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a b s t r a c t

In recent years, deep learning has emerged as a powerful tool for developing Brain–Computer
Interface (BCI) systems. However, for deep learning models trained entirely on the data from a
specific individual, the performance increase has only been marginal owing to the limited availability
of subject-specific data. To overcome this, many transfer-based approaches have been proposed, in
which deep networks are trained using pre-existing data from other subjects and evaluated on new
target subjects. This mode of transfer learning however faces the challenge of substantial inter-subject
variability in brain data. Addressing this, in this paper, we propose 5 schemes for adaptation of a deep
convolutional neural network (CNN) based electroencephalography (EEG)-BCI system for decoding
hand motor imagery (MI). Each scheme fine-tunes an extensively trained, pre-trained model and
adapt it to enhance the evaluation performance on a target subject. We report the highest subject-
independent performance with an average (N = 54) accuracy of 84.19% (±9.98%) for two-class
motor imagery, while the best accuracy on this dataset is 74.15% (±15.83%) in the literature. Further,
we obtain a statistically significant improvement (p = 0.005) in classification using the proposed
adaptation schemes compared to the baseline subject-independent model.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Deep learning has emerged as a prevalent methodology in
achine learning in recent years, leading to significant break-

hroughs in computer vision and speech recognition (LeCun,
engio, & Hinton, 2015). The learning capacity of deep neural
etworks stems in part from its ability to discover intricate
eature representations from raw data. This has inspired a grow-
ng interest among neuro-engineering researchers to apply deep
earning to the development of Brain–Computer Interface (BCI)
ystems because it largely alleviates the need for manual feature
xtraction as seen in conventional BCI, which requires domain-
pecific expertise in the signal (Zhang et al., 2019).
Electroencephalography (EEG) is a noninvasive brain data ac-

uisition modality widely used in BCI research. Numerous stud-
es have shown correlations between EEG signals and actual
r imagined movements and between EEG signals and mental
asks (Wolpaw, Birbaumer, McFarland, Pfurtscheller, & Vaughan,
002). Motor Imagery (MI) is one of these paradigms in which a
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mental rehearsal of movement is performed. This will typically
elicit a decrease in mu and beta rhythms (event-related desyn-
chronization, ERD) contralateral to the movement (Pfurtscheller
& Da Silva, 1999). The termination of the movement imagina-
tion is usually followed by an increase in beta rhythm (event-
related synchronization, ERS) over the ipsilateral side of the brain
Pfurtscheller, Stancak, and Edlinger (1997).

The conventional BCI classification uses discriminative fea-
tures that represent ERD/ERS to classify MI. The state-of-the-art
BCI classification algorithm, filter-bank common spatial patterns
(FBCSP) (Ang, Chin, Zhang, & Guan, 2008), finds a set of linear
projection (i.e. spatial filtering) that maximizes the differences in
the variance of the multiple classes of EEG measurements using
temporally filtered signals with different frequency bands. This is
followed by feature selection and classification.

In conventional BCI classification, the models are trained and
evaluated on the same subject’s data. However, the distribution
of the features may shift due to the covariate shift of data
distribution in the training phase and evaluation phase of a
subject (Blankertz, Tomioka, Lemm, Kawanabe, & Muller, 2007).
To address this, in Arvaneh, Guan, Ang, and Quek (2013), a
supervised and unsupervised EEG data space adaptation algo-
rithm is proposed using Kullback–Leibler (KL) divergence crite-
rion. In Liyanage et al. (2013), a dynamically weighted ensemble
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lassification (DWEC) framework is presented based on the dis-
ance in the clustered features across sessions. In Raza, Cecotti, Li,
nd Prasad (2016), a transductive and adaptive learning method
ith Covariate Shift-Detection (CSD) is proposed to detect the
ovariate shifts in the data in real-time and initiate adaptive
orrective action.
In recent years, several novel deep learning approaches have

een proposed for EEG-based BCI (Craik, He, & Contreras-Vidal,
019). Many of which are based on convolutional neural net-
orks (CNN). In Schirrmeister et al. (2017), a deep CNN ar-
hitecture is reported, which uses a combination of temporal
nd spatial convolution filters for their first convolution-pooling
lock and introduced three more convolution-pooling blocks to
urther reduce the dimensionalities before feeding the output to a
ully-connected layer. The shallow architecture EEGNet, proposed
n Lawhern et al. (2018), uses separable convolution in place of
onvolution-pooling blocks to reduce the number of parameters
nd decouple the relationship within and across feature maps.
n Robinson, Lee, and Guan (2019), a multi-band, multi-channel
EG input representation to the deep CNN is used and further
ncreased the accuracy.

