance with TCSP is better than that without TCSP in the
EEGW, delta, theta, alpha, beta, gamma, and 6-Bands cases.
We obtained the highest ACC when employing TCSP in
6-Bands as it provides more frequency information and spatial
information to the feature selection mechanism and classifiers.
Furthermore, we observe that the gamma band predominantly
contributes to the classification performance, which is
consistent with previous studies [4][33].

Fig. 5. Employing TCSP vs. not employing TCSP per subject for
task-EEG under (a) positive and (b) negative stimuli in the 6-Bands case.
The markers in the coordinate system are mostly located in the upper
left part, which indicates that the performance with the TCSP is better
than that without the TCSP. There is a similar trend for the EEGW, delta,
theta, alpha, and beta cases.

Moreover, we plotted Fig. 5 and Fig. 6, which intuitively
illustrate the classification performance with the TCSP versus
without the TCSP for each subject detection. Fig. 6 is a scatter
diagram, which indicates that for the majority classification of
subjects, the ACC of employing TCSP is higher than that of not
employing TCSP for task-EEG under positive-stimuli and
under negative-stimuli, respectively, in 6-Bands. Fig. 6 shows
three types of lines obtained by using the GA and by employing
or not employing the TCSP for the task-EEG under positive and
negative stimuli. When we sorted the accuracy values acquired
by using the GA without the TCSP for 30 subjects, we obtained

the first line, called condition 1. According to the sequence of
subjects of condition 1, we acquired the paired accuracy value
using the GA when the TCSP was employed, which is the
second line, called condition 2. When we sort the accuracy
values of condition 2, we obtained the third accuracy value line,
called condition 3. It can be observed that the overall
performances of conditions 2 and 3 are better than that of
condition 1. If we obtained a larger dataset, the graph of
condition 2 would tend to that of condition 3.

Fig. 6. Classification performance per subject for task-EEG under (a)
positive and (b) negative stimuli in the 6-Bands case. The sorted
accuracy without employing the TCSP of subjects (named condition 1) is
the accuracy of using the GA without employing the TCSP. By
employing the TCSP, we obtained two other types of graphs: the paired
accuracy of using the GA and the TCSP, corresponding to the subject
sequence of condition 1 and called condition 2, and the sorted accuracy
of condition 2 for the subjects, called condition 3. The performance of
condition 2 is better than that of condition 1, which is also proved in Fig.
6 and is consistent with the results in Table I, where the average
accuracies of condition 2, 84% and 85.7%, are higher than those of
condition 1, 81.7% and 83.2%. For larger numbers of subjects, the
graph of condition 2 will tend to that of condition 3 and the performance
of the TCSP.

B. TCSP Performance under Baseline-EEG
As is well known, when presented with task stimuli,

participants will respond to the stimuli, and the brain activation
will change with psychological and physiological activities. In
Subsection III.A, we evaluated the TCSP performance under
task-EEG. In this subsection, we will discuss the TCSP
performance under the baseline-EEG. There are three
classification strategies: (a) a traditional method using all
channels without feature selection, (b) a typical method using a
GA without employing the TCSP, and (c) our proposed method
using a GA with the TCSP.
Fig. 7 shows the results of the baseline-EEG under positive

and negative stimuli. We achieve classification results of
72.8% and 73.6% for baseline-EEG under positive and
negative stimuli, respectively, using the TCSP, and the
classification results of 70.9% and 71.5%, respectively, without
the TCSP, in the 6-Bands case. When using all channels
without feature selection, we obtain the classification results of
63.5% and 63.7% in 6-Bands, respectively, which are
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significantly lower than the values obtained with feature
selection, similar to the task-EEG results. Further, the
classification performance with the TCSP is better than that
without the TCSP. The highest ACC was also obtained in the
6-Bands case, which was a combination of all six traditional
frequency bands, and the gamma frequency band contributes
more to the classification performance, which is consistent with
the task-EEG results under positive and negative stimuli.

Fig. 7. LOSO classification performance line graph for baseline-EEG
under positive-stimuli and baseline-EEG under negative-stimuli. ACC is
higher with TCSP than without TCSP, and it is highest in the 6-Bands
case.

C. Statistical Results and Significant Improvement
Fig. 8 shows the statistical results for baseline-EEG and

task-EEG under positive-stimuli, and negative-stimuli,
respectively, for the 6-Bands frequency case (* (P<0.05), **
(P<0.01), and *** (P<0.001)). This section focuses on the
difference between the strategies and the difference between
the task-EEG and baseline-EEG.

