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Multimodal functional neuroimaging by integrating functional magnetic resonance imaging (fMRI) and
electroencephalography (EEG) has the promise of recovering brain activities with high spatiotemporal
resolution, which is crucial for neuroscience research and clinical diagnosis. However, the misalignment
of the localizations between fMRI and EEG activities may degrade the accuracy of the fMRI-constrained
EEG source imaging (ESI) technique. To leverage the complementary spatiotemporal resolution of fMRI
and EEG in a data-driven fashion, we propose an asymmetric approach for EEG/fMRI fusion, termed
fMRI-informed source imaging based on spatiotemporal basis functions (fMRI-SI-STBF). fMRI-SI-STBF
employs the covariance components (CCs) derived from clusters defined by fMRI and EEG signals as spa-
tial priors within the empirical Bayesian framework. Additionally, fMRI-SI-STBF represents the current
source matrix as a linear combination of several unknown temporal basis functions (TBFs) by matrix
decomposition. The relative contribution of each of the fMRI-informed and EEG-informed CCs, as well
as the number and profiles of the TBFs, are all automatically determined based on the EEG data using
variational Bayesian inference. Our results demonstrate that fMRI-SI-STBF can effectively utilize valid
fMRI information for ESI and is robust to invalid fMRI priors. This robustness is essential for practical
ESI since the validity of fMRI priors is often unclear considering that fMRI is an indirect measure of neural
activity. Moreover, fMRI-SI-STBF can achieve performance improvement by incorporating temporal con-
straints compared to methods that use spatial constraints only. For the numerical simulations, fMRI-SI-
STBF reconstructs the source extents, locations and time courses more accurately than existing EEG-fMRI
ESI methods (i.e., fwMNE, fMRI-SI-SBF) and ESI methods without fMRI priors (i.e., wMNE, LORETA, SBL, SI-
STBF, SI-SBF), indicated by the smaller spatial dispersion (average SD < 5 mm), distance of localization
error (average DLE < 2 mm), shape error (average SE < 0:9) and larger model evidence values.

� 2021 Published by Elsevier B.V.
1. Introduction

Artificial intelligence has shown great achievements in brain
function research [1–3], disease (e.g., COVID-19, gastric cancer)
diagnosis and detection [4–6], economic growth forecast [7].
Among these applications, electromagnetic source imaging, which
employs machine learning techniques to map brain cortical activ-
ities, is very important for neuroscience research and clinical diag-
nosis. Electroencephalography (EEG) and functional magnetic
resonance imaging (fMRI) are two widely-used types of neural sig-
nals to reconstruct cortical activities. EEG records scalp electrical
signals generated by the synchronized neural electrical activity of
the cortex, with excellent temporal resolution (approximately mil-
liseconds) [3,8]. However, due to volume conduction, the spatial
resolution of EEG is limited. fMRI measures changes in blood oxy-
gen level dependent (BOLD) signals at a high spatial resolution (ap-
proximately millimeters). However, the temporal resolution of
fMRI is relatively poor because of the slow hemodynamic
responses. Due to the complementary characteristics, it is possible
to obtain a high spatiotemporal resolution mapping of cortical
activities by the integration of EEG and fMRI information. Many
simulations and experimental studies have demonstrated the fea-
sibility of combining EEG and fMRI signals to obtain brain activities
with high spatial and temporal resolution [3,9,10].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2021.06.066&domain=pdf
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In this work, we focus on the fMRI-informed EEG source imag-
ing (ESI) method, which applies fMRI information to the EEG
inverse problem to improve the spatial resolution of source imag-
ing. There are two main challenges for fMRI-informed ESI: (1) How
can the ESI problem be solved? (2) How can fMRI information be
applied to the EEG inverse problem?

Since the number of current sources largely outnumbers the
number of EEG sensors, the EEG inverse problem is heavily
underdetermined, and nonunique solutions exist. To solve the
inverse problem, prior constraints or regularization operators are
necessary to narrow the solution space. A common solver is the
L2-norm-based method, which includes the minimum-norm esti-
mate (MNE) [11] and its variants, such as the weighted MNE
(wMNE) [3], standard low-resolution electromagnetic tomography
(sLORETA) [12], and low-resolution electromagnetic tomography
(LORETA) [13]. Although the L2-norm based methods are computa-
tionally efficient, these solutions are too diffuse and usually spread
over multiple cortical sulci and gyri [3,14]. To improve the spatial
resolution, methods based on the Lp-norm (p 6 1) regularizer [15]
and empirical Bayesian framework (also known as sparse Bayesian
learning (SBL)) [16,17] have been further developed to achieve
sparse solutions. These sparse constrained methods localize corti-
cal activities with several point sources, largely reducing the diffu-
sion of the estimations by L2-norm based methods.

Both experimental and clinical results have shown that scalp
EEG signals are generated by neural activity to a considerable
extent [18–20]. For neuroscience research and clinical diagnosis,
estimating the extent of cortical activities is very important. How-
ever, the aforementioned methods provide little information on
the source extent. To reconstruct extended sources, several algo-
rithms estimate the source locations and extents by reconstructing
the sparseness in the transform domains [21,22], such as the vari-
ation domain or wavelet domain. Spatial basis functions, such as
spatial Gaussian functions and cortical patch bases [23], have also
been used to estimate extended sources. Other studies use covari-
ance bases derived from cortical clustering and the Green function
to reconstruct extended sources [24]. The use of transform sparse-
ness and spatial basis functions has helped to significantly improve
the estimations of the extended sources.