However, deep neural networks have a massive amount of
arameters to train compared to the aforementioned classical
odel. For example, the deep CNN in Schirrmeister et al. (2017)
as as many as 305,077 trainable parameters for the binary
lassification of MI. This would require a large amount of data
nd time for training. While there are many publicly available BCI
atasets (Goldberger et al., 2000; Lee et al., 2019; Tangermann
t al., 2012), the amount of data available for a single subject
s usually small. Moreover, collecting an extensive amount of
ata for a new subject is time-consuming, which may in turn
entally exhaust the subject during a prolonged recording ses-
ion and affect the quality of the data. To overcome this lack
f subject-specific data, there have been some transfer-based
pproaches proposed, using pre-existing data from other subjects.
evertheless, it is challenging to transfer the knowledge learned
rom other subjects due to substantial inter-subject variabili-
ies (Wronkiewicz, Larson, & Lee, 2015). Therefore, adaptation is
eeded to fine-tune the model for the target subject
In Fahimi et al. (2019) various EEG representations, includ-

ng raw, band-pass filtered, and multi-band signals, are studied
or inter-subject transfer learning. In Sakhavi and Guan (2017),
akhavi, Guan, and Yan (2018), the author explored FBCSP (Ang
t al., 2008) based representation of the EEG data and, and uti-
ized knowledge distillation techniques with a combination of
ard labels and soft predictions to fine-tune a deep CNN model.
subject-independent framework based on deep CNN is re-

orted in Kwon, Lee, Guan, and Lee (2019) using spectral–spatial
nput generation, which significantly outperforms the conven-
ional subject-dependent approaches. An online pre-alignment
trategy based on Riemannian Procrustes Analysis (RPA) (Ro-
rigues, Jutten, & Congedo, 2018) is proposed in Xu et al. (2020)
or aligning the EEG distributions of different subjects before
raining and inference processes. It turned out that the idea of
ransfer learning benefits not only deep neural networks but
lso other machine learning methodologies for BCI classifica-
ion. In Zhang and Wu (2020), the author proposed Manifold
mbedded Knowledge Transfer (MEKT) with a combination of
lignment, feature extraction, and domain adaptation techniques
o produce projection matrices that minimize the joint probability
istribution shift between the source and the target domains.
he projected features are then used to train classifiers like Sup-
ort Vector Machine (SVM) and Linear Discriminant Analysis
LDA). A regularized covariance matrix estimation framework
or common spatial pattern (CSP) (Ramoser, Muller-Gerking, &

furtscheller, 2000) based on dynamic time warping (DTW) and

2

transfer learning is proposed in Azab, Ahmadi, Mihaylova, and
Arvaneh (2020).

However, these transfer learning methodologies focus on ex-
tracting features and adapt them from the source subject(s) to
the target subject. The projected feature vectors are then used
to train a classifier (deep CNN, SVM, etc.). Deep neural networks,
although being treated as a classifier, can also learn and extract
features and offer an end-to-end decoding. Instead of manually
crafting the feature projections for transfer learning, we aim
to manipulate the neural network itself for adaptation, while
incorporating only little data pre-processing.

In this paper, we study 5 schemes for adaptation of a deep CNN
with limited EEG data. We utilize the aforementioned network
architecture in Schirrmeister et al. (2017) as a baseline to exploit
the full learning capacity of a deep CNN with minimal human
intervention. The goal is to leverage the features extracted from
the convolution filters in the model and adapt the classifier to
a subject it has never encountered. Literature reports the clas-
sification accuracy for motor imagery EEG using state-of-the-art
approaches ranging from 60% to 80% (Kwon et al., 2019; Lotte,
Congedo, Lécuyer, Lamarche, & Arnaldi, 2007; Zhang et al., 2019).
In this study, we report an enhanced subject-independent mo-
tor imagery classification with an average (N = 54) accuracy
of 84.19% (±9.98%), while the best accuracy on this dataset is
74.15% (±15.83%) in the literature (Kwon et al., 2019). Using
he proposed adaptation methodology, we are able to further
mprove this, resulting in a statistically significant (p = 0.005)
.21% increase in average accuracy. We further study the effect
f different learning rates and percentages of adaptation data,
nd also demonstrate the variability in performance of individual
ubjects. To the best of our knowledge, a similar high accuracy
or subject-independent MI classification and similar schemes for
ubject adaptation with a deep CNN for MI classification have
ot yet been reported in the literature. The source code of our
mplementation is available on GitHub.1

The rest of the paper is organized as follows: Section 2 ex-
lains the methodology, Section 3 describes the dataset and
valuation criteria, Section 4 reports the results, discusses their
ignificance. We finally conclude the paper in Section 6.

. Methodology

In this section, we first describe the definitions and nota-
ions used in the paper and introduce the network architecture
nd optimization techniques. Then, we establish 2 baselines to
ompare the performance of the proposed subject adaptation:
ubject-specific and subject-independent classification. Finally,
e present different schemes for subject-adaptive classification.

.1. Definitions and notations

Assuming that the input to the model is on a per-trial basis;
.e.: the continuous EEG signals are segmented into labeled trials,
e denote (X i, yi) as a single trial i. The input matrix X i

∈

RNc×Nt is the pre-processed signal, where Nc is the number of
EEG channels and Nt is the time samples for a single trial. Its
corresponding label is denoted as yi ∈ L = {0 : ‘‘Right", 1 : ‘‘Left"}
for the hand MI paradigm used in our experiment.