Fig. 8. Significant results for baseline-EEG and task-EEG under
positive-stimuli and negative-stimuli in the 6-Bands case. Here,
Baseline-Positive represents the baseline-EEG under positive-stimuli,
Task-Positive represents the task-EEG under positive-stimuli,
Baseline-Negative represents the baseline-EEG under negative-stimuli,
and Task-Negative represents the task-EEG under negative-stimuli.

For the three strategies of using all channels without feature
selection, using a GA without the TCSP, and using a GA with

the TCSP, there are similar statistical results for the
baseline-EEG and task-EEG under positive and negative
stimuli in the 6-Bands case (using all channels without feature
selection vs. using a GA without the TCSP, using all channels
without feature selection vs. using a GA with the TCSP, using a
GA without the TCSP vs. using a GA with the TCSP). Based on
the spatial information, there is a significant performance
improvement (using a GA without the TCSP vs. using all
channels without feature selection and using a GA with the
TCSP vs. using all channels without feature selection), which
shows that spatial information contributes to the classification
performance. Employing the TCSP also yields significant
improvement (using a GA with the TCSP vs. using a GA
without the TCSP), which reveals that employing the TCSP can
enhance the spatial differences. Additionally, there is a
consistent classification performance trend for the
baseline-EEG and task-EEG. Further, significant classification
improvements are evident for the task-EEG compared to the
baseline-EEG and with the use of feature selection, with or
without employing the TCSP, which may occur because of the
amount of data in the task-EEG or because brain activation may
change more in the task-EEG than in the baseline-EEG.

IV. DISCUSSION

A. Improvement of Employing TCSP
Many studies have focused on depression and the CSP

separately. Li et al. [9], Liao et al. [11], and Li et al. [21]
achieved high classification of depression patients and HC by
selecting optimal spatial information features. The CSP has
been widely used to transform original sensor spaces into new
spaces in which the time series can contain more discriminative
information. In addition, a previous study showed that entropy
can be utilized to describe cognitive performance and will
decrease as cognitive performance decreases. Further, the
entropy of depression patients was lower than that of healthy
subjects when performing cognitive tasks [41].
Our previous study showed that the attention model for HC

balances the forward input and feedback; however, there is
increased forward input (from the posterior cortex to the central
and anterior cortices and from the central cortex to the anterior
cortex) and decreased feedback (from the anterior cortex to the
central and posterior cortices and from the central cortex to the
posterior cortex) in Dep [32], which may induce the difference
in DE in different brain regions between Dep and HC.
Additionally, we observed that the brain networks of both Dep
and HC in gamma oscillation presented regular network
characteristics during emotional processing; however, Dep
showed randomization trends in [33], which may emphasize the
difference in DE for different bands between Dep and HC.
By employing the TCSP, we achieved classification results

of 84% and 85.7% for the task-EEG under positive and
negative stimuli, respectively, showing a statistically
significant difference, compared to 81.7% and 83.2%,
respectively, without the TCSP. Furthermore, these results are
significantly higher statistically than the values of 66.5% and
68.6%, when using all channels without feature selection.
There is a similar trend for the baseline-EEG. The spatial
information contributes to the classification performance, and
the TCSP can enhance the spatial differences before feature
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extraction to yield higher classification performance.

B. Brain Region Selection
In this study, during the training phase, we used the GA to

select features in different bands. The optimal numbers of
features of the different bands were not identical and ranged
from 8 to 12. There was one feature for each channel, and the
electrode channels were located in different areas on the surface
of the human head. Thus, feature selection by the GA is also a
brain region selection process, and the brain includes many
different areas that have particular functions. The frontal area is
primarily used for concentration and emotional reactions; the
central and temporal areas are used for emotion and motion;
and the parietal and occipital areas are used for recognition,
attention, and sight.

Fig. 9. Brain Regions based on frontal, central and temporal, and
parietal and occipital regions, and MI-Sel.

As shown in Fig. 9 (a), we divided all the channels into three
parts according to the brain regions: frontal (I) with 16 channels,
central and temporal (II) with 26 channels, and parietal and
occipital (III) with 17 channels. In addition, we used mutual
information (MI) to select 24 channels that were distributed in
the frontal, central, temporal, parietal, and occipital areas,
called MI-Sel [47][48], as shown in Fig. 9 (b). We also used
TCSP and GA in the four areas: I, II, III, and MI-Sel. The
classification performance bar graph of the different regions is
shown in Fig. 10.