Due to their high temporal resolution, EEG signals contain
abundant temporal information. To exploit the temporal correla-
tion structures of EEG signals, in recent years, spatiotemporal con-
straints have been employed to further improve the performance
of the EEG inverse problem [25,26,14,27,28]. For example, some
studies have used the multivariate autoregressive (MVAR) model
to represent the spatiotemporal relationship among neighboring
dipoles [25,29–31]. Other methods employ temporal basis func-
tions (TBFs), which have been developed into data-independent
(e.g., the Fourier dictionary and Gabor atoms) [26,32,33] or data-
dependent (e.g., singular value decomposition (SVD) analysis of
EEG signals) methods [34] to model the temporal smoothness of
current sources. These studies show the effectiveness of temporal
constraints in further improving the performance of reconstructing
cortical activities. However, these TBFs were typically determined
before solving the inverse problem. Accurately determining the
types and number of TBFs remains an issue, and the final estima-
tions may inherit the bias of the predefined TBFs. To remedy this
problem, in our recent work [27], we proposed SI-STBF (Source
Imaging based on Spatio-Temporal Basis Functions), which solves
the inverse problem based on matrix factorization under the
empirical Bayesian framework. According to variational Bayesian
inference, SI-STBF simultaneously estimates the current sources
and unknown TBFs in a data-driven manner.

To use the complementary information of EEG and fMRI, several
studies have attempted to apply fMRI information to the EEG
15
inverse problem to improve the spatial accuracy. The method that
is often used for fMRI-informed ESI is the fMRI-weighted
minimum-norm estimate (fwMNE) algorithm [35]. The fwMNE
imposes the fMRI information in a ‘‘hard” manner, which uses
the information of the statistic parameter map (SPM) derived from
fMRI to constrain the spatial locations of the candidate sources of
EEG. Although fwMNE has been shown to improve the spatial
accuracy in many situations, it may pose some problems for cases
that involve deep sources where neural activities are weakly repre-
sented in EEG signals, or rapid and transient shifts of cortical
sources where cerebral blood flow caused by activated neurons
cannot be detected by fMRI. Hence, many studies have imposed
fMRI information in a ‘‘soft” manner [9,10,36]. For example, some
studies have formulated each fMRI active cluster or network as a
separate spatial prior under the parametric empirical Bayesian
(PEB) framework, and have constructed the covariance compo-
nents (CCs) of all clusters or networks using the Green function
[9,37,38,10]. Each cluster or network has different contributions
to ESI. Then Bayesian model evidence maximization is utilized to
automatically adjust the relative weights of each cluster or net-
work, which has proven to be very powerful to emphasize valid
fMRI priors that are critical for generating EEG signals [9,10].

Motivated by previous studies [9,37], this paper develops an
fMRI-informed ESI method based on SI-STBF, which is termed
fMRI-informed source imaging based on spatiotemporal basis
functions (fMRI-SI-STBF). fMRI-SI-STBF benefits from the flexible
framework of SI-STBF, which can utilize various spatial priors from
multiple neuroimaging modalities. For the temporal constraint,
fMRI-SI-STBF represents the current source as a linear combination
of several unknown TBFs using the notion of matrix decomposi-
tion. For the spatial constraint, fMRI-SI-STBF utilizes the informa-
tion from both fMRI and EEG. Specifically, fMRI-SI-STBF employs
spatial CCs to encode our prior knowledge of brain activity under
the PEB framework. Each CC is constructed based on cortical clus-
tering and Green’s function. fMRI-SI-STBF employs both EEG-
informed clusters, which are derived by data-driven parcelization
(DDP) as in [27,24], and fMRI-informed clusters, which are indi-
cated by the SPM results. The main difference between our method
and previous fMRI-informed ESI methods under the PEB frame-
work [9,10] is the utilization of source matrix factorization which
incorporates both spatial and temporal constraints. According to
variational Bayesian inference, the number and profiles of TBFs,
and the relative contribution of each spatial prior from fMRI and
EEG are all automatically determined by the EEG signals. The aim
of fMRI-SI-STBF is to obtain accurate spatiotemporal estimations
by combining high temporal resolution information from EEG
and high spatial resolution from fMRI.

Numerical simulations and experimental data analyses were
performed to evaluate the performance of the proposed method.
In our simulations, we tested the influence of ‘‘valid” and ‘‘invalid”
fMRI priors on the inverse solutions. In the analysis of the publicly
available face processing dataset [39], the source estimates of the
differential event-related potential (ERP) between faces and scram-
bled faces were determined and compared with the benchmark
algorithms.

In summary, the contributions of this paper are twofold:

(1) An fMRI-informed ESI method with spatiotemporal con-
straints is proposed, which is based on source matrix factoriza-
tion under the empirical Bayesian framework.
(2) Knowledge of fMRI activation and EEG recordings was
encoded with spatial covariance components (CCs). Using an
ARD prior, the proposed method can select the fMRI-informed
and EEG-informed CCs that are related to brain activities in an
automatic fashion.
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The remainder of this paper is structured as follows. In Section 2,
we briefly recall SI-STBF [27] and present the fMRI-SI-STBF proce-
dure. In Section 3, we present the details for numerical simulations
and validation metrics. Section 4 presents the results with both
simulated and experimental EEG datasets, followed by the discus-
sion in Section 5.

2. Method

2.1. EEG source imaging based on source matrix decomposition

The forward model for ESI can be approximated by a linear
equation [1,40]:

B ¼ LS þ � ð1Þ
where B 2 RNb�Nt is the EEG recordings with Nb sensors on Nt time
samples. L 2 RNb�Ns is the known lead-field matrix; S 2 RNs�Nt

denotes the unknown source activities for Ns dipoles; � 2 RNb�Nt is
the sensor noise, and each column follows the Gaussian distribution
N 0;R�ð Þ. Without loss of generality, as in [27,34,14], we assume
that the measurement equation has been whitened, i.e., R� ¼ I. In
this work, we focus on the source model where the orientation of
each dipole is perpendicular to the cortical surface.

To reconstruct brain activities, we employed the framework of
the SI-STBF algorithm developed in our recent work [27] for source
imaging. To incorporate the prior knowledge that cortical activities
are globally sparse and locally smooth for a specific cognitive task
[41,19], SI-STBF represented the source matrix S as a linear combi-
nation of multiple unknown TBFs through matrix factorization
under the empirical Bayesian framework:

S ¼ WU ¼
XK
k¼1

wk/k; ð2Þ

where U 2 RK�Nt denotes the K unknown TBFs, which are learned
from the EEG data; /k 2 R1�Nt is the kth row of U (the kth TBF);
W 2 RNs�K is the coding matrix describing the contribution of each
TBF to the cortical sources; and wk 2 RNs�1 is the kth column of W .

