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Abstract— Objective: Advances in the motor imagery (MI)-based
brain-computer interfaces (BCIs) allow control of several appli-
cations by decoding neurophysiological phenomena, which are
usually recorded by electroencephalography (EEG) using a non-
invasive technique. Despite significant advances in MI-based BCI,
EEG rhythms are specific to a subject and various changes over
time. These issues point to significant challenges to enhance the
classification performance, especially in a subject-independent
manner. Methods: To overcome these challenges, we propose
MIN2Net, a novel end-to-end multi-task learning to tackle this task.
We integrate deep metric learning into a multi-task autoencoder to
learn a compact and discriminative latent representation from EEG
and perform classification simultaneously. Results: This approach
reduces the complexity in pre-processing, results in significant
performance improvement on EEG classification. Experimental
results in a subject-independent manner show that MIN2Net out-
performs the state-of-the-art techniques, achieving an F1-score
improvement of 6.72% and 2.23% on the SMR-BCI and OpenBMI
datasets, respectively. Conclusion: We demonstrate that MIN2Net
improves discriminative information in the latent representation.
Significance: This study indicates the possibility and practicality
of using this model to develop MI-based BCI applications for new
users without calibration.

Index Terms— Brain-computer interfaces (BCIs), motor imagery
(MI), multi-task learning, deep metric learning (DML), autoencoder
(AE).

I. INTRODUCTION

BRAIN-computer interface (BCI) systems allow users to non-
muscularly communicate with a machine by classifying their

neural activity patterns [1]. Recently, electroencephalography (EEG)
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has been widely used as a brain-activity recording method in BCIs
because it provides a non-invasive and relatively cheaper way of
measuring neural activity than other neural acquisition techniques.
Moreover, EEG offers a higher temporal resolution compared to the
other brain measurement techniques [2].

Four main types of neurophysiological patterns are widely used
to develop EEG-based BCI applications. These include steady-state
visual evoked potential (SSVEP), event-related potentials (ERPs),
movement-related cortical potentials (MRCPs), and motor imagery
(MI) [3]–[6]. Among these EEG measurements, MI, used in BCI
systems, has been gaining more attention because it allows users
to generate the suppression of oscillatory neural activity in specific
frequency bands over the motor cortex region without external stimuli
[7]. The neurophysiological patterns of MI originate from changing
brain areas’ activations in the sensorimotor cortices similar to limb
movements. Furthermore, a recent study has demonstrated MI-based
BCIs as an assistive tool in motor rehabilitation in paralyzed patients,
such as post-stroke patients [8].

Most MI-based BCI applications rely on a subject-dependent
setting. New users have to participate in the calibration process before
using a BCI system, which is time-consuming, inconvenient, and
exhausting. Recently, numerous zero-calibration methods have been
proposed to diminish the number of calibration trials [9], [10]. One
prominent method is a calibration-free or subject-independent, where
training and testing data are from different subjects. This method
exhibits the ability to offer new users to use the BCI system without
the calibration phase [11], [12]. It is essential to develop reliable
methods based on the subject-independent setting while preserving
classification performance in an acceptable range. Thus, it is a
challenge to find discriminative MI-EEG features that generalize
across subjects.

One conventional hand-crafted feature is the power spectral density
(PSD). Event-related desynchronization/synchronization (ERD/ERS)
is the brain activity patterns from particular frequency bands (mu
(9–13 Hz) and beta (22–29 Hz)) over the sensorimotor cortex region
while performing MI [1], [13]. Therefore we can carry out MI
classification by considering PSD of EEG [8], [14]. However, there
are some limitations of hand-crafted features. The major limitation
is the selection of distinguishable information within the raw EEG
(e.g., frequency bands and EEG channels), merely depending on the
prior knowledge of experts [15].

In recent years, the use of deep learning (DL) has been shown
promising results and proven itself to be a successful set of models in
the field of computer vision, speech recognition, and natural language
processing [16]. In contrast to hand-crafted features, DL methods can
simultaneously learn complicated patterns from multiple dimensions
of the data. Thus, many BCI researchers have proposed advanced DL
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architectures, and significant improvements have been reported for
EEG-MI classification. Specifically, the use of convolutional neural
networks (CNNs) has been widely applied in EEG-MI classification
because it offers the ability to efficiently learn on both temporal and
spatial features from EEG signals [17]–[19]. To extract the temporal
and spatial connectivity patterns effectively, the combination of 2D-
CNNs and long short-term memory units (LSTMs) has been adopted
[20], [21]. Even though existing deep learning works have been
considerably successful in EEG decoding on several MI datasets,
these works perform well only in the subject-dependent task, lacking
generalization capabilities on new users.

More recently, the DL-based multi-task autoencoder (multi-task
AE) has been employed in the field of EEG-based BCI because it
can efficiently learn for data compression and classification tasks
simultaneously [22], [23]. However, to our best knowledge, few
researchers have adopted the multi-task AE to learn features from
EEG to address the MI classification problem because it lacks the
ability to maintain discriminative patterns of the original EEG signals.
To overcome this issue, we proposed MIN2Net, a novel end-to-end
neural network architecture and loss function for training multi-
task AE in the MI classification task. In this way, the proposed
method can learn latent representations that preserve discriminative
information of the original EEG data by fusing deep metric learning
(DML). MIN2Net is optimized by minimizing three different loss
functions simultaneously: reconstruction, cross-entropy, and triplet
loss functions.

The three main contributions of this paper can be summarized as
follows:
• We propose a novel end-to-end architecture that can effectively

extract the meaningful features from EEG data without using
high-complexity EEG pre-processing, resulting in an outstand-
ing performance in the subject-independent MI classification.
Furthermore, the proposed method demonstrates excellent per-
formance compared to state-of-the-art algorithms in the subject-
independent classification over two benchmark datasets.

• To the best of our knowledge, this is the first study proposing
deep metric learning to a multi-task AE to improve the MI
classification performance. The proposed method indicates the
possibility of handling discriminative information in the latent
representation.

• Investigation via visualization of the learned latent features is
carried out to interpret the proposed method’s classification
superiority over other state-of-the-art algorithms.

The remainder of this paper is structured as follows. Section II
explains some backgrounds and related work. Section III describes
the pre-processing of EEG and the structure of the proposed method.
Experimental results of the proposed method are presented in Section
IV and discussed in Section V. Finally, the conclusion is explained
in Section VI.

II. RELATED WORK

In this section, we review the development of EEG-based MI
classification and then conclude the limitations on the current MI-
BCI research. We also describe the concepts of AE and deep metric
learning, which relate to our work. Finally, we give an overview of
our proposed method.

A. EEG-based Motor Imagery Classification
With the advance of machine learning, BCI researchers have

increasingly proposed intelligent algorithms based on a subject-
dependent setting to enhance EEG-based motor imagery decoding
performance. Common spatial pattern (CSP) is one of the most

popular and commonly used methods in MI-based BCI [24]. Features
are effectively extracted via CSP can be achieved by maximizing the
differences in the variances for the two classes of EEG signals. Filter
bank common spatial pattern (FBCSP) [25] is one of the advanced
CSP algorithms, which is based on using multiple frequency bands
instead of limiting to a specific band. FBCSP has been proven to be
the state-of-the-art method in EEG-based MI classification, owing to
its outstanding results [26]. After passing EEG signals through the
FBCSP, the meaningful brain features are obtained, and then the most
discriminative features are selected using a feature selection method
such as mutual information-based best individual feature (MIBIF)
[25]. In terms of classifiers, many conventional algorithms such
as support vector machine (SVM) and linear discriminant analysis
(LDA) can be used to classify these features [12], [26]. In addition,
there have been a variety of algorithms extending CSP and leading
to good performance [27]–[29]. Some works that utilize minimum
training samples have been proposed and validated on several MI
datasets [30], [31]. Although these methods have outperformed state-
of-the-art methods in the subject-dependent classification task, their
performance still needs improvement in the subject-independent case.