Fig. 10. TCSP classification performance bar graph for different brain
regions for task-EEG under positive and negative stimuli in 6-Bands.

The results yield two primary findings. First, the ACCs in the
three original regions, I, II, and III, are lower than those in the

I-II-III and MI-Sel regions, which indicates that adequate
original spatial information is necessary for classification
performance. Second, the ACC in the I-II-III region is higher
than that in the MI-Sel region, which indicates that in our study
more original spatial information can enhance the performance
of TCSP effectively to yield high classification performance.

C. Contribution of Gamma Waves
From Fig. 3, it can be observed that the gamma frequency

band yielded the highest ACC among the individual frequency
bands. Our previous study revealed abnormal functional
connectivity of the EEG gamma band in patients with
depression during emotional face processing [33]. Malik et al.
observed that gamma brainwave activity will assist with the
diagnosis of depression more than other individual frequency
bands [4]. According to neuroscientists, a low level of gamma
brainwaves is linked to depression and depressed people are
typically considered to be less focused than healthy people.
Therefore, gamma brainwaves may predominantly contribute
to the classification performance.

D. Stimuli vs. Baseline and Positive vs. Negative
To evaluate the TCSP performance in different datasets, the

EEG signals were segmented into two types of EEG signal:
baseline- and task-EEG signals. There is a similar classification
performance trend between baseline-EEG and task-EEG. When
presented task stimuli, participants will respond to the stimulus
with psychological activities [49]. Moreover, the classification
ACC during the task-EEG is significantly higher statistically
than that during the baseline-EEG. Unfortunately, for this
experiment, the resting EEG was not recorded. This
measurement may have provided a more significant result.

To observe the TCSP performance for different
emotion-induction experiments, we provided two task stimuli
of positive and negative emotions. Additionally, there was a
similar classification performance trend between the positive
and negative stimuli [50][51]. As is well known, negative bias
is typical for people with depression and they can be highly
sensitive to negative events. In our results, the ACC during the
negative stimuli was slightly higher than that during the
positive stimuli; however, there was no statistically significant
difference, which may be due to the limited number of samples.
Some studies have been focused on the classification of neutral
stimuli, which is a potential extension of our research.

E. Other Cases using KNN and LR
We also evaluated different classifiers, including KNN and

LR classifiers. The KNN classification has at least two key
points: the similarity measurement (such as Euclidean distance
and Mahalanobis distance) between two datasets and the
selection of the k value. In this study, we chose the Euclidean
distance and k = 5. LR is one of the most widely used statistical
models. It primarily refers to a logistic function, which is a
common “S” shape (sigmoid curve), loss function,
regularization, and probability distribution. L2 regularization
and λ = 1 were selected in our study. The results showed a trend
of improvement similar to that obtained by employing TCSP.
In comparison to traditional machine learning, deep learning

has achieved great success in many fields, particularly in
computer vision. Recently, many researchers have obtained
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high classification performance in BCIs using convolutional
neural networks, which demonstrate an advantage over
traditional machine learning [52]. However, an increasing
number of researchers have utilized deep learning owing to its
interpretability because it is always presented in the form of a
black box. If we effectively combine the brainwave mechanism
and deep learning, we will achieve more interesting results.

F. LOSO and K-Fold
LOSO CV is a special case of k-fold CV in which k = 1. We

also separated the two categories of participants into 4 or 5
groups, Dep 12-4 and HC 11-3 for training and testing, and 4-
or 5-fold CV was performed. We achieved classification results
of 82.3% and 83.9% using 4- or 5-fold validation, which are
lower than the values of 84% and 85.7% obtained using LOSO.
However, in the cases in which 4 or 5-fold CV was used, higher
classification values occurred occasionally. If we chose some
optimal datasets by using unsupervised learning or other
optimal algorithms, the classification may result in greater
improvement. We will focus on transfer learning and deep
learning in the future.

V. CONCLUSION
As a mood disease, depression is affecting an increasing

number of people. As a face-in-the-crowd task stimulus
experiment based on frequency information filtering, time
information feature extraction, and spatial information feature
selection, we developed an improved EEG-based feature
classification method employing spatial information, which is
useful for the detection of patients with depression. By
employing the TCSP, the classification performance was
significantly improved, which indicates that the TCSP can
enhance the spatial differences before feature extraction;
however, we should be aware of the limitation of the datasets.
In the future, we will continue to focus on correlation studies to
obtain more detailed results.
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