The priors of U and W are empirically chosen as follows:

p Ujað Þ ¼
Y
t

N utj0;diag a�1
� �� �

p Wjcð Þ ¼
Y
k

p wkjcð Þ ¼
Y
k

N wkj0;Rwð Þ;Rw ¼
Xdc
i¼1

c�1
i C i

ð3Þ

where ut 2 RK�1 is the tth column of U and a�1 ¼ a�1
1 ; . . . ;a�1

K

� �> is
a vector of K nonnegative hyperparameters that control the relative
contribution of each TBF. The prior covariance of each column of the
coding matrix is a mixture of dc predefined CCs C i. The contribution
of each CC is parameterized by the dc nonnegative hyperparameters

c ¼ c1; . . . ; cdc
h i

. Each C i encodes a specific spatial pattern of source

activities. Detailed procedures to construct C i are presented in
Section 2.2.

To facilitate the optimization of ci for arbitrary C i, SI-STBF
makes use of the following decomposition [27,16]:

W ¼
Xdc
i¼1

A i½ �H i½ � ¼ AH; ð4Þ

where A i½ � 2 RNs�ri was obtained by the Cholesky decomposition

such that A i½ �A
>
i½ � ¼ C i; ri ¼ rank C ið Þ.

A ¼ A 1½ �; . . . ;A dc½ �
h i

2 R
Ns�

P
i
ri ;H ¼ H>

1½ �; . . . ;H
>
dc½ �>� 2 R

P
i
ri�K

�
, and

H i½ � 2 Rri�K . According to the decomposition in (4), the prior of H
16
is p H i½ �jci
� � / exp � ci

2 kH i½ �k2F
� �

[27,16]. Hence,

p Hjcð Þ ¼ Q
kN hkj0;R�1� �

, where R is a diagonal, c-dependent

matrix and diag Rð Þ ¼ c1; . . . ; c1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
r1

; . . . ; cdc ; . . . ; cdc|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
rdc

2
664

3
775

>

.

Combining (4) and (2) yields

S ¼ AHU; ð5Þ
which represents the cortical source S as a linear combination of
several spatial and temporal basis functions, with A being the spa-
tial basis functions. Hence, the EEG forward problem can be
expressed as

B ¼ LAHUþ e ¼ FHUþ e; ð6Þ

where F ¼ LA ¼ F 1½ �; . . . ; F dc½ �
h i

and F i½ � ¼ LA i½ � 2 RNb�ri . F represents

a modified forward model mapping cortical regions of interest
(groups of dipoles clustered by the spatial basis functions A) to
the sensors.

In light of (6), the full probabilistic model of SI-STBF is as
follows:

p BjH;Uð Þ / exp � 1
2 kB� FHUk2F

� �
;

p Hjcð Þ ¼
Ydc
i¼1

p H i½ �jci
� � / Ydc

i¼1

exp � ci
2 kH i½ �k2F

� �
;

p Ujað Þ ¼
YT
t¼1

N ut j0;diag a�1
� �� � / YT

t¼1

exp � 1
2u

>
t diag að Þut

� �
:

ð7Þ
To solve the Bayesian inference problem, SI-STBF employed the

variational Bayesian (VB) technique to obtain approximated poste-
riors q H;Uð Þ � p H;UjBð Þ by maximizing the free energy [42,32,27]

F ¼ logp B;H;Uð Þ � log q H;Uð Þiq H;Uð Þ;
D

ð8Þ

where �iq xð Þ
D

denotes expectation with respect to q xð Þ. To further

enable computational tractability, SI-STBF assumed that q H;Uð Þ
factorizes over groups of parameters:

q H;Uð Þ ¼ q Uð Þ
YK
k¼1

q hkð Þ: ð9Þ

The variational posteriors q Uð Þ and q hkð Þ, and the hyperparam-
eters a and c were iteratively updated by maximizing the free
energy (see a detailed description in [27]). The detailed derivation
and update rules are presented in the supplementary document.
Fig. 1 presents the schematic of SI-STBF. Finally, we can compute
the point estimates of the source activities as S ¼ A �H �U, where �H
and �U are the variational posterior means of H and U, respectively.

2.2. Constructing covariance components from fMRI and EEG data

The CCs C if g encode the prior spatial information of brain activ-
ities, which can be constructed in a data-independent or a data-
dependent manner. For the data-independent approach, one exam-
ple is to set C1 ¼ I, which leads to MNE-like estimations. If
C ¼ eie>i ; i ¼ 1; . . . ;Ns


 �
, where ei is an indexing vector of zeros

with a ‘1’ for the ith dipole, then we obtain SBL-like solutions [16].
For the data-dependent method, one can construct CCs from

EEG or fMRI data. In our previous work [27], the SI-STBF algorithm
derived the CCs from EEG data using the data-driven parcellization
(DDP) method and local smoothness constraint [24]. DDP is based
on the prelocalization of sources using the multivariate source pre-



Fig. 1. Schematic of the fMRI-SI-STBF inversion scheme.
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localization (MSP), and a region growing algorithm. MSP estimates
a coefficient, characterizing the possible contribution of each
dipole to the EEG data [43]. After MSP, seed points are selected
among the dipoles with the highest MSP coefficients. Then, the
region growing around each seed is iterated until a specified spa-
tial neighborhood order s (s ¼ 4 in this work), leading to M locally
coherent clusters covering the whole cortical surface, and each
dipole is assigned to a specified cluster. Then, the Green function
QG based on the graph Laplacian matrix G was used to construct
17
the CCs. Specifically, the discrete Laplacian matrix G 2 RNs�Ns was
first computed based on the adjacency matrix A 2 RNs�Ns

(Aij ¼ 1 if j is the adjacent node with link to i, and Aij ¼ 0
otherwise).