One potential direction to improve the performance of EEG-MI
classification is to leverage a large-scale EEG-MI dataset using deep
learning models [12], [32]. In a more recent paper, Lee et al. [33]
provided an OpenBMI dataset, where EEG data is measured with
a large number of subjects in multiple sessions using the MI-BCI
paradigm. Taking advantage of a large number of training samples,
the OpenBMI dataset has become to be one of the benchmark EEG
datasets. In a work by Kwon et al. [12], a subject-independent
framework based on CNN architectures was proposed using spectral-
spatial feature representation to improve subject-independent MI
classification, resulting in a state-of-the-art performance over the
OpenBMI dataset.

B. Deep Metric Learning Model
Deep metric learning (DML) is a method based on a distance met-

ric concept with the goal of learning representation to measure data
similarity, depending on the embedding features learned from a metric
learning network [34]. Generally, similarity metric functions such as
Euclidean distance, Mahalanobis distance, and cosine distance can
be directly employed as the distance metric between two points. In
recent years, numerous loss functions such as contrastive loss [35],
triplet loss [36], and quadruplet loss [37] have been developed for
DML and to enhance feature discrimination. These loss functions are
used to compute similarity measures on correlated samples to enforce
samples of the same class closer to each other and push samples
of different classes apart from each other. Unlike other losses such
as cross-entropy loss, where a single sample is used to calculate
the gradient, the gradient of a DML loss relies on contrastive pairs,
triplets, or quadruplets of samples. Recently, DML has been applied
to the field of EEG-BCI studies and achieved promising results [38],
[39]

C. Autoencoders
Autoencoder (AE) concept is one of the unsupervised learning

algorithms introduced in 1986 [40]. AE is typically employed for
data compression, denoising, dimensionality reduction, and feature
extraction [11], [41], [42]. This network architecture demonstrates
an ability to learn meaningful features from either unlabeled or
labeled input data to create latent representation. The learned latent
representation is then used to reconstruct the original input. The
training objective of this network architecture is to minimize the
reconstruction loss of input data. The learned latent representation
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TABLE I
DESCRIPTION OF ALL CONSIDERED DATASETS

Datasets # Subjects MI Task # Sessions # Trials/Session # Channels Channel location Frequency (Hz.)

BCIC IV 2a 9 Left hand vs. Right hand 2 144 20

FC3, FC1, FCz, FC2, FC4,
C5, C3, C1, Cz, C2,

C4, C6, CP3, CP1, CPz,
CP2, CP4, P1, Pz, P2

250

SMR-BCI 14 Right hand vs. Feet 2 160 15

Small Laplacian electrode were
placed at C3, Cz, and C4.

Distances between neighboring
electrodes were 2.5 cm.

512

OpenBMI 54 Left hand vs. Right hand 2 200 20

FC5, FC3, FC1, FC2, FC4,
FC6, C5, C3, C1, Cz,
C2, C4, C6, CP5, CP3,

CP1, CPz, CP2, CP4, CP6

1,000

appears to be more efficient when the reconstruction data is closer
to the input data.

In recent years, advanced AE architectures have been developed
and adopted for EEG. Denoising sparse autoencoder (DSAE) [43]
was proposed to improve the EEG-based epileptic seizure detection.
The sparsity constraint of the DSAE makes the reconstruction of the
original EEG from the corrupted EEG input more efficient. Further-
more, a compressed sensing (CS) method based on AE was proposed
to handle the biopotentials and telemonitoring system [22]. They
reveal achievements in both finding the optimal data compression
and classifying electrocardiogram (ECG) and EEG signals. However,
most studies only focused on using AE as an unsupervised learning
method to extract the salient features of original data [43], [44]. Their
models were not end-to-end learning paradigms since their classifiers
need to be trained separately with the learned features and labeled
data to identify the actual class.

To address the aforementioned issue, our previous work [23]
presented ERPENet, a multi-task autoencoder-based model (multi-
task AE) to jointly learn multi-task deep features from both unsuper-
vised EEG-based ERP reconstruction and supervised EEG-based ERP
classification. In particular, we demonstrated that ERPENet obtained
an excellent performance in extracting information shared across
different datasets for an ERP decoding task. In this study, we propose
a new architecture and a loss function for training a multi-task AE,
which is capable of handling three tasks simultaneously to deal with
the EEG-based MI classification, described in the following sections.

III. METHODS

This section first describes the three benchmark datasets. After that,
we describe the design of the proposed method and discuss its loss
function. Finally, we elaborate on the EEG-MI classification using
the proposed method in a comprehensive study.

A. Data Description
We evaluated the proposed method and other baseline methods on

the BCIC IV 2a [45], SMR-BCI [46], and OpenBMI [33] datasets.
The first two public datasets are well-known as the benchmark
datasets for MI classification offered by the Graz University of
Technology. The last one is the largest public MI dataset so far,
provided by Korea University. The details of all databases are
explained in Table I. Furthermore, the EEG data from all considered
datasets was downsampled to have a sampling frequency of 100 Hz.
Finally, the time interval of EEG between 0 s and 4 s after stimulus
onset was selected as the MI period for all datasets.

B. Time-domain EEG Representation
In this study, the raw EEG signals are time-domain signals that

change over time. Since the discriminative features of motor imagery

are mainly distributed between 8 Hz and 30 Hz [12], [33], a fifth-
order Butterworth band-pass filter is adopted to construct the filtered
EEG data in the corresponding frequency bands. Towards this end,
the filtered EEG data is used as the input of MIN2Net. Formally,
we consider x ∈ RC×T as a single-trial filtered EEG data from k
classes, and its corresponding label is defined to be y ∈ {1, 2, ..., k},
where C is the number of channels, and T is the number of sampled
time points.

C. Proposed Architecture: MIN2Net

An overview of our proposed MIN2Net is illustrated in Fig. 1, and
the detailed configuration of each layer is shown in the supplementary
materials Table S1†. The MIN2Net is composed of three main
modules: autoencoder, deep metric learning, and supervised learning.

1) Autoencoder: The autoencoder module in the MIN2Net con-
sists of two major components the encoder z = q(x) and the decoder
x̂ = p(z) components. In the encoder component, an input signal
x is encoded into a latent vector z by reducing the input signal’s
dimension. For the decoder component, the given latent vector z
is decoded back to the input signal x̂. The AE module aims to
aid the proposed model in extracting meaningful features from the
EEG and providing discriminative patterns for different classes. The
investigation of input and output EEG signals using the proposed
model is summarized in the supplementary materials Fig. S1†.

The encoder has two CNN blocks; each of them consists of a
Conv2D layer, a batch normalization (BN) layer, an exponential
linear unit (ELU), and an average pooling layer (AveragePooling2D).
The final CNN layer’s output is considered as the input of a fully
connected layer for mapping the latent representation.