The CNN can be represented as a classifier f : RNc×Nt → L,
efined as:

(X i
; θ ) = g(φ(X i

; θφ1 , . . . , θφNφ
); θg ) (1)

In this equation, φ : RNc×Nt → RNg is all the convolution layers
with θφj denoting the parameters for convolution block j and Nφ

1 eeg-adapt codebase: https://github.com/zhangks98/eeg-adapt.

https://github.com/zhangks98/eeg-adapt
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Fig. 1. Illustrations of (a) Network architecture and (b) Adaptation schemes: optimizing a subset of model parameters θ .
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enoting the number of convolution blocks. Ng is dimension of
he flattened output of the final convolution block. This serves
s the input for the fully-connected layer g : RNg → L with
arameters θg .

.2. Network architecture

In this study, we follow the deep CNN architecture described
n Schirrmeister et al. (2017), which has been extensively an-
lyzed for the choice of learning parameters and optimization
trategies, and produces state-of-the-art results. The deep CNN
onsists of a temporal and spatial filter with max-pooling, 3
onvolution-max-pooling blocks, and a fully-connected softmax
lassification layer (see Fig. 1a). Hence, Eq. (1) for the deep CNN
ill have Nφ = 4 convolution blocks.
In this study, first we investigate the performance of deep CNN

n the conventional scenario in which the network is trained and
valuated on the same subject’s data. Next, we study subject-
ransfer in which the model trained on a set of subjects is evalu-
ted on a new target subject. Further, to enhance the performance
f the transferred model by taking into account the inter-subject
ariability of data, we propose different adaptation schemes as
ndicated in Fig. 1b. The following sub-sections will explain the
ethods in more detail.

.3. Training and optimization

We used AdamW (Loshchilov & Hutter, 2017) to optimize the
egative log-likelihood loss. We also applied cosine annealing
o accelerate the training (Loshchilov & Hutter, 2016), and per-
ormed Batch Normalization (Ioffe & Szegedy, 2015) and Dropout
Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014)
or each convolution-max-pooling block. We trained the network
or a maximum of 200 epochs, and select the epoch with the low-
st validation loss. The training techniques are used consistently
or subject-specific, subject-independent and subject-adaptive
Sections 2.4, 2.5) classification.

.4. Subject-specific and subject-independent classification

Subject-specific classification is the first baseline for our ex-
eriment, where we train and validate a model for each subject
sing only the same subject’s data.
Subject-independent classification (Kwon et al., 2019) is the

econd baseline for our study, where we implement the leave-
ne-subject-out (LOSO) paradigm for evaluation. The training and
alidation data for a subject consists of data from all available
ubjects excluding target subject.
 η

3

Table 1
An overview of adaptation schemes.
Scheme Params for Adaptation # Trainable Params

1 θg 2,802
2 θg , θφ4 203,202
3 θg , θφ4 , θφ3 253,402
4 θg , θφ4 , θφ3 , θφ2 266,002
5 θg , θφ4 , θφ3 , θφ2 , θφ1 305,077

2.5. Subject-adaptive classification

In the subject-independent classification case, the model never
observes any data from the target subject during the training
process. However, as mentioned in Section 1, this is prone to
inter-subject variations. Therefore, in subject-adaptive classifica-
tion, we fine-tune and adapt a pre-trained model using a small
amount of data from the target subject. For fairness of com-
parison, the data for evaluation is never observed during the
adaptation process, and is consistent with the baseline methods
in Section 2.4. Details for the division of data will be explained in
Section 3.2. For each target subject, the model trained in subject-
independent classification (Section 2.4) serves as a pre-trained
model. We studied the performance gains when the amount of
adaptation data increases from 10% to 100% in steps of 10%.

We proposed different strategies of adaptation as illustrated
in Fig. 1b. Because the adaptation data is limited compared to
trainable parameters in network, we chose to adapt the fully-
connected layer in our first scheme, i.e. optimizing the classifier
parameter θg , leaving the parameters for the feature extractor
θφi , i = 1...4 unchanged. This is also based on the hypothesis
that the convolutional layers can act as a feature extractor, and
have already extracted useful representations of the EEG data.
However, we do not want to omit the possibility that the convo-
lutional layers can also be adapted, so we included other schemes
which also adapted the parameters for the convolution layers,
which are shown in Fig. 1b. As indicated, in each scheme, the
first k layers (θφ1...k ) are pre-trained and kept unchanged, whereas
he rest of the layers (θφk+1...4 and θg ) are re-trained using the
daptation data, thus updating the trainable parameters to match
he target subject. All the adaptation schemes are outlined in Ta-
le 1, where we highlighted the number of trainable parameters
or each scheme. Note that scheme 5 has the same amount of
raining parameters as the models in Section 2.4.