Gij ¼
�
XNs

k¼1

Aik; i ¼ j

Aij; i – j

8><
>: ð10Þ
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To smooth the Laplacian matrix, the Green function of the
Laplacian matrix is then approximated with the Taylor form as

QG ¼ exp rGð Þ � P8
j¼0

rj
j! G

j, where r is a positive scalar that con-
trols the spatial smoothness. As suggested in [44], we set r ¼ 0:6.

Finally, based on the Green function and the M clusters of DDP,
SI-STBF obtains KEEG EEG-informed CCs: C1;C2; . . . ;CKEEG


 �
, where

C i 2 RNs�Ns is a block matrix generated from the elements of Q>
GQG,

with the block being extracted from the row and column indices of

the ith cluster, and is zero elsewhere [24].
To incorporate the spatial information of fMRI, in this work, we

also constructed CCs from fMRI activation beyond the EEG-
informed CCs. The process to construct fMRI-informed CCs consists
of five steps: (1) fMRI preprocessing, including realignment, slice
timing correction, normalization, and spatial smoothing; (2) statis-
tical analysis of the preprocessed fMRI data using the general linear
model (GLM) to obtain the statistical parameter map (SPM); (3)
thresholding the SPM to obtain local contiguous voxel clusters;
(4) projecting these distinct voxel clusters onto the cortex to obtain
KfMRI cortical clusters; and (5) constructing KfMRI fMRI-informed
CCs: C1;C2; . . . ;CKfMRI


 �
, where C j 2 RNs�Ns is a block matrix derived

using the elements of Q>
GQG, with the block being extracted from

the row and column indices of the jth fMRI clusters. In this work,
steps (1) to (4) were conducted in SPM 12 [45].

The EEG-informed and fMRI-informed CCs encode different spa-
tial prior activities of EEG and fMRI data. To construct these CCs,
cortical clusters are necessary. An example of fMRI-informed and
EEG-informed clusters is shown in Fig. 2. The DDP analysis [24]
parcels the whole tessellated cortex into several clusters based
on the EEG recordings (as shown in Fig. 2(b)). On the other hand,
the fMRI-informed clusters indicate the spatial activities of the
fMRI signal (Fig. 2(a)). We assume that the sources in each cluster
have functional homogeneity activities. Based on the EEG-
informed and fMRI-informed clusters, we obtained EEG-informed
and fMRI-informed spatial CCs using the Green function. The con-
tribution of each spatial prior is then automatically determined by
the EEG signals under the empirical Bayesian framework. There-
fore, we can fuse the spatial information from EEG and fMRI signals
to improve the performance of brain source estimation.

Remark 1. During the numerical and experimental data analyses,
we used a laptop (i7-8550U CPU 1.8 GHz and 16 GB RAM) for
numerical experiments. To derive the EEG-informed CCs, the
clustering scale of DDP was set to 4. For Nb ¼ 70;Ns ¼ 8196, the
number of EEG-informed CCs is approximately 230. With five
fMRI-informed CCs, if we set the number of initial TBFs K ¼ 10,
fMRI-SI-STBF converges after about 200 iterations, which takes less
Fig. 2. An example of fMRI-informed and EEG-informed clusters (different colors rep
(familiar + unfamiliar) vs. baseline from Sub 01 of the ‘‘multisubject, multimodal face p
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than 3 min. The computational time can be further reduced by
skipping the free energy evaluation. To facilitate reproducibility,
we uploaded the source code of the proposed method to GitHub,
which is available athttps://github.com/deep-bci/fMRI-SI-STBF.
3. Method evaluation and performance metrics

3.1. Benchmark source imaging algorithms

The following alternative source imaging algorithms were
employed as benchmark methods in this work to assess their accu-
racy in recovering underlying source activities. (1) wMNE [46],
which assumes the source prior to be
p Sð Þ ¼ QNt

t¼1p stð Þ ¼ QNt
t¼1N st j0; kWð Þ, whereW is a Ns � Ns diagonal

matrix and Wii ¼ 1
kLik22

; (2) fwMNE [35,47,37], which assumes the

prior covariance kW is a diagonal matrix as wMNE, and sets the
diagonal terms of W corresponding to the locations in fMRI activa-
tions to be 1:0, and the other diagonal elements to be 0.1; (3) LOR-
ETA [13]; (4) SI-STBF [27], which only uses EEG-informed CCs; (5)
SI-SBF [16,27], which employs the same spatial prior as SI-STBF
and assumes that the prior of brain sources is

p Sð Þ ¼ QNt
t¼1p stð Þ ¼ QNt

t¼1N st j0;
Pdc

i¼1c
�1
i C i

� �
; (6) fMRI-SI-SBF, which

employs both the EEG-informed and fMRI-informed CCs in SI-SBF;
(7) SBL [16]. The regularization parameters of wMNE, fwMNE and
LORETA were learned using the Bayesian minimum-norm method
[14,27,2]. SI-SBF is an extension of SBL, and its update rules can be
found in [16]. FMRI-SI-SBF shares similar prior to the study in [9],
and is regarded as the approximation of the method in [9] during
this work. Among the compared methods, wMNE, LORETA, SI-
STBF, and SI-SBF merely consider EEG data, while fMRI-SI-STBF,
fMRI-SI-SBF, and fwMNE make use of both EEG and fMRI data.