Inspired by CSP, this study utilizes the CNN approach as spatial
filtering to effectively learn discriminative features from a set of
EEG inputs (x). Each CNN block is operated on the channel mixing
CNN concept [18], combining all channels of the input signals. The
convolution operation is performed based on the linear combination
of all the given channels, convoluted along the time dimension.
Therefore, the output is constructed as a new time-series signal,
simultaneously extracting spatial information from all the feature
channels. Here, the encoder’s hidden size is large for the first CNN
layer but is gradually decreased in the following CNN layers. More
details of the layers’ parameters are shown in the supplementary
material Table S1†. The average pooling layers are applied to extract
the important features of the given input signals and reduce the
number of parameters. The main benefit of applying the average
pooling is to exploit layers with local filters to share weights among
all channels of the given input signals. After every CNN layer, a BN
layer is used before feeding into the subsequent average pooling layer.
The feature maps after the final average pooling are transformed into

†https://github.com/IoBT-VISTEC/MIN2Net
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Fig. 1. Overall visualization of MIN2Net Architecture. (a) exhibits the AE network consisting of 3 components: encoder, latent vector, and decoder.
The encoder compresses the input data and produces the latent vector, and then the decoder reconstructs the input data from this latent vector.
(b) illustrates deep metric learning that learns to minimize the distances of embedding vectors of the same label while maximizing different labels.
(c) displays the supervised classifier—the latent vector was fed into the FC layer using softmax activation for classification. Full details about the
network architecture can be found in the supplementary materials Table S1†

a vector representation via flattening. Finally, the flattened vector is
fed to a fully-connected (FC) layer with the hidden size of z units
to embed and produce the latent vector. The latent vector size of z
is expected to preserve the meaningful features for high-dimensional
EEG-MI signals. Due to the requirement to minimize the size of the
latent vector while preserving data representation, the grid search
algorithm was performed on the set of {8, C, 64, 256}, where C
is the number of channels in each considered dataset. We found
that by setting the size of the latent vector to C and 64 for two-
and three-class MI classification, respectively, MIN2Net achieved
optimal performance. Note that the average classification performance
of MIN2Net on all z values of each dataset is presented in the
supplementary materials Table S2†.

For the decoder component, the decoder structure is arranged in a
symmetrical way to the encoder component. Since it is essential to
match the CNN blocks’ input dimension, the latent vector is passed
through the FC layer and then fed into a reshape layer to construct
the data in a suitable dimension. Each of the two CNN blocks of
the decoder component makes use of a transpose convolution layer
(Conv2DTranspose) with a stride of 4 and an ELU layer. A stride of
4 is employed to upsample the data’s size similarly to an upsampling
layer. The transpose convolution can extract meaningful features and
reduce useless features, which is beneficial for reconstructing the
latent vector. Consequently, the reconstructed input signal is obtained
after passing the two CNN blocks.

The training objective of the AE module is to minimize the
reconstruction error between the input and the reconstruction. Here,
we employ the mean square error (MSE) as the loss function.
Given the input signals xj = {x1, x2, ..., xC}, the loss function
is expressed as:

LMSE(x, x̂) =
1

C

C∑
j=1

‖xj − x̂j‖2. (1)

Where x̂j is the reconstruction signal of the channel j.
2) Deep Metric Learning: To preserve the distinguishable pat-

terns in the latent representation of the AE, we introduce a deep
metric learning module (DML) to the AE, extended from the latent
vector. In general, the DML aims to learn a distance metric by

improving the learned features’ discrimination. This paper employs a
triplet loss in the DML module to reflect the relative distances among
different classes of the latent vectors. Owing to avoiding the risk of
slow convergence and pool local optima, a semi-hard triplet constraint
is used throughout all experiments, which was demonstrated good
performance in [47]. During training, a set of triplets {xa, xp, xn}
is randomly sampled from the training data, where the anchor sample
xa is closer to the positive sample xp than the negative sample xn.
Subsequently, the triplet of three input signals is passed through the
encoder component concurrently to obtain their latent vector za, zp,
and zn. Thus, the loss function can be formulated as:

Ltriplet(z
a, zp, zn) =

1

2

[
‖za − zp‖2 − ‖za − zn‖2 + α

]
+
. (2)

where [z]+ = max(z, 0). The threshold α is the margin parameter
that enforces the Euclidean distance ‖za − zp‖2 of positive pairs to
be shorter than the Euclidean distance ‖za− zn‖2 of negative pairs.
Importantly, the margin of the triplet loss plays a significant role in
training the DML module.

3) Supervised Learning: This module utilizes a standard soft-
max classifier as a supervised classifier to classify the underlying
latent vectors of the input EEG signals. The latent vector z is fed
into the FC layer with the softmax activation to obtain the weight of
importance for each class, expressed as follows:

ŷ(z) = softmax(Wz + b) (3)

Where W and b are the weight matrix and the bias vector, respec-
tively. Then, the model is trained using Adam optimizer to minimize
the cross-entropy loss, calculated as:

Lcross-entropy(y, ŷ) = −
|class|∑
k=1

yk log ŷk. (4)

where y and ŷ are the true label and the classification probabilities
respectively. The class with the maximum classification probability
is identified as the predicted class of the single-trial EEG signal.

D. Training Procedure for MIN2Net
The training objective of the proposed method is optimized by

incorporating the three loss functions: LMSE in Equation 1, Ltriplet
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Fig. 2. Framework of a) subject-dependent and b) subject-independent with stratified k-fold cross-validation for the classification models.

in Equation 2, and Lcross-entropy in Equation 4. The final loss function
of our MIN2Net model LMIN2Net is expressed as:

LMIN2Net(x, x̂, z
a, zp, zn, y, ŷ) =

1

N

N∑
i=1

{β1LMSE(xi, x̂i)

+β2Ltriplet(z
a
i , z

p
i , z

n
i ) + β3Lcross-entropy(yi, ŷi)}.

(5)

Where N denotes the total number of input signals. β1, β2, and β3
represent the hyperparameters to weight the contribution of each loss
function. As a result of integrating the three loss functions, both the
unsupervised and the DML are able to influence the learning process
when the supervised learning occurs.

E. Network Training

The proposed method was implemented using the Keras framework
(TensorFlow v2.2.0 as backend). The training process was imple-
mented using NVIDIA Tesla v100 GPU with 32GB memory. In each
training iteration, the loss function was optimized by utilizing Adam
optimizer with the learning rate schedule between [10−3, 10−4] for
the binary classification task and the learning rate schedule between
[10−4, 10−5] for the multi-class classification task. The learning rate
of two considered tasks was decreased with a decay rate of 0.5 when
there was no improvement in the validation loss for five consecutive
epochs. We set a batch size of 10 samples for the subject-dependent
classification setting and 100 samples for the subject-independent
classification setting. Finally, the number of training iterations relied
on the early stopping strategy so that the training process was stopped
if there was no reduction of the validation loss for 20 consecutive
epochs.

F. Baseline Methods

To demonstrate the effectiveness of our MIN2Net, we implemented
four state-of-the-art methods for comparison. All deep learning ap-
proaches were implemented using the Keras framework (TensorFlow
v2.2.0 as backend).