In these schemes, since the adaptation data is small com-
aring to the data to train the subject-independent model, we
eed to tune down the learning rate to avoid clobbering the
nitialization (Girshick, Donahue, Darrell, & Malik, 2015). Hence,
e investigate the choice of optimal learning rate for better
daptation. Let the original learning rate in the base model be

(in our configuration, η = 0.01 for the subject-independent
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odel), and let α be the coefficient that scales down the learning

ate, then:

θ [i+1]
= θ [i]

− αη
∂L

∂θ [i]

= (1 − α)θ [i]
+ α(θ [i]

− η
∂L

∂θ [i] )
(2)

where θ [i] is the trainable parameters at the ith iteration and L is
the loss function. The equation above showed that scaling down
the learning rate (i.e. α < 1) can be viewed as accepting only
α portion of the new parameters. Thus, lowering the learning
rate can be interpreted as weighted adaptation. We experimented
with α = 1, 0.1, 0.05, 0.01 and observed the result.

In the following sections, an adaptation scheme is defined as
optimizing a subset of θ for f . The adaptation rate is defined as
the percentage of available adaptation data used in each scheme,
which ranges from 10% to 100% in steps of 10%. An adaptation
configuration is a combination of an adaptation scheme and an
adaptation rate.

3. Evaluation

In this section, we will introduce the dataset and the pre-
processing steps, as well as how the data will be used to train,
validate, and evaluate different models.

3.1. Dataset

The EEG dataset used in our research is collected by the
Department of Brain and Cognitive Engineering, Korea University.
In their experiments, 54 healthy subjects (ages 24–35) performed
binary class MI tasks, and their EEG signals were recorded using
BrainAmp (Brain Products; Munich, Germany) with 62 Ag/AgCl
electrodes at a sampling rate of 1000 Hz. The design of the ex-
periments follows the well-established protocol in Pfurtscheller
and Neuper (2001). Each trial begins with a fixation mark at the
center of the screen for the subject to prepare for the trial. Then
a left or right arrow will appear as a visual clue for 4 s, during
which the subject performed the imagery task of grasping with
the appropriate hand. After each task, the screen remained blank
for 6 s (±1.5 s). More details on the data and the experiment
protocol can be found in Lee et al. (2019).

Each subject participated in two data recording sessions with
a total of 400 trials. Each session consists of an offline training
phase to record data and to construct the classifier, and an on-
line test phase that provided visual feedback to the subject by
decoding data using the classifier. Each phase has 100 trials.

For our experiment, all 62 EEG channels were used. Each
4-second MI task was first segmented from the continuous data
for each trial. The signals were further down-sampled by a factor
of 4 with an order-8 Chebyshev type-I filter for anti-aliasing.
Hence, in our experiment, Nc = 62 and Nt = 1000.

3.2. Division of data

All the methodologies described in Section 2 are evaluated
with session 2, phase 2 data, which consists of 100 trials. As stated
in Section 2.5, this part of the data is never used to train and
validate any model in our study.

In subject-specific classification, we use phase 1 and phase 2
of session 1 data for training and validate the model using phase
1 of session 2 data.

In subject-independent classification, the entire data from all
but the target subject is used for training. For each target sub-
ject, we performed a 6-fold cross validation on the data from
remaining subjects for model selection. In each fold, the data from
4

Fig. 2. Division of data for subject-adaptive classification for target subject.

Table 2
Average classification accuracy (%) and standard deviation for
baseline models.

Subject Specific Subject Independent

Mean (SD) 63.54 (14.25) 84.19 (9.98)

remaining 53 subjects are randomly split into training (85%) and
validation (15%) sets and the network is trained as indicated in
Section 2.3. The network with minimum validation loss across all
cross-validation folds is used to evaluate the target subject.

In subject-adaptive classification, the model with the least val-
idation loss across cross-validation folds in the subject-
independent classification is used as the base model. We use
only portions of phase 1 and 2 of session 1 data to fine-tune
the network, ranging from 10% to 100% in steps of 10%. Each
adaptation configuration is validated with phase 1 of session 2
data. This is illustrated in Fig. 2.

4. Results

The results of the two baseline models and different adap-
tation configurations are reported in this section, including the
average classification accuracy, computation time, a comparison
with other BCI classification methodologies, and inter-subject
variations in performance. This is followed by a discussion on the
significance of the results.

For each configuration, we train the model using one NVIDIA
Tesla V100 SXM2 16 GB GPU from DGX-1 nodes. Each node is
powered by Dual 20-Core Intel Xeon E5-2698 v4 2.2 GHz.

4.1. Average classification accuracy

The following sub-sections report the average classification
accuracy across all 54 subjects for various training and adapta-
tion configurations. We analyze the significance of the average
improvement using paired-sample t-test across all subjects.

4.1.1. Baseline accuracy
The average classification accuracy for subject-specific clas-

sification and subject-independent classification is outlined in
Table 2. The average classification accuracy for subject-adaptive
classification when the learning rate is unchanged (α = 1) is
listed in Table 3.

The subject-specific scheme has an accuracy of 63.54%,
whereas the subject-independent scheme has an accuracy of
84.19% (32.50% increase, p = 6.97×10−17). This shows that more
data has significantly increased the performance of the deep CNN
model, which has 305,077 trainable parameters.