3.2. Simulated data

For the simulated data, the lead-field matrix was generated
using SPM 12 with a normal resolution (8196 sources) boundary
element model (BEM) model, based on the 70-channel EEG sensor
configuration of the real EEG data from ‘‘multisubject, multimodal
face processing” ( https://openneuro.org/datasets/ds000117/) [45].
Here, we used EEG and fMRI from Sub01 for the numerical simula-
tion. Following the SPM script along with the dataset to analyze
fMRI data of Sub01, an SPM of the T-statistic was created, which
compared faces (familiar + unfamiliar) against the baseline. The
SPM{T} image was thresholded for p < 0:05 (family-wise error cor-
rected across the whole brain). Since the typical brain activated
resent different clusters). (a) Cortical clusters indicated by fMRI analysis of faces
rocessing” dataset. (b) EEG-informed clusters using DDP analysis of EEG data.

https://github.com/deep-bci/fMRI-SI-STBF
https://openneuro.org/datasets/ds000117
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area associated with detectable changes in EEG is larger than 6 cm2

[18], small clusters less than a certain number of voxels (10 in this
work) were removed. Projecting the voxel fMRI activated clusters
onto the cortex, we obtained 22 clusters on the cortical mesh, as
shown in Fig. 2(a). Based on the fMRI clusters, we obtained 22
fMRI-informed CCs, as described in Section 2.2. To test the influ-
ence of ‘‘invalid” fMRI priors, we further created ‘‘invalid” fMRI
voxel clusters by reflecting the original SPM{T} image in the y-
and z-directions [9]. Projecting the ‘‘invalid” fMRI SPM{T} image
Fig. 3. The procedure to ge

Fig. 4. Performance metrics with varying nu

19
to the cortex, we obtained 17 invalid-fMRI-informed CCs, which
were employed to introduce confounds during the numerical
simulations.

To generate the simulated EEG signals, we randomly selected 3
clusters from the 22 valid fMRI indicated patches as active sources.
For the time courses, we applied the SVD on the average face EEG
data of Sub 01. The time window was 1000 ms (500 time samples
with a sampling rate of 500 Hz), starting 200 ms before stimulus
onset. We deployed the first three singular vectors over the three
nerate synthetic data.

mbers of valid fMRI priors (SNR = 5 dB).



Fig. 5. An imaging example with one valid fMRI prior (SNR = 5 dB). (a) The simulated sources; (b) Reconstruction with one valid fMRI prior (activity of Source B is reflected in
fMRI).
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selected cortical clusters. The time courses of the dipoles within
each cluster were assumed to be the same. Then, the simulated
source activities were projected to the EEG sensor space through
the lead-field matrix. Finally, white Gaussian measured noise
was added to achieve the desired signal-to-noise ratio (SNR),

which is defined as: SNR ¼ 20log10
kLSkF
kekF . Fig. 3 depicts the proce-

dure to generate synthetic data.
For the numerical simulations, the following scenarios were

considered to evaluate the algorithmic performance of different
methods:

1. Varying number of valid fMRI priors. To test the effect of valid
fMRI priors, we compared fMRI-SI-STBF, fMRI-SI-SBF and
fwMNE using various numbers of valid fMRI-informed CCs.
Within this scenario, the number of accurate fMRI priors (CCs
that were consistent with the ground truth) varied from 0 to 3.

2. Varying number of invalid fMRI priors. To assess the robustness
of fMRI-SI-STBF, fMRI-SI-SBF, and fwMNE, we varied the num-
ber of invalid fMRI-informed CCs (i.e., 0, 2, 4, 6, 8), which were
randomly selected from the set of CCs derived from the ‘‘in-
valid” fMRI SPM{T} image. For each number of invalid fMRI pri-
ors, two accurate fMRI-informed CCs (i.e., CCs consistent with
the simulated sources) were also employed.
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3. EEG signals with different SNRs. To assess the sensitivity to the
SNR, EEG signals with four levels of SNRs (i.e., 10, 5, 0, and
�5 dB) were simulated. Furthermore, two valid fMRI-
informed and three invalid fMRI-informed CCs were used for
source reconstruction.

The SNRs of EEG in scenarios 1 and 2 were set to 5 dB. For each
scenario, 100 Monte-Carlo simulations were carried out.
3.3. Performance metrics

The source reconstruction performance was evaluated using the
spatial dispersion (SD), distance of localization error (DLE), shape
error (SE), and model evidence (ME). Among them, the SD mea-
sures the spatial blurredness of the estimated source compared
to the ground truth [48,22]; the DLE measures the localization
error of the estimated source [48,22]; and the SE quantifies the
estimation error in the temporal profiles of the estimated source,
which is defined as the squared error between the normalized esti-
mated and simulated sources [49]. Details of how to calculate SD,
DLE, and SE are provided in [34]. The ME is a measure that accounts
for both data fit and model complexity, and is defined as the log of
the marginal likelihood, which is approximated by F in (8) for SI-



Fig. 6. An imaging example with two valid fMRI priors (SNR = 5 dB). (a) The simulated sources, which are identical to Fig. 5(a); (b) Reconstruction with one valid fMRI prior
(activities of Sources A and B are reflected in fMRI).
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STBF and fMRI-SI-STBF. A better source imaging method is
expected to yield lower SD, DLE, and SE values, as well as higher
ME values.

The Kruskal–Wallis test was employed to test whether the per-
formance of these methods differed significantly. If the difference
was significant, then Bonferroni-corrected Wilcoxon rank sum
tests were subsequently performed to determine which method
significantly outperformed the others. To visualize the results,
the imaging maps were thresholded by Otsu’s method [34,50].

3.4. Experimental data

To further assess the effectiveness of fMRI-SI-STBF in analyzing
real data, we used a 16-subject public dataset from a multimodal
neuroimaging study on face perception [39] to compare the model
evidence of all the considered methods. This dataset was obtained
from the OpenNeuro database, with an accession number of
ds000117 ( https://openneuro.org/datasets/ds000117/versions/1.
0.2). The EEG and fMRI data were acquired separately in this data-
set. The experimental paradigm involves a randomized presenta-
tion to each subject of approximately 150 familiar faces, 150
unfamiliar faces and 150 scrambled faces. The detailed experimen-
tal design is provided in [39]. The EEG data were recorded from 70
electrodes (using the nose reference), sampled at 1.1 kHz and
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downsampled to 500 Hz for the offline analyses. The MRI data were
collected from a Siemens 3T TIM TRIO (Siemens, Erlangen, Ger-
many), and included a 1� 1� 1 mm T1-weighted structural MRI
(sMRI) as well as a large number of 3� 3� � 4 mm T2-weighted
fMRI EPI volumes acquired during 9 runs of the same task. A total
of 210 volumes were acquired in each run (three initial TRs were
discarded to allow saturation of T1 effects).