1) FBCSP-SVM: FBCSP was developed upon the idea of the
original CSP algorithm [25]. Using the FBCSP as the feature ex-
traction method, the distinguishable EEG features were extracted
from multiple frequency bands. In this paper, the FBCSP was
implemented using MNE-Python package (version 0.20) [48] and
then applied with four spatial filters to decompose EEG signals
into nine frequency bands with a bandwidth of 4 Hz from 4 to
40 Hz (4–8 Hz, 8–12 Hz, ..., 36–40 Hz). Here, each frequency

TABLE II
LIST OF THE OPTIMAL SET OF HYPERPARAMETERS FOR MIN2NET

Dataset Subject-dependent Subject-independent

β1 β2 β3 β1 β2 β3

BCIC IV 2a 1.0 0.1 1.0 0.5 0.1 1.0
SMR-BCI 0.1 0.1 1.0 0.1 1.0 0.1
OpenBMI 0.5 0.5 1.0 0.5 0.5 1.0

band was created using bandpass filtering with 5th order non-causal
Butterworth filter. Subsequently, a support vector machine (SVM)
was used to classify MI by incorporating a grid search algorithm. For
the SVM classifier, the hyperparameters consisted of kernel (linear,
radial bias function (RBF), sigmoid), C (0.001, 0.01, 0.1, 1, 10, 100,
1000), and, particularly for RBF kernel, gamma (0.01, 0.001). With
respect to the grid search algorithm, the prediction on the validation
set of the classification was assessed to obtain the optimal set of
hyperparameters. Eventually, the SVM classifier with the optimal
parameters was used for testing purposes.

2) Deep Convnet: Deep Convnet was introduced as a DL model
based on two CNN architectures [17] and proven to be effective
for dealing with EEG-MI classification. In this study, the Deep
Convnet was implemented in the optimal parameters as done in [17].
Moreover, the raw EEG data was band-pass filtered between 8 and
30 Hz (5th order non-causal Butterworth filter).

3) EEGNet-8,2: Inspired by the FBCSP method, EEGNet-8,2
was proposed as a compact CNN architecture to capture discrim-
inative EEG features, which achieved outstanding performance in
different BCI paradigms [19]. Here, EEGNet-8,2 was reproduced to
offer a comparable performance. The network parameters were kept
in the optimal set of hyperparameters as recommended in the original
publication [19]. Furthermore, the raw EEG data were likewise pre-
processed with the same protocol as in the Deep Convnet model to
construct the input for the training of EEGNet-8,2.

4) Spectral-spatial CNN: The spectral-spatial CNN framework
based on CNN architectures (spectral-spatial CNN) was presented
by [12] and demonstrated state-of-the-art performance in a sub-
ject–independent MI decoding. The framework learned the spectral-
spatial input, capturing discriminative features from the EEG signals’
multiple frequency bands. In this paper, the raw EEG signals were
similarly constructed the spectral-spatial representation as done in
[12]. The spectral-spatial CNN model was implemented in the
optimal parameters as defined in the original paper.
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TABLE III
CLASSIFICATION PERFORMANCE (ACCURACY ± SD AND F1-SCORE ±

SD) IN % OF MIN2NET USING THE SUBJECT-DEPENDENT AND

SUBJECT-INDEPENDENT MANNERS COMPARISONS ON SIX DIFFERENT

MARGINS (α). BOLD DENOTES THE BEST NUMERICAL VALUES.

Dataset Margin
(α)

Subject-dependent Subject-independent

Accuracy F1-score Accuracy F1-score

BCIC
IV 2a

0.1 62.28 ± 13.90 62.61 ± 15.13 58.64 ± 8.57 46.59 ± 23.58
0.5 62.25 ± 13.89 63.08 ± 14.70 59.27 ± 8.38 49.01 ± 19.29
1.0 63.46 ± 14.33 64.28 ± 15.27 60.03 ± 9.24 49.09 ± 23.28
5.0 63.66 ± 13.65 64.37 ± 14.57 59.61 ± 8.84 49.53 ± 19.56

10.0 63.87 ± 14.51 64.03 ± 15.66 59.85 ± 8.44 48.39 ± 20.37
100.0 65.23 ± 16.14 64.72 ± 18.39 58.78 ± 8.69 46.14 ± 24.29

SMR-BCI

0.1 64.00 ± 15.51 62.47 ± 16.60 56.76 ± 11.19 57.83 ± 20.50
0.5 64.31 ± 15.70 62.27 ± 17.07 58.45 ± 12.67 58.41 ± 22.40
1.0 65.90 ± 16.50 64.13 ± 17.66 59.79 ± 13.72 61.10 ± 23.64
5.0 65.14 ± 16.08 62.04 ± 18.20 59.69 ± 13.86 58.88 ± 22.48

10.0 65.45 ± 15.81 62.01 ± 17.82 58.81 ± 13.50 58.61 ± 23.43
100.0 66.98 ± 17.22 62.77 ± 20.58 60.79 ± 13.73 60.47 ± 24.31

OpenBMI

0.1 59.25 ± 14.27 61.79 ± 14.26 72.14 ± 14.22 72.07 ± 15.19
0.5 59.85 ± 13.93 62.17 ± 14.17 71.06 ± 13.91 71.23 ± 14.40
1.0 61.03 ± 14.47 63.59 ± 14.52 72.03 ± 14.04 72.62 ± 14.14
5.0 59.93 ± 13.77 62.41 ± 14.31 70.43 ± 13.81 71.00 ± 13.90

10.0 58.97 ± 13.56 61.51 ± 14.14 69.43 ±14.29 69.46 ± 15.32
100.0 57.14 ± 13.96 59.11 ± 15.98 70.48 ± 14.40 70.95 ± 15.25

G. Experimental Evaluation

To demonstrate our MIN2Net method as a generalized MI clas-
sification model, we conducted the experiments with both subject-
dependent and subject-independent manners on three benchmark
datasets (BCIC IV 2a, SMR-BCI, and OpenBMI). Accuracy and
F1-score were used to evaluate the performance of all considered
methods.

Fig. 2(a) exhibits an example of how we divided the training and
testing sets in the subject-dependent manner. For BCIC IV 2a dataset,
the offline data from session 1 was used as the training set, and the
offline from session 2 was used as the testing set. Meanwhile, the
training and testing sets were obtained from the offline and online
sessions for SMR-BCI and OpenBMI datasets. The stratified 5-fold
CV was then utilized to split the training set into the new training
and validation sets for parameter search. Each fold was performed by
preserving 50 percent of samples for each class in the new training
and validation sets.

The subject-independent manner was conducted with a leave-
one(subject)-out cross-validation (LOSO-CV), as illustrated in
Fig. 2(b). Suppose that there are Ns subjects for a specific dataset. In
each fold of LOSO-CV, a single subject was used as the testing set,
and the remaining Ns−1 subjects were employed as the training set
to obtain Ns classification results. The training set was constructed
using all data sessions of all Ns−1 training subjects for each dataset.
Meanwhile, we chose the offline session 2 of the test subject as the
test set of BCIC IV 2a dataset and the online session of the test
subject as the test set for both SMR-BCI and OpenBMI datasets.
Furthermore, the stratified 5-fold CV scheme was adopted on the
training set to find an optimal set of all classifier parameters. Finally,
we calculated the average classification accuracy from the Ns × 5
evaluations as the overall performance of MIN2Net and other baseline
methods.

The details of the four experiments of the entire study were
described as follows:

1) Experiment I: To find the optimal set of hyperparameters of
MIN2Net, we conducted initial experiments for parameter search.
We first experimented with EEG-MI binary classification to tune β
parameters for the loss function of MIN2Net in Equation 5. The grid
search algorithm was carried out in the set of {0.1, 0.5, 1.0} for β1,
β2, and β3. As shown in Equation 2, the margin α plays a significant
role during training MIN2Net. To examine the effect of this hyperpa-

TABLE IV
CLASSIFICATION PERFORMANCE (ACCURACY ± SD AND F1-SCORE ±

SD) IN % OF MIN2NET COMPARED TO MIN2NET-WITHOUT TRIPLET

AND MIN2NET-WITHOUT DECODER USING THE SUBJECT-DEPENDENT

AND SUBJECT-INDEPENDENT MANNERS ON ALL DATASETS. BOLD

DENOTES THE BEST NUMERICAL VALUES, AND * REPRESENTS THE

PERFORMANCE VALUE WHICH WAS SIGNIFICANTLY HIGHER THAN ALL

COMPARISON PAIRS, p < 0.05.