When α = 1, the subject-adaptive models have the same
learning rate as the base model. As shown in Table 3, all the best
accuracy for each adaptation rate is achieved in scheme 1. The
overall best accuracy is obtained with an adaptation rate of 60%,
with a 2.13% increase in accuracy (p = 0.03). While the increase
is significant, we will see in the following section that tuning

down the learning rate will further decrease the p-value by an
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Table 3
Average classification accuracy (%) for each adaptation configura-
tion when α = 1. The highest accuracy (in bold) indicates the best
adaptation scheme for a specific adaptation rate.
Adaptation Rate Adaptation Scheme

(%) 1 2 3 4 5

10 84.54 83.44 83.76 84.17 83.43
20 84.78 84.09 83.96 84.31 83.35
30 84.94 84.44 83.94 83.83 83.33
40 85.65 84.22 83.70 83.69 83.81
50 85.83 84.39 84.50 83.50 82.52
60 85.98 85.28 83.96 83.96 82.96
70 85.69 84.52 83.54 84.31 82.24
80 85.24 84.56 84.31 84.06 82.70
90 85.76 85.37 84.39 84.41 81.09
100 85.81 84.98 84.41 83.91 82.80

Table 4
Average classification accuracy (%) for each adaptation configura-
tion with α = 0.1. The highest accuracy (in bold) indicates the
best adaptation scheme for this adaptation rate.
Adaptation Rate Adaptation Scheme

(%) 1 2 3 4 5

10 84.83 84.87 84.94 84.43 83.98
20 84.80 85.19 84.94 85.17 85.26
30 85.07 84.93 85.07 85.35 84.80
40 85.87 85.37 85.50 85.46 83.94
50 85.69 85.35 85.76 85.98 85.44
60 85.93 85.91 85.76 86.11 84.61
70 86.06 86.19 86.00 86.48 85.02
80 86.17 85.98 85.94 86.33 84.76
90 85.96 86.07 86.35 86.46 85.37
100 86.04 85.96 86.24 86.69 85.98

order of magnitude while increasing average accuracy. Also notice
that all the classification accuracy in scheme 5 is worse than the
subject-independent model, this shows that at a large learning
rate, the adaptation of all convolutional layers with numerous
training parameters can produce sub-optimal results.

4.1.2. Scaling down the learning rate
As mentioned in Section 2.5, different learning rates can have

n impact on the final classification accuracy. Here, we report the
esults of 3 different scaling factors (α in Eq. (2)) that tunes down
he learning rate for each adaptation configuration. The results
re shown in Tables 4, 5 and 6 respectively, in decreasing order
f α. In each table, the highlighted accuracy indicates the best
daptation scheme for a particular adaptation rate.
In contrast to α = 1, when α = 0.1 (10% of the learning

rate in the base model), the best performance for each adap-
tation rate comes from different schemes. This shows that the
convolutional layers can indeed be further adapted when we
decrease the learning rate. When there is more adaptation data,
the adaptation schemes tend to perform better. Also notice that
a majority of high classification accuracy comes from scheme 4,
especially in higher adaptation rates. The best performance is
obtained with scheme 4, 100% adaptation rate, which improves
the subject-independent result by 2.97% (p = 0.003).

Similar to α = 0.1, when α = 0.05 (5% of the learning
rate in the base model), the best performance for each adapta-
tion rate is seen from different schemes. One difference is that
scheme 5 never achieves a better performance in all adapta-
tion rates. Scheme 4 with 80% adaptation rate gives the best
result of 86.89% (+3.21%, p = 0.005 comparing to the subject-
independent model).

When α = 0.01 (10% of the learning rate in the base model),
more scheme 2 configurations exhibit higher average classifica-
tion accuracy. Scheme 4 with 100% adaptation rate gives the
5

Table 5
Average classification accuracy (%) for each adaptation configu-
ration with α = 0.05. The highest accuracy (in bold) indicates
the best adaptation scheme for this adaptation rate. Significant
(p < 0.01) improvements between the result from scheme 4,
adaptation rate 80% and other configurations are marked with *.
Adaptation Rate Adaptation Scheme

(%) 1 2 3 4 5

10 84.78* 84.80* 84.87* 84.35* 84.85*
20 85.09 84.96* 84.94* 85.50 85.15
30 85.22 85.04* 85.07 85.41 84.69*
40 85.96 85.74 85.80 85.85 85.09*
50 85.93 85.67 85.81 86.07 85.28*
60 85.76 86.28 86.22 86.06 85.07*
70 85.98 86.33 86.37 86.41 85.17*
80 85.93 86.19 85.89* 86.89 85.24*
90 85.81 86.31 86.31 86.43 85.37*
100 86.11 86.35 86.41 86.80 85.85

Table 6
Average classification accuracy (%) for each adaptation configura-
tion with α = 0.01. The highest accuracy (in bold) indicates the
best adaptation scheme for this adaptation rate.
Adaptation Rate Adaptation Scheme

(%) 1 2 3 4 5

10 84.91 84.93 84.76 84.61 84.70
20 85.11 85.30 85.04 85.24 85.13
30 85.13 85.56 85.48 85.48 85.15
40 85.35 85.78 86.00 85.80 85.00
50 85.56 85.93 85.85 86.04 85.69
60 85.28 86.24 86.37 85.91 85.07
70 85.41 86.17 86.17 86.54 85.56
80 85.69 86.19 85.93 86.17 85.80
90 85.67 86.22 86.07 86.20 85.52
100 85.57 86.44 86.50 86.80 85.93

best result of 86.80% (+3.10%, p = 0.005 comparing to the
subject-independent model).