4. Results

4.1. Results of the simulated data analysis

4.1.1. Impact of the number of valid fMRI priors
We first compared the performance of fMRI-SI-STBF, fMRI-SI-

SBF and fwMNE by varying the number of valid fMRI-informed
CCs. Three active patch sources were simulated, and the number
of valid fMRI-informed CCs was set to 0, 1, 2, and 3. Fig. 4 depicts
the mean � SEM (SEM: standard error of the mean) of the perfor-
mance metrics over 100 Monte Carlo runs. The source localization
performance was improved as the number of valid fMRI priors
increased. In particular, all three methods showed decreased SD
(p < 0:05), DLE (p < 0:05), and SE (p < 0:05) values with an
increasing number of valid fMRI priors. Notably, this improvement
was the largest for fwMNE, for which ME also increased. When all

https://openneuro.org/datasets/ds000117/versions/1.0.2
https://openneuro.org/datasets/ds000117/versions/1.0.2


Fig. 7. Performance metrics with various numbers of invalid fMRI priors (SNR = 5 dB).
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three valid fMRI CCs were employed, all methods attained nearly
zero SD and DLE values. Under all conditions, fMRI-SI-STBF outper-
formed fMRI-SI-SBF and fwMNE, indicated by the lowest SD
(p < 0:05), DLE (p < 0:05), and SE (p < 0:05) values, and the largest
ME (p < 0:05) values.

Figs. 5 and 6 show an imaging example from a randomly chosen
Monte Carlo run. Three simulated clusters were located in the
supramarginal area (Source A), superior frontal area (Source B),
and right temporal pole (Source C) (Fig. 5(a)). When only one valid
fMRI prior (activity of Source B) was available (Fig. 5(b)), fwMNE
accurately localized Source B, but the estimate was too diffuse
around Sources A and C. Moreover, there were spurious sources
at the temporal, frontal, and parietal lobes. fMRI-SI-SBF recon-
structed the three clusters well, but produced spurious activities
in the middle temporal and thalamus areas. Using both spatial
and temporal constraints, fMRI-SI-STBF successfully localized all
three simulated clusters. With more valid fMRI priors (Fig. 6),
where fMRI indicated the activations of Sources A and B, all three
methods can more accurately localize the simulated clusters. How-
ever, fwMNE again produced diffused estimates around Source A.
Although the activity of Source C was recovered by fwMNE, it did
not exceed Otsu’s threshold. Moreover, the three ESI methods
yielded better performance metrics when more valid fMRI priors
were employed. Comparing the results of Figs. 5 and 6, the addition
of valid fMRI priors can improve the reconstruction accuracy and
help mitigate the diffusion and spuriousness of the source estima-
tion, which is more apparent for fwMNE.
4.1.2. Impact of the number of invalid fMRI priors
In realistic settings, only part of the CCs extracted from fMRI

may be related to the EEG signal. To investigate the effect of mis-
specified priors on fMRI-SI-STBF, we set the number of valid fMRI
priors to two, while the number of invalid fMRI priors varied pro-
gressively from zero to eight. The results of the statistical analysis
22
over 100 runs are shown in Fig. 7. fwMNE was significantly influ-
enced by the number of invalid fMRI priors, as indicated by
increased SD (p < 0:05), DLE (p < 0:05), and SE (p < 0:05) values,
and decreased ME (p < 0:05) with an increasing number of invalid
fMRI priors. Previous studies have confirmed that solutions under
the PEB framework are not sensitive to inaccurate priors, when
both accurate and inaccurate priors are employed [37]. Since
fMRI-SI-STBF and fMRI-SI-SBF are extensions of the PEB frame-
work, they both inherit the intrinsic robustness of PEB, and are
not heavily influenced by the number of invalid fMRI priors. This
robustness is critical for practical ESI with fMRI priors, where the
reliability of priors from fMRI is typically unclear. Moreover, mod-
eling the temporal structure of the EEG signal boosts the perfor-
mance of fMRI-SI-STBF over fMRI-SI-SBF, as indicated by smaller
DLE (p < 0:05) and SE (p < 0:05) values and larger ME (p < 0:05)
values.

Fig. 8 depicts an imaging example from a randomly chosen
Monte Carlo run with eight invalid fMRI priors. Invalid fMRI priors
heavily undermined the performance of fwMNE, as indicated by
the diffused and spurious sources around the bilateral fusiform
face areas, prefrontal area, and medial orbitofrontal areas. In con-
trast, fMRI-SI-STBF and fMRI-SI-SBF were not sensitive to invalid
fMRI-informed CCs and reconstructed the simulated sources accu-
rately. Indeed, the weights corresponding to invalid fMRI-informed
CCs are nearly zero. Fig. 9 shows the corresponding time courses
reconstructed by each algorithm. As a result of the temporal
smoothness constraint, fMRI-SI-STBF estimated the time courses
more accurately than fMRI-SI-SBF and fwMNE, indicated by the
larger correlation coefficients between the simulated and recon-
structed time courses.
4.1.3. Impact of the SNR
Fig. 10 shows the performance metrics of fMRI-SI-STBF and the

benchmark algorithms under varying SNRs. As expected, the per-



Fig. 8. An imaging example with eight invalid fMRI priors (SNR = 5 dB).

Fig. 9. Reconstructed time courses with eight invalid fMRI priors (SNR = 5 dB). (a) Simulated time courses for the three sources; (b) estimated TBFs by SI-STBF; (c)–(e)
reconstructed (mean) time courses by fMRI-SI-STBF, fMRI-SI-SBF and fwMNE. The correlation coefficients of the simulated and estimated time courses are shown at the top-
left corner of each subfigure.
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Fig. 10. Performance metrics under various SNR levels. The curves of model evidence from SI-STBF and fMRI-SI-STBF overlapped.
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formance of all methods declined as the SNR increased. Moreover,
methods incorporating fMRI information outperformed those
without fMRI information (i.e., fMRI-SI-STBF vs. SI-STBF, fMRI-SI-
SBF vs. SI-SBF, fwMNE vs. wMNE), indicated by smaller SD, DLE
and SE values. Interestingly, there was little improvement in the
ME with the addition of fMRI priors to SI-STBF, as seen by the
nearly overlapping curves of the ME for fMRI-SI-STBF and SI-
STBF. This result suggests that the CCs from DDP of EEG may
already be optimal for SI-STBF. Due to the Student’s-t prior induced
by automatic relevance determination (ARD), SBL yielded overly
sparse solutions and missed most of the other dipoles within the
active clusters [14], which led to larger time course profile errors
of active sources, indicated by the large SE values. For all SNRs,
fMRI-SI-STBF achieved the lowest SD, DLE, and SE values, as well
as the largest ME values among the compared methods.