Dataset Comparison Model Subject-dependent Subject-independent

Accuracy F1-score Accuracy F1-score

BCIC
IV 2a

MIN2Net-w/o triplet 60.76 ± 11.93 61.09 ± 13.83 58.70 ± 8.91 49.36 ± 20.25
MIN2Net-w/o decoder 65.71 ± 16.16 65.46 ± 18.34 57.55 ± 9.06 44.24 ± 24.89

MIN2Net 65.23 ± 16.14 64.72 ± 18.39 60.03 ± 9.24 49.09 ± 23.28

SMR-BCI
MIN2Net-w/o triplet 63.86 ± 14.13 61.31 ± 16.19 57.95 ± 12.55 60.53 ± 20.33

MIN2Net-w/o decoder 64.86 ± 16.21 62.65 ± 17.99 57.38 ± 12.22 55.28 ± 22.17
MIN2Net 65.90 ± 16.50 64.13 ± 17.60 59.79 ± 13.72 61.10 ± 23.64

OpenBMI
MIN2Net-w/o triplet 59.66 ± 14.02 61.64 ± 14.44 71.10 ± 13.58 69.28 ± 16.10

MIN2Net-w/o decoder 58.76 ± 13.79 61.70 ± 13.64 70.59 ± 14.23 70.69 ± 14.48
MIN2Net 61.03 ± 14.47* 63.59 ± 14.52* 72.03 ± 14.04* 72.62 ± 14.14*

rameter, we performed experiments with MIN2Net to search for an
optimal value of α in the set {0.1, 0.5, 1.0, 5.0, 10.0, 100.0}.

Furthermore, we conducted an ablation study to examine the
effectiveness of each component in MIN2Net. We compared our
complete MIN2Net model with two modification models:
• MIN2Net-without triplet: the MIN2Net without the DML mod-

ule
• MIN2Net-without decoder: the MIN2Net without decoder part

of AE module
We then performed one-way repeated measures analysis of variance

(ANOVA) with Bonferroni correction to evaluate the significant
differences among the classification performance of MIN2Net and
the aforementioned modification models.

2) Experiment II: In this study, we compared the EEG-MI clas-
sification performance of MIN2Net with the baseline methods. This
experiment was conducted based on EEG-MI binary classification
to investigate all methods’ effectiveness over the three considered
datasets in both the subject-dependent and subject-independent sce-
narios. We evaluated all methods on the same training, validation,
and testing sets to make a fair comparison. We carried out a one-way
repeated measures analysis of variance (ANOVA) with Bonferroni
correction to analyze the classification performance’s significant
differences between our MIN2Net and all baseline methods.

3) Experiment III: To demonstrate the practicality of MIN2Net in
developing real-world applications, we performed a three-class EEG-
MI classification task over the OpenBMI dataset (right hand MI vs.
left hand MI vs. resting EEG). The purpose of this experiment was to
compare the effectiveness of MIN2Net to all other baseline methods
in pseudo-online scenarios. This experiment was conducted based
on the subject-independent manner because MIN2Net demonstrated
superior performance in Experiments I and II. Here, both the right
and left hand MI signals were likewise segmented with the same
protocol as in subsection III-A. Meanwhile, the resting EEG period
was defined as the time interval between 4 and 8 seconds after
stimulus onset. Since the resting EEG was obtained from all EEG
recordings, the number of trials in each MI class was less than the
number of trials in the resting EEG class. To address the imbalance
issue, we decided to select half of all resting EEG trials randomly. The
detailed experimental procedure is summarized in the supplementary
materials Fig. S2†. To compare all the used methods, we employed
an ANOVA with Bonferroni correction for statistical analysis.

4) Experiment IV: As illustrated in Table V and Fig. 4, MIN2Net
performed suboptimally in the subject-dependent scenario on all three
benchmark datasets. The primary reason is that MIN2Net was trained
using a small number of training samples from a single subject, which
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posed an overfitting problem. In general, the deep learning approach
requires a large amount of data in order to train a generalized model
efficiently and avoid the overfitting problem. As shown in Fig. 6,
the result established convincingly that MIN2Net outperformed the
others when a large number of training samples was used. As
the result, one suggestion for alleviating this overfitting problem is
to increase training samples in the subject-dependent scenario via
data augmentation. We hypothesized that increasing the number of
training samples will aid the model in capturing generalized features
and thus improving MI classification performance. To prove this,
we examined how the subject-dependent settings combined with
varying amounts of data augmentation improved the performance
of MIN2Net on all considered datasets. As introduced by [49] for
bio-signals, Jittering (Jitter), Magnitude-Warping (MagW), Scaling
(Scale), Time-Warping (TimeW), and Permutation (Perm) were used
to augment the training data in order to generate new ones. We
used an ANOVA with Bonferroni correction for statistical analysis
to compare the significant differences in classification performance
between MIN2Net with and without data augmentation.

H. Visualization

To compare the capabilities of deep learning approaches for
extracting highly discriminative features from EEG signals, we em-
ployed the t-SNE method [50] to visualize the generalized brain
features learned by different deep learning methods in the two-
dimensional embedding space. The t-SNE algorithm was used to
visualize the high-dimensional embedding space at the input of the
last fully connected layer in all trained models. Additionally, we used
the t-SNE directly to raw EEG data as a baseline to visualize the
distribution of unlearned brain features. During the t-SNE extraction
process, the raw EEG contained a collection of samples × channels
× time points (EEG amplitude values) is reshaped to be a dimension
of samples × features (all EEG amplitude values from all channels)
before computing the t-SNE projection.

IV. RESULTS

This section reports the results and statistical analysis of Exper-
iment I, II, III, and IV to validate the effectiveness of MIN2Net.
Furthermore, we visualize the learned EEG features to demonstrate
the discriminative power of the features learned by the MIN2Net.
The performance of each experiment was reported as accuracy and
F1-score with standard deviation (Accuracy ± SD and F1-score ±
SD).

A. Experiment I: Parameters Adjustment

Table II presents the optimal hyperparameters to adjust each
module’s weight (β1, β2, and β3) for the loss function of MIN2Net in
Equation 5, resulting in the optimal performance of classifying EEG-
MI data. Note that the average classification performance of MIN2Net
on all β combinations of each dataset is reported in the supplementary
materials†. Table III illustrates the classification results when different
values of the margin parameters (α) are contributed in the DML
module of MIN2Net. We observed that the margin parameter’s size
had a significant impact on the final classification performance, and
when marking the margin value as 1.0, the MIN2Net achieved the
best performance in a subject-independent manner for all datasets. In
a subject-dependent manner, the margin value of 100.0 contributed
to the best performance of MIN2Net on the BCIC IV 2a dataset,
whereas the best performance of MIN2Net on both SMR-BCI and
OpenBMI datasets were obtained by setting the margin value as 1.0.
The results of the ablation study are summarized in Table IV. It

Fig. 3. Comparison of two-dimensional t-SNE projections for a single
subject’s binary classification in the OpenBMI dataset. The picture
depicts the raw EEG features and the latent EEG features generated
by the MIN2Net and their modifications in the subject-dependent and
subject-independent settings.