To further illustrate the effect of tuning down the learning
rate, we turned off the early-stopping mechanism for each sub-
ject and trained the model for 200 epochs. We compared α =

, 0.1, 0.01, 0.05 for scheme 4 with 100% of adaptation data, and
plotted the average training and validation accuracy across 54
subjects, as shown in Fig. 3. When α = 1, there is a down-
ward overshoot in average validation accuracy, while the training
accuracy increases rapidly. Also, the average validation accuracy
never goes above that of epoch 0, which is the accuracy of
the subject-independent model. This is because in the subject-
adaptive scenario, the data available for fine-tuning is only a
small fraction of the total amount of data on which the original
network was trained, and keeping the same learning rate leads to
overfitting to the training data during adaptation. When α < 1, an
increase in average validation accuracy can be seen, which shows
the model is improving when we tune down the learning rate.
This is consistent with our earlier results. However, it is worth
noting that this is only indicative since here we are using the
validation data, not the evaluation data, and during the actual run,
the adaptation of each subject stops at a different epoch according
to its own validation loss.

So far, α = 0.05 yields the best average result with significant
(p = 0.005) increase. The following discussions, unless otherwise
stated, will be based on the result obtained using this scaling
factor for the learning rate.

We further performed paired-sample t-test to obtain the p-
values between the best result (scheme 4, adaptation rate 80%)
and other adaptation configurations. The significant (p < 0.01)
improvements are marked with * in Table 5. Overall, this con-

figuration performs significantly better than almost all scheme 5
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Fig. 3. Demonstrating the impact of learning rate in training and validation accuracy (%) for α = 1, 0.1, 0.05, 0.01 when training scheme 4 model with 100%
daptation rate.
onfigurations, which fine-tunes the first convolutional block for
iscovering elementary spatial and temporal features, along with
ll the layers in scheme 4. This shows that the first convolutional
lock in our subject-independent model has been adequately
rained and further adapting it will lead to overfitting. On the
ther hand, when the adaptation rate is large (> 80%), the
mprovement from our best result comparing with other schemes
re not as significant.

.1.3. Alternative partition of data
To truly evaluate the capacity of the network, we re-run the

lassification experiment using session 2 as training data, and
hase 2 of session 1 data for evaluation (i.e. flipping the roles of
ession 1 and 2 in Fig. 2). We obtained a 25.14% (p = 6.83 ×

0−9) improvement in average accuracy from subject-specific to
ubject-independent classification. As for subject-adaptive classi-
ication, the same α = 0.05 is used, and the configuration that
ields the most improvement in average accuracy is scheme 4
ith 100% adaptation data, which is 4.22% (p = 0.0004) compar-

ng to subject-independent classification. The result is similar, if
ot better than the original partition of data. Nevertheless, for the
air of comparison with the result reported in Kwon et al. (2019)
ater in Section 4.3, which is only evaluated on session 2, phase
data, we report the results with the original partition of data in
ig. 2 for the rest of the analysis.

.2. Computation time

The average computation time over all 54 subjects for each
ethodology is reported in Table 7. Overall, the training time for
ubject-specific and subject-adaptive models is on the same order
f magnitude (within 20 s), whereas subject-independent models
ake more than 9 h to train on average. When the amount of
daptation data increases, it takes longer to train the network.
cheme 1 tends to have longer training time than other schemes,
his is because we employed early-stopping in the training. Other
chemes have more trainable parameters, so they are more prone
o overfitting, and their validation losses rise quickly after the first
ew epochs. Therefore, the training will stop earlier. It is worth
oting that this result is highly machine-dependent, and is only
erved as a reference.

.3. Comparison with other methodology

First, we compare our best average classification result
scheme 4, using 100% adaptation data) with other commonly
6

Table 7
Summary of computation time for each methodology (in seconds). Models are
trained on NVIDIA Tesla V100 SXM2 16 GB GPU.

Subject Specific Subject Independent

Mean 7.25 32961.01

Adaptation Rate Adaptation Scheme

(%) 1 2 3 4 5

10 7.71 6.17 4.23 3.44 1.54
20 8.58 6.03 5.52 5.64 3.38
30 11.18 5.71 5.45 7.08 4.81
40 10.30 5.63 5.99 7.51 4.96
50 11.66 5.82 6.63 8.81 5.61
60 11.56 7.70 8.52 8.97 6.15
70 11.26 7.38 8.85 9.90 7.02
80 12.35 6.96 8.96 11.46 8.20
90 17.30 10.42 10.79 13.17 8.29
100 17.60 12.31 12.38 15.31 9.51