Figs. 11 and 12 present an imaging example from a randomly
chosen Monte Carlo run with SNR = 5 dB. Two clusters around
the bilateral rostral middle frontal gyrus (Sources A and C) and
one cluster with much larger extent in the precentral area (Source
B) were simulated. SBL only localized several point sources near
the ground truth. wMNE obtained estimates encompassing most
of the cortex. LORETA provided smooth and continuous estimates
around Source B. In fact, LORETA also obtained estimates around
Sources A and C that did not exceed Otsu’s threshold. Although
fwMNE improved the spatial resolution of wMNE when fMRI priors
were employed, it also suffered from spurious sources in the right
posterior cingulate area introduced by invalid fMRI priors. Since
EEG-informed CCs are highly effective for reconstructing the acti-
vations in this example, there is little difference between the
results of fMRI-SI-STBF, fMRI-SI-SBF, SI-STBF, and SI-SBF visually.
However, fMRI-SI-STBF showed smaller SD, DLE, and SE values as
well as larger ME than the benchmark algorithms, as shown in
Table 1 of the supplementary document. Combining the results
of Figs. 10–12, the fMRI-informed CCs can enhance the
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performance metrics of SI-STBF and SI-SBF, although the improve-
ment is small visually.

4.2. Results of experimental data analysis

The differential between the averaged ERPs of faces and scram-
bled faces was used for source imaging. An analysis time window
of 1000 ms was considered, ranging from �200 ms to 800 ms rel-
ative to the stimulus onset. The lead-field matrix of each subject
was computed using SPM12 based on a normal resolution (8,196
sources) BEM model. After fMRI preprocessing, three SPMs of the
T-statistic (familiar vs. baseline, unfamiliar vs. baseline, scrambled
vs. baseline) were created for each subject. Then group T-statistics
were obtained to compare the faces (familiar + unfamiliar) against
scrambled faces across subjects. The final SPM{T} was thresholded
to identify regions of at least 10 contiguous voxels that survived
the threshold for local maxima of p < 0:05 (FWE-corrected), which
yielded three clusters located at the left and right occipital face
area (OFA), and right fusiform face area (FFA) (Fig. 13). EEG/fMRI
data preprocessing, SPM analysis of fMRI data, and computation
of the lead-field matrix were conducted using SPM12 and MATLAB
scripts provided along with the dataset.

Having obtained the three clusters from the group statistic
across all 16 subjects, following the study in [45], we used these
clusters as fMRI priors for the ESI of each subject. Due to the space
limit, we only present the results of Sub 16 in Fig. 14. The results of
the remaining 15 subjects are provided in the supplementary doc-
ument. For each subject, we depict the model evidence and imag-
ing sources of the root-mean-square power within 160–180 ms
after stimulus onset. To visualize the estimated sources, imaging
results were thresholded using Otsu’s method [50].

The reconstructed sources of wMNE and LORETA were dis-
persed and spread over the bilateral fusiform gyrus and temporal
and frontal lobes. With the addition of fMRI priors, fwMNE was



Fig. 11. An imaging example from fMRI-SI-STBF and the benchmark algorithms with fMRI priors under SNR = 5 dB.
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able to reveal the right FFA and bilateral OFA, exhibiting a much
higher spatial resolution than wMNE. However, fwMNE was too
rigidly constrained by the fMRI priors and failed to reveal the activ-
ity at the left FFA. On the other hand, SBL identified several point
sources distributed in the bilateral FFA and OFA. With locally
smooth CCs under the empirical Bayesian framework, SI-STBF
and SI-SBF revealed activities in the bilateral FFA and around the
inferior temporal gyrus, which were partially in line with the
wMNE and LORETA results, but the sources at FFA were more
clearly localized. For Sub 06 and 09, SI-SBF either failed to reveal
activity at the left FFA or only yielded weak activity that did not
exceed Otsu’s threshold. Utilizing the spatiotemporal factorization
of the source matrix, fMRI-SI-STBF and SI-STBF revealed the left
FFA sources better than SI-SBF. With the addition of fMRI-
informed CCs, the sources of fMRI-SI-STBF were visually similar
to those of SI-STBF.

In terms of the ME, fMRI-SI-STBF and SI-STBF substantially out-
performed other source imaging methods, which is also in line
with the imaging results. Applying fMRI priors, fwMNE showed
markedly larger model evidence than wMNE. For SI-STBF and SI-
SBF, the addition of fMRI-informed CCs indicated a general lack
of ME improvement, suggesting that EEG-informed CCs may be
ready to be optimal for this multimodal face study.
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5. Discussion

In this work, we have proposed an fMRI-informed ESI method
based on source matrix factorization under the empirical Bayesian
framework, fMRI-SI-STBF. Knowledge of fMRI activation from the
GLM analysis was encoded with spatial CCs. Using an ARD prior,
the proposed method can select the fMRI-informed and EEG-
informed CCs that are related to brain activities in an automatic
fashion. Additionally, the proposed method incorporated a tempo-
ral constraint via current source matrix decomposition, which
improved the spatiotemporal resolution of the estimated sources
compared to the spatial-only constraints. Monte Carlo simulation
and ‘‘multimodal face” EEG/fMRI experimental data analysis were
performed to validate fMRI-SI-STBF. The simulation results demon-
strated that the proposed method could effectively leverage the
fMRI information, even when invalid fMRI priors exist.