Fig. 4. Visualization of raw and learned EEG features produced by
all used approaches for a single subject using t-SNE projection. The
picture displays a comparison of two-dimensional t-SNE projections for
the subject-dependent binary classification.

can be seen that the classification performance of MIN2Net outper-
formed both MIN2Net-without triplet and MIN2Net-without decoder
models in terms of accuracy and F1-score on both subject-dependent
and subject-independent manners for both SMR-BCI and OpenBMI
datasets. In a paired t-test, MIN2Net was significantly higher than
these modification models in both manners for the OpenBMI dataset,
p < 0.05. However, on the BCIC IV 2a dataset, the performance
improvement of MIN2Net to their modification models was not found
in both manners. Furthermore, Fig. 3 illustrates the t-SNE projection
of learned embedding features of MIN2Net and their modifications
in both scenarios from the OpenBMI dataset.

B. Experiment II: Binary MI classification

Table V presents the overall performance of our MIN2Net and
four baseline methods across all subjects for both subject-dependent
and subject-independent settings. It is observed that in a subject-
independent manner, MIN2Net achieved the highest performance in
terms of accuracy on the OpenBMI dataset and terms of F1-score
on both SMR-BCI and OpenBMI datasets. Specifically, significant
differences were seen among the accuracy and F1-score provided
by MIN2Net and the other baseline methods in the OpenBMI
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TABLE V
CLASSIFICATION PERFORMANCE (ACCURACY ± SD AND F1-SCORE ± SD) IN % FOR THE SUBJECT-DEPENDENT AND SUBJECT-INDEPENDENT

SCHEMES ON BCIC IV 2A, SMR-BCI, AND OPENBMI COMPARED TO FIVE DIFFERENT METHODS. BOLD DENOTES THE BEST NUMERICAL VALUES,
AND * REPRESENTS THE PERFORMANCE VALUE WHICH WAS SIGNIFICANTLY HIGHER THAN ALL COMPARISON PAIRS, p < 0.05.

Dataset Comparison Model End-to-end Subject-dependent Subject-independent

Accuracy F1-score Accuracy F1-score

BCIC IV 2a
(9 subjects,

288 trials/subject)

FBCSP-SVM No 75.93 ± 14.93 74.49 ± 18.68 58.09 ± 9.91 51.53 ± 24.01
Deep Convnet Yes 63.72 ± 17.18 59.85 ± 22.17 56.34 ± 8.86 30.62 ± 28.96
EEGNet-8,2 Yes 65.93 ± 18.44 64.45 ± 26.23 64.26 ± 11.03 60.19 ± 19.96

Spectral-Spatial CNN No 76.91 ± 13.75 77.03 ± 15.41 66.05 ± 13.70 61.91 ± 20.31
MIN2Net Yes 65.23 ± 16.14 64.72 ± 18.39 60.03 ± 9.24 49.09 ± 23.28

SMR-BCI
(14 subjects,

160 trials/subject)

FBCSP-SVM No 74.50 ± 18.14 70.65 ± 23.64 62.64 ± 15.43 45.07 ± 34.93
Deep Convnet Yes 61.40 ± 15.66 55.27 ± 22.00 65.26 ± 16.83 54.38 ± 32.58
EEGNet-8,2 Yes 67.76 ± 18.09 68.05 ± 21.11 58.07 ± 11.45 34.43 ± 31.35

Spectral-Spatial CNN No 76.76 ± 16.66 69.87 ± 28.15 66.21 ± 15.15 54.36 ± 31.21
MIN2Net Yes 65.90 ± 16.50 64.13 ± 17.66 59.79 ± 13.72 61.10 ± 23.64

OpenBMI
(54 subjects,

400 trials/subject)

FBCSP-SVM No 66.06 ± 16.58 64.66 ± 19.47 64.96 ± 12.70 65.25 ± 15.14
Deep Convnet Yes 60.31 ± 16.76 61.66 ± 18.17 68.33 ± 15.33 70.20 ± 15.18
EEGNet-8,2 Yes 60.41 ± 17.12 56.80 ± 23.54 68.84 ± 13.87 70.39 ± 14.30

Spectral-Spatial CNN No 65.19 ± 15.94 66.97 ± 16.71* 68.27 ± 13.56 65.86 ± 17.37
MIN2Net Yes 61.03 ± 14.47 63.59 ± 14.52 72.03 ± 14.04* 72.62 ± 14.14*

Fig. 5. Visualization of raw and learned EEG features produced by
all used approaches for a single subject using t-SNE projection. The
picture exhibits a comparison of two-dimensional t-SNE projections for
the subject-independent binary classification.

dataset, p < 0.05. Considering the SMR-BCI dataset, the F1-score
improvement of MIN2Net to the baseline methods was significant
(p < 0.05) except for the Deep Convnet and Spectal-spatial CNN
models. However, the overall performance of MIN2Net was lower
than some baseline methods in the subject-independent over the BCIC
IV 2a dataset. Furthermore, in the subject-dependent setting, the
performance improvement of MIN2Net to the baseline methods was
not found on three considered datasets.

Moreover, we reveal the average training and prediction times for
all subjects per epoch on all considered datasets as shown in Table VI.
Note that the training time was identified as the duration time in each
training iteration. Meanwhile, the prediction time was defined as the
duration time in each fold to classify all testing samples. The results

Fig. 6. Effect of the number of training samples on the binary
classification performance across three considered methods.

also present the number of trainable parameters for MIN2Net and all
baseline methods.

Fig. 4 and Fig. 5 illustrate the t-SNE projection of the learned
embedding features of all the datasets for the subject-dependent
and subject-independent manners. The results display the two-
dimensional embedding features of MIN2Net and all baseline meth-
ods, considering all trials of one testing subject of each dataset.

Fig. 6 displays the variations of the classification F1-score with
respect to the number of training samples. The number of training
samples in all the datasets is represented on the x-axis, while the
y-axis expresses the binary classification F1-score of MIN2Net and
the two best baseline methods. It is demonstrated that increasing the
number of training samples from 100 to 21200 samples can provide
a better classification F1-score, recommending a significant factor to
boost the final classification F1-score. Therefore, the classification
F1-score of MIN2Net was shown to be higher than the F1-score
of the two baseline methods when trained with a large number of
training samples.

C. Experiment III: Multi-class MI classification

Table VII exhibits the entire performance of the three-class MI
classification on the OpenBMI dataset by comparing MIN2Net, and
all baseline approaches. It was found that in a subject-independent
manner, MIN2Net outperformed all baseline methods with the ac-
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TABLE VI
TIME COMPLEXITY OF TRAINING (Ttrain) AND PREDICTION (Tpred) IN

SECONDS PER EPOCH FOR ALL METHODS AND NUMBER OF TRAINABLE

PARAMETERS FOR ALL DEEP LEARNING APPROACHES.