used machine learning techniques in EEG such as common spatial
pattern (CSP) (Ramoser et al., 2000), common spatio-spectral
pattern (CSSP) (Lemm, Blankertz, Curio, & Muller, 2005), filter
bank common spatial pattern (FBCSP) (Ang et al., 2008), and
Bayesian spatio-spectral filter optimization (BSSFO) (Suk & Lee,
2012). These results were reported in Lee et al. (2019) using the
same dataset. For each methodology, a subject-specific classifier
is constructed and evaluated. We selected the results that are
evaluated on the last 100 trials (the online testing phase) of
session 2, which is consistent with our test set. However, Lee
et al. (2019) did extra pre-processing steps on the raw EEG data:
their test data only involves 20 electrodes in the motor cor-
tex region (FC-5/3/1/2/4/6, C-5/3/1/z/2/4/6, and CP-5/3/1/z/2/4/6),
and is band-pass filtered between 8 and 30 Hz with a 5th order
Butterworth digital filter.

Next, we compare our result with the best accuracy on this
dataset reported in Kwon et al. (2019). They examined both
subject-specific and subject-independent classification using
CNN. They also employed extra pre-processing steps to the signal,
including the selection of the aforementioned 20 electrodes, and
uses a spectral–spatial feature representation. The results are
shown in Table 8.

It can be seen that subject-independent and subject-adaptive
models gives lower variations in accuracy among all methodolo-
gies. In addition, all the subjects achieves classification accuracy

of more than 50%.
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Table 8
Comparison of average classification accuracy (%) for different methodologies.
Methodology Mean (SD) Median Range (Max–Min)

Subject-Specific
CSP (Ramoser et al., 2000) 68.57 (17.57) 64.50 58.00 (100.00-42.00)
CSSP (Lemm et al., 2005) 69.69 (18.53) 63.00 58.00 (100.00-42.00)
FBCSP (Ang et al., 2008) 70.59 (18.56) 64.00 55.00 (100.00-45.00)
BSSFO (Suk & Lee, 2012) 71.02 (18.83) 63.50 52.00 (100.00-48.00)
CNN (Kwon et al., 2019) 71.32 (15.88) 66.45 53.10 (99.00-45.90)
Deep CNN 63.54 (14.25) 60.50 57.00 (100.00-43.00)

Subject-Independent
CNN (Kwon et al., 2019) 74.15 (15.83) 75.00 60.00 (100.00-40.00)
Deep CNN 84.19 (9.98) 84.50 47.50 (99.50-52.00)
Subject-Adaptive
Deep CNN 86.89 (11.41) 88.50 44.00 (100.00-56.00)

4.4. Inter-subject variations in performance

The results in previous sections report the performance of
roposed methods as average over 54 subjects. The range of per-
ormance across subjects indicate that there exists a variation in
ow each method benefits an individual subject. This variability
s demonstrated in Fig. 4, in which we use box plots to show
he distribution of percentage improvement in the accuracy of all
ubjects of each adaptation configuration with varying amounts
f adaptation data. On each box, the central mark indicates the
edian, and the bottom and top edges of the box indicate the
5th and 75th percentiles. The whiskers extend to the most
xtreme data points excluding the outliers, and the outliers are
lotted individually using the ♦ symbol. It can be seen that each
daptation configuration has a few outliers, i.e., the classification
ccuracy of some subjects increases by more than 20%. This
otivates us to further analyze the result on a subject level.
We illustrate the subject-level performance in Fig. 5, for three

elected adaptation configurations. In these figures, the subjects
re sorted in decreasing order of their difference in performance
ith and without adaptation. For each subject, the orange and
lue markers indicate performance with and without adaptation
espectively. The green bar indicates an increase in accuracy for
he subject, and the red bar indicates a decrease in accuracy.
7

The configuration with largest increase in accuracy for a single
subject is identified as scheme 4 with 60% adaptation rate. The
results for this configuration are illustrated in Fig. 5(a). It can be
noted that, subject 50 achieves the highest increase in accuracy
of 38.46% (from 52% to 72%) by adapting the subject-independent
model. Overall, 19 out of 54 (35.18%) subjects in this configuration
achieves accuracy improvement of greater than 5%.

The largest percentage of subjects with more than 5% in-
crease is 40.74% (22 out of 54), which is seen in scheme 4
with 100% adaptation rate. In this configuration, subject 50 only
sees a 26.92% increase, but it is still the largest improvement in
this configuration. The detailed subject-level comparison for this
configuration is illustrated in Fig. 5(b).

Fig. 5(c) gives a subject-level comparison between the subject-
independent model and best average adaptation configuration:
cheme 4 with 80% adaptation rate.

. Discussion

In this study, we explored the feasibility of adapting a pre-
rained subject-independent deep CNN model to perform high
erformance classification of MI data from a new unseen target
ubject. The results reported in Section 4 demonstrate the supe-
iority of our network model, training and adaptation strategy.