Many previous studies have employed neuronal-anatomical
priors to construct cortical activities. These methods have used
spatial priors derived from the spatial information in structural
MRI [51], based on the assumption that neighboring dipoles have
similar neuronal activities [13,25,14,44] or based on fMRI activa-
tion [9,38,35,47]. A method that is widely used for fMRI con-
strained ESI is fwMNE [35], which employs fMRI activation to



Fig. 12. An imaging example from ESI algorithms without fMRI priors under SNR = 5 dB. The ground truth is identical to Fig. 11(a).

Fig. 13. Group SPM for Faces vs. Scrambled fMRI data thresholded for clusters with at least 10 voxels that survive p < 0:05 (FWE-corrected), obtaining three clusters located
at right fusiform face area (FFA) and bilateral occipital face area (OFA).
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Fig. 14. Estimated sources for face perception of Sub 16. For each algorithm, the ventral view of the cortex is provided on the left, and the lateral view is on the right. The
results are presented as the root-mean-square power within 160–180 ms post-stimulus.
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construct the weight matrix for wMNE. However, fwMNE is highly
sensitive to fMRI priors. When the fMRI priors include invalid or
extra activations, spurious sources emerge for fwMNE (see the
imaging example in Fig. 8). When some sources are not reflected
in fMRI activation, fwMNE tends to miss these sources. For exam-
ple, the group fMRI analysis for the ‘‘multimodal face” study did
not reveal the sources at the left FFA (Fig. 13), which are known
to be related to face perception [44,9,37]. As a result, the recon-
struction for all 16 subjects by fwMNE also failed to reveal activa-
tion at the left FFA.

To incorporate fMRI information as a ‘‘soft” constraint as
opposed to the ‘‘hard” constraint in fwMNE, we treated each
suprathreshold fMRI cluster as a separate location prior. Each clus-
ter prior was represented by a spatial CC under the empirical Baye-
sian framework. The relative contribution of each CC is controlled
by the corresponding hyperparameters. According to variational
Bayesian inference with the ARD prior, fMRI-SI-STBF and SI-STBF
automatically select the CCs that can increase the ME. When the
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fMRI priors are invalid or redundant, they are expected to be auto-
matically pruned in the forward model with the largest ME. As
shown in Figs. 7 and 8, fMRI-SI-STBF is not noticeably influenced
by invalid fMRI CCs, which is very important for practical data
analysis, where the validity of the fMRI priors is often unclear.
Moreover, an interesting observation is that fMRI priors only
slightly increased ME when using empirical Bayesian and EEG-
informed CCs (Figs. 4, 10 and 14). This increase may be attributed
to the fact that the fMRI-informed CCs were largely subsumed in
the mixture of EEG-informed CCs. Nonetheless, considering the
other three performance metrics, as shown in Figs. 4 and 10,
employing the valid fMRI priors indeed improved the spatiotempo-
ral accuracy of the estimated sources.

The excellent temporal resolution of EEG signals offers unique
temporal structures that can be utilized to improve source recon-
struction performance. In fact, the use of temporal information is
the main difference between fMRI-SI-STBF and previous PEB-
based source imaging methods with fMRI priors [9,37,10]. To reg-
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ularize current sources with temporal information, fMRI-SI-STBF
represents the source matrix as a linear combination of several
TBFs using matrix factorization. With variational Bayesian infer-
ence, the TBFs and corresponding weights of each dipole are simul-
taneously learned from the EEG data. Our numerical results show
that the addition of temporal information leads to more accurate
spatial estimation and larger correlation coefficients between
reconstructed and simulated time courses (see Fig. 9). By fusing
the EEG-fMRI spatiotemporal information, fMRI-SI-STBF obtains
the lowest reconstruction error of source extents, locations and
time courses, indicated by the lowest SD, DLE and SE values, as
shown in Figs. 4, 7 and 10. For the experimental data analysis,
fMRI-SI-STBF successfully identifies the activities at bilateral FFA
areas that are related to face perception, while fMRI-SI-SBF fails
to localize the activities at the left FFA for some subjects (e.g.,
Sub 06, 09, see results in the supplementary document). For all
16 subjects, fMRI-SI-STBF also achieved the largest ME values.

Current work used fMRI priors derived from GLM analysis.
However, as previous studies [52,37,10] suggested, the GLM
approach requires a priori specification of the hemodynamic
response function. In contrast, independent component analysis
(ICA) as a data-driven approach may be more advantageous than
the GLM approach and can still obtain similar loci for task-
related activations [52]. In addition, the ICA of fMRI data can yield
several temporally coherent networks (TCNs), where the regions
within each TCN share the same response pattern. In our future
work we will utilize these TCNs instead of the functional activation
from GLM analysis in the framework of fMRI-SI-STBF to further
improve the source reconstruction performance. Furthermore,
with the TCNs identified during a resting-state, fMRI-SI-STBF can
be employed to analyze the resting-state EEG/fMRI data. Although
in this work we focus on the multimodal face dataset for experi-
mental data analysis, future studies will examine the utility of
fMRI-SI-STBF for concurrent EEG/fMRI data analysis to further val-
idate the proposed method. Additionally, deep neural networks
(DNNs) have significantly boosted artificial intelligence. Several
studies have focused on the architectural design of DNN models
[53,54]. We will also employ these techniques to design suitable
DNN models for EEG-fMRI source imaging.
6. Conclusion

We proposed an fMRI-informed electromagnetic source imag-
ing method with spatiotemporal constraints based on source
matrix decomposition under empirical Bayesian framework. Our
simulations using synthetic and experimental data suggest that
fMRI-SI-STBF can effectively employ the spatial information from
fMRI data and is robust to the ‘‘invalid” fMRI priors. The numerical
results suggest that fMRI-SI-STBF estimates the extents, locations
and time courses of brain activities more accurately than previous
ESI algorithms without fMRI constraints (i.e., wMNE, LORETA, SBL,
SI-STBF, SI-SBF) and existing ESI methods with fMRI priors (i.e.,
fwMNE and fMRI-SI-SBF). The proposed method is a promising
alternative to reconstruct cortical activities for neuroscience
research and clinical diagnosis.
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