Dataset Comparison Model # trainable
params

Subject-dependent Subject-independent

Ttrain Tpred Ttrain Tpred

BCIC
IV 2a

FBCSP-SVM - - 0.0008 - 0.0112
Deep Convnet 151,027 0.1709 0.1617 0.2748 0.1739
EEGNet-8,2 5,162 0.1476 0.1173 0.3735 0.0920

Spectral-Spatial CNN 77,577,714 10.2031 0.7600 8.1334 0.7444
MIN2Net 55,232 0.2320 0.1803 0.4724 0.2373

SMR-BCI

FBCSP-SVM - - 0.0005 - 0.0047
Deep Convnet 150,302 0.1352 0.1519 0.2412 0.1906
EEGNet-8,2 5,082 0.1164 0.1296 0.3210 0.1105

Spectral-Spatial CNN 54,076,914 2.1321 1.0257 5.8785 0.6688
MIN2Net 38,297 0.1463 0.2433 0.4948 0.2966

OpenBMI

FBCSP-SVM - - 0.0020 - 0.1906
Deep Convnet 153,427 0.1804 0.1618 1.7497 0.4734
EEGNet-8,2 5,162 0.1882 0.1439 3.0951 0.1372

Spectral-Spatial CNN 77,577,714 2.2476 1.0934 11.9067 0.8560
MIN2Net 55,232 0.3527 0.2851 1.3626 0.1043

curacy and F1-score of 68.81 ± 12.44% and 68.04 ± 12.97%,
respectively. Moreover, there were significant differences in the
accuracy and F1-score between MIN2Net and all baseline methods,
p < 0.05. Fig. 7 shows the confusion matrix of MIN2Net in the three-
class MI classification on OpenBMI dataset. It was observed that in
the subject-independent scenario, MIN2Net yielded the highest recall
of resting EEG class and the lowest of right hand MI.

Fig. 8 reveals the scatter plots of the learned embedding features
using t-SNE of the OpenBMI dataset. Results of MIN2Net and the
others are considered the three-class MI classification task from all
trials of one representative subject. Similar to the t-SNE projection
results in the binary classification, the learned embedding features
from three different classes tended to be separated into three compact
clusters and made an effort to maintain the relative distances among
different clusters.

D. Experiment IV: Data Augmentation
Table VIII reports a comparison of the MIN2Net’s classification

performance with and without data augmentation on three benchmark
datasets. As can be seen, MIN2Net, utilizing 100 percent data aug-
mentation outperformed all other methods in terms of classification
accuracy and F-score on all used datasets. In a paired t-test, MIN2Net
with 100 percent data augmentation significantly outperformed all
other models on the OpenBMI dataset, p < 0.05. Using both the
BCIC IV 2a and SMR-BCI datasets, only MIN2Net with 100 percent
data augmentation and without data augmentation showed significant
differences, p < 0.05.

The image clusters in Fig. 9 illustrate the learned embedding
features for three benchmark datasets using t-SNE. The binary MI
classification task from all trials of one representative subject is used
to evaluate MIN2Net with and without data augmentation.

V. DISCUSSION

A. Effectiveness of Deep Metric Learning
Deep learning (DL) has made significant contributions to the de-

velopment of efficient MI-based BCI applications. End-to-end multi-
task AE is a powerful DL technique for processing raw EEG data
due to the combination of feature extraction and classification. Even
though AE can recognize instances rather than distinguish between
classes, the current study applies DML-based triplet loss to the multi-
task AE to learn the relative distances among different classes of
latent representations. According to the results from Table IV, the
MIN2Net’s classification performance is significantly higher than
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Fig. 7. Confusion matrix of three-class MI classification.

TABLE VII
CLASSIFICATION ACCURACY AND F1-SCORE (IN %, ± SD) ON THE

OPENBMI DATASET FOR THE THREE-CLASS CLASSIFICATION OF MI IN

THE SUBJECT-INDEPENDENT MANNER. BOLD DENOTES THE BEST

NUMERICAL VALUES, AND * REPRESENTS THE PERFORMANCE VALUE

WHICH WAS SIGNIFICANTLY HIGHER THAN ALL COMPARISON PAIRS,
p < 0.05.

Algorithm Accuracy F1-score

FBCSP-SVM 50.71 ± 9.99 46.29 ± 12.40
Deep Convnet 54.04 ± 10.12 49.77 ± 12.58
EEGNet-8,2 67.93 ± 11.94 66.41 ± 13.23

Spectral-spatial CNN 64.67 ± 11.63 63.16 ± 12.53
MIN2Net 68.97±11.84* 68.07±12.34*

the MIN2Net-without decoder and MIN2Net-without triplet on two
benchmark datasets. Fig. 3 illustrates that the embedding features
of MIN2Net from different classes were clustered towards a more
compact form. By contrast, the embedding features of their mod-
ifications from different classes appeared to be less compact and
dispersed throughout the projection space. This evidence suggests
that the DML based on triplet performs well when incorporating with
the multi-task AE architecture, resulting in learning and improving
the discriminative pattern of EEG data among different classes.

B. Analysis of the Proposed Method

Recently, the deep learning technique has attained popularity in
BCI because it is capable of effectively learning the brain activity
patterns from EEG data without using high complexity in EEG pre-
processing [51]. In this paper, our MIN2Net method’s input is the
time-domain EEG signals, filtered using a particular frequency band
to eliminate high- and low-frequency artifacts. Based on Experiment I
and II results, MIN2Net performs with higher accuracy than FBCSP
and spectral-spatial CNN, which use multiple frequency bands to
filter out artifacts. These results suggest that MIN2Net is robust to
artifacts and offers higher classification results than the other baseline
methods, utilizing simplistic EEG pre-processing only once.

To give insight into an internal perspective behind the optimization
process of MIN2Net, we examined the changes of both training
and validation losses in the binary classification during the training
process of the OpenBMI dataset in a subject-independent manner.
Four different losses of MIN2Net (MSE, triplet, cross-entropy, and
the total losses) were monitored for 60 epochs from all subjects. It
was observed that all the four losses converged around 15 epochs, as
shown in Fig. 10. Similar to the convergence process on the OpenBMI
dataset, we also found signs of the convergence of these four losses
within 60 epochs over the BCIC IV 2a and SMR-BCI datasets. As the
results in Table VI, MIN2Net has the 2nd smallest size of trainable
parameters on all considered datasets. Furthermore, the MIN2Net has
a speed of training and prediction similar to the compact baseline
models such as EEGNet-8,2 and Deep Convnet.
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TABLE VIII
CLASSIFICATION ACCURACY AND F1-SCORE (IN %, ± SD) OF

MIN2NET WITH AND WITHOUT DATA AUGMENTATION IN THE

SUBJECT-DEPENDENT MANNER. BOLD DENOTES THE BEST NUMERICAL

VALUES, AND * REPRESENTS THE PERFORMANCE VALUE WHICH WAS

SIGNIFICANTLY HIGHER THAN ALL COMPARISON PAIRS, p < 0.05.

Dataset Percentage of data augmentation Accuracy F1-score

BCIC IV 2a

No augmentation 65.23 ± 16.14 64.72 ± 18.39
25 68.24 ± 16.81 69.22 ± 16.04
50 69.44 ± 18.31 70.01 ± 17.80
75 69.01 ± 16.78 69.41 ± 16.40
100 70.09 ± 16.87 70.44 ± 16.49

SMR-BCI

No augmentation 65.90 ± 16.50 64.13 ± 17.66
25 70.55 ± 17.57 66.41 ± 22.37
50 71.62 ± 17.48 69.30 ± 18.98
75 72.33 ± 17.48 69.29 ± 21.48

100 72.95 ± 15.76 69.51 ± 20.00

OpenBMI

No augmentation 61.03 ± 14.47 63.59 ± 14.52
25 64.11 ± 15.89 65.93 ± 15.54
50 65.06 ± 15.19 66.42 ± 14.90
75 66.10 ± 14.99 67.59 ± 14.52

100 66.51 ± 15.53* 68.47 ± 14.65*

Fig. 8. Visualization of EEG features using two-dimensional t-SNE pro-
jection on the three-class classification of EEG-MI data in the subject-
independent manner. We picked learned EEG features from one subject
on OpenBMI dataset for visualization purpose.