In Section 1, we have seen that inter-subject variability is
ne of the major concerns for MI classification in EEG-BCI sys-
ems (Wronkiewicz et al., 2015). The desired scenario is to train
ubject-specific models, using data entirely from a subject. The
raditional approach in BCI is to develop feature extraction and
lassification algorithms on limited amount of subject-specific
ata. However, to train a complex deep CNN model with large
umber of trainable parameters, subject-specific data will be in-
dequate. We demonstrate this in Section 4.1.1 and the results are
ndicated in Table 8. The subject-independent model extensively
rained using large number of samples offers a significant (p <
0−16) 32.50% increase in accuracy over subject-specific model.
Nonetheless, the subject-independent models still have the

issue of inter-subject variability, and can be further adapted.
This paper addresses this challenge by studying 5 different sub-
ject adaptation schemes for a deep CNN. We experimented with

different percentages of adaptation data and different learning



K. Zhang, N. Robinson, S.-W. Lee et al. Neural Networks 136 (2021) 1–10

t
(
p
c

Fig. 5. Subject-level comparison of accuracy between subject-independent model and different adaptation configurations. The bar edges indicate the performance
with (orange marker) and without adaptation (blue marker). The green bars represent subjects with performance increase using adapted model and the red bars
indicate fall in performance. The subjects are sorted in decreasing order of difference in performance.
rates for fine-tuning the base model from subject-independent
classification. In Section 4.1.2, we have seen that using 80% of the
available adaptation data for a subject (80 trials), we can have a
significant (p = 0.005) 3.21% increase in accuracy by adapting
he last 4 convolution-pooling blocks of the deep CNN model
scheme 4). This shows that by fine-tuning a subset of the CNN
arameters with data from the target subject can significantly in-
rease the average classification accuracy. This bridges the gaps in
8

cross-subject transfer of deep learning models and tackles inter-
subject variability.

Further exploration of our adaptation schemes sheds some
light into the optimal different adaptation data and learning rates
for effective adaptation. We notice that except for α = 1, the best
performing adaptive models all come from scheme 4 configura-
tions. On the one hand, it shows that the convolutional layers can
be further adapted with a lower learning rate as demonstrated
in Tables 4–6. On the other hand, Table 5 illustrates that the
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mprovements are significant when comparing to other adapta-
ion configurations with fewer adaptation data. We also showed
hat adapting the first convolutional block can lead to overfitting
s there is a significant decrease in accuracy. This indicates that
he first layer is adequately trained in the subject-independent
odel, whereas the features extracted from the deeper convolu-

ional layers in Schirrmeister et al. (2017)’s architecture are still
usceptible to inter-subject variations.
In our current adaptation schemes, the weight for the changes

n each layer is the same α. However, different layers may have
ifferent importance when adapting the distribution of the source
omain to the target domain. The techniques like Maximum
ean Discrepancy (MMD) (Rozantsev, Salzmann, & Fua, 2018)
nd Correlation Alignment (CORAL) (Sun, Feng, & Saenko, 2016)
an be used to further regularize the adaptation of individual
NN layer. Furthermore, the fact that all the deeper layers except
or the first convolutional-pooling block are sensitive to inter-
ubject variability indicates that a more domain-invariant feature
s yet to be discovered. Using Generative Adversarial Networks
GANs) (Ganin & Lempitsky, 2014; Ghifary, Kleijn, Zhang, Bal-
uzzi, & Li, 2016; Liu & Tuzel, 2016) may be a possible direction to
ddress this issue. Also, based on the CNN model, an online clas-
ification model can be obtained by either classifying repeatedly
sing features from a sliding window with a fully-connected layer
r developing models with Recurrent Neural Networks (RNN) to
etter exploit the temporal relationships.
Leveraging the learning capacity of the deep CNN means that

lot of time is devoted to training the subject-independent base
odel due to a large amount of data and trainable parameters.
ith the base model, however, the adaptation is relatively fast.

t also means that the features it has learned may be less obvious,
ut producing interpretable features is equally important. Robin-
on et al. (2019), Schirrmeister et al. (2017) provided useful
isualizations based on known band power features, and Lawhern
t al. (2018) reported the relevance of individual features on
he resulting classification decision using DeepLIFT (Shrikumar,
reenside, & Kundaje, 2017). However, little is discovered beyond
he features we have already known. In future, we consider to
xtend this work to explore the yet unknown features that are
earned by the network.

. Conclusion

In this paper, we studied 5 adaptation schemes of a deep CNN
or EEG-based motor imagery classification. By comparing the
wo baseline models (subject-specific and subject-independent
odels), we observed a significant (p < 10−16) 32.50% increase

n accuracy and showed that more data is crucial when using
eep learning methods in EEG-based BCI systems. The reported
erformance of 84.19 % for subject-independent MI classification
s the highest compared to state-of-the-art methods in literature.
e further propose improvement in the subject-independent
odel to address the inter-subject variability that might impact
erformance of a target subject. We showed that using scheme
with a lower learning rate, a significant (p = 0.005) 3.21%

ncrease in accuracy can be achieved using 80% of adaptation data.
y comparing our proposed adaptation scheme with other state-
f-the-art machine learning techniques for MI classification, we
howed that our scheme can produce higher average accuracy
ith lower variability (manifested in both lower standard devia-
ion and range). The minimum classification accuracy among all
4 subjects is also the highest among all methodologies.
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