Regarding the module’s weight (β1, β2, and β3) for the loss
function of MIN2Net shown in Table II, we can observe that the
optimal performance obtains from different sets of the module’s
weight. The reason is related to the difference in the amount of
data among all considered datasets, where the small dataset requires
the small values in the module’s weight to prevent overfitting.
Meanwhile, all the module’s weight values close to 1 are desirable
for the large dataset to achieve optimal performance. We also found
that when all three β have the same value, there is a slight difference
between the small and the large values on the large dataset. However,
using the small dataset shows a considerable difference between the
small and the large values, as shown in the supplementary materials†.

C. Analysis of the Comparison Performance

The binary classification results on three benchmark datasets are
listed in Table V. It can be observed that on SMR-BCI and OpenBMI
datasets, MIN2Net outperforms all baseline methods in a subject-
independent setting. Even though the SMR-BCI dataset’s accuracy
of MIN2Net is lower than some baseline methods, the F1-score of
MIN2Net is higher than all baseline methods. According to the claims
in [52] that F1-score is more valuable than accuracy because it allows
for both false positives and false negatives. Additionally, although the
two benchmark datasets have different training samples, MIN2Net
still results in the best performance in MI classification for both

Fig. 9. Comparison of two-dimensional t-SNE projections for a single
subject’s binary classification. The figure depicts the raw EEG features
and latent EEG features generated by the MIN2Net and the MIN2Net
with data augmentation in the subject-dependent setting.

datasets. This investigation suggests that incorporating multi-task AE
and DML, as done in MIN2Net, plays a vital role in extracting
generalized EEG features for MI classification, resulting in excellent
generalization performance on new subjects.

However, in a subject-dependent setting, the results indicate that
MIN2Net performs suboptimally on all used datasets. The reason for
this is that MIN2Net based on the integration of multi-task AE and
DML does not perform well when using few training samples from
only a single subject, resulting in an overfitting problem. According
to the results in Table VIII, it is demonstrated that by incorpo-
rating data augmentation techniques into MIN2Net in a subject-
dependent setting, an overfitting problem is avoided, and classifica-
tion performance is improved. Interestingly, when 100 percent data
augmentation is used, MIN2Net significantly outperforms MIN2Net
without data augmentation on all the used datasets. This finding
implies that increasing the number of training samples could help
MIN2Net capture generalized features and improve MI classification
performance.

D. Visualization of the Learned Latent Representation
According to Fig. 4, when compared to EEGNet-8,2 and Spectral-

spatial CNNs approaches, the latent embedding features generated
by MIN2Net in a subject-dependent MI classification task are more
likely to be less compact and appear to be expanding out the
projection space. As a consequence of the low-quality representation
of the MI in the learned latent embedding features, this observation
reflects that MIN2Net does not perform well in the learning process
using a few training samples. Nonetheless, as illustrated in Fig. 9,
including data augmentation methods in MIN2Net can provide a
higher-quality representation of latent embedding features.

In a subject-independent scenario, as illustrated in Fig. 5, MIN2Net
produces highly discriminative patterns over the SMR-BCI and
OpenBMI datasets compared to the other baseline methods. Similarly,
in multi-class classification, the latent embedding features extracted
by MIN2Net generate considerably more discriminative patterns than
the other baseline approaches on the OpenBMI dataset, as presented
in Fig. 8. As a result, this demonstrates that MIN2Net outperforms
others due to the higher quality representation of the MI in the learned
latent embedding features.
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Fig. 10. Training and validation losses of our proposed MIN2Net on
OpenBMI dataset. The plots show averaged losses with standard error
of 54 subjects while d) total loss was weighed by 0.5, 0.5, 1.0 for a)
mean square error b) triplet and c) cross-entropy loss respectively.

E. Feasibility in Online BCI Systems
To further evaluate the feasibility and pseudo-online performance

of MIN2Net, we established an experiment on the OpenBMI dataset,
exhibiting the classification among resting EEG, left hand MI, and
right hand MI. The results demonstrate that MIN2Net significantly
outperforms all baseline methods in the subject-independent setting,
as depicted in Table VII. Additionally, MIN2Net yields an accept-
able misclassification rate in the classification of three-class MI, as
depicted in Fig. 7. The present results confirm the possibility of using
the MIN2Net in two promising aspects. First, MIN2Net has the ca-
pability of classifying multi-class MI-EEG. Second, MIN2Net could
integrate with online BCI applications, providing various movement
intentions for users, such as stop moving, left-hand grasping, or right-
hand grasping.

Moreover, these research findings provide foundations in develop-
ing BCI applications based on a calibration-free method. MIN2Net
can be used as a pre-trained model, where the model is pre-trained
before being applied by a new user. The latency of MIN2Net is con-
sidered as a prediction time in the testing session. With the subject-
independent setting, the BCI application considers the prediction time
rather than the training time. According to Table VI, it is found that
the prediction time to classify all testing trials is 0.2373 s, 0.2966
s, and 0.1043 s for BCIC IV 2a, SMR-BCI, and OpenBMI datasets,
respectively. As shown in Fig. 6, when few subjects are used for train-
ing, we could observe that the proposed model provides suboptimal
performance. On the other hand, training with more subjects could
improve the overall performance of MIN2Net. Therefore, once we
perceive a new user as an outstanding BCI user, we can include that
user in our dataset to retrain the proposed model to achieve better
classification performance.

F. Future Directions
Although MIN2Net achieves a promising classification result, there

are still several rooms for further improvement. Firstly, the DML
module is based on triplet loss, and there are numerous new loss
functions developed for DML that are more attractive to investigate
[35], [37]. Thus, in the future study, we will focus on incorporating
these new loss functions into multi-task AE to improve classification
performance further. Secondly, we can explore the utilization of
MIN2Net on other EEG measurements, such as SSVEP, MRCPs,
and ERP. MIN2Nets might be helpful in the extraction of the most
discriminative features for classification. Thirdly, a transfer learning
framework based on a fast adaptation procedure will be considered

in our future work to thoroughly investigate the possibility of our
MIN2Net [8], [10]. Finally, since MIN2Net is developed to learn
three modules simultaneously, the loss weight in each module plays
a significant role in MIN2Net’s learning process. This work has
determined an optimal set of loss weights using parameter search,
which is time-consuming and results in various optimal sets when
different datasets are used. Thus, rather than performing a parameter
search for the loss weights, we will explore the adaptive gradient
blending concept developed in this work [53] to regulate several loss
weights and automatically gain the optimal set of all loss weights
throughout the MIN2Net’s learning process.

VI. CONCLUSION

This study proposed MIN2Net, a novel end-to-end multi-task
learning, for classifying motor imagery EEG signals. MIN2Net is
developed by integrating an autoencoder, deep metric learning, and a
supervised classifier, which learns to compress, discriminate embed-
ded EEG and classify EEG simultaneously. We compared the binary
classification performance of MIN2Net with four different deep
learning algorithms on three benchmark datasets. The classification
results revealed that MIN2Net significantly outperformed the devel-
oped baselines in the subject-independent settings on SMR-BCI and
OpenBMI datasets. Moreover, we obtained promising experimental
results from three-class EEG-MI classification (left hand MI vs. right
hand MI vs. resting EEG). This finding indicates the possibility
and practicality of using this model toward developing real-world
applications.
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