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A B S T R A C T   

The ability of automatic feature learning makes Convolutional Neural Network (CNN) potentially suitable to 
uncover the complex and widespread brain changes in schizophrenia. Despite that, limited studies have been 
done on schizophrenia identification using interpretable deep learning approaches on multimodal neuroimaging 
data. Here, we developed a deep feature approach based on pre-trained 2D CNN and naive 3D CNN models 
trained from scratch for schizophrenia classification by integrating 3D structural and diffusion magnetic reso-
nance imaging (MRI) data. We found that the naive 3D CNN models outperformed the pretrained 2D CNN models 
and the handcrafted feature-based machine learning approach using support vector machine during both cross- 
validation and testing on an independent dataset. Multimodal neuroimaging-based models accomplished per-
formance superior to models based on a single modality. Furthermore, we identified brain grey matter and white 
matter regions critical for illness classification at the individual- and group-level which supported the salience 
network and striatal dysfunction hypotheses in schizophrenia. Our findings underscore the potential of CNN not 
only to automatically uncover and integrate multimodal 3D brain imaging features for schizophrenia identifi-
cation, but also to provide relevant neurobiological interpretations which are crucial for developing objective 
and interpretable imaging-based probes for prognosis and diagnosis in psychiatric disorders.   

1. Introduction 

Schizophrenia is a potentially severe and chronic mental disorder 
that imposes great burdens on patients, their families and society. Early 
and accurate diagnosis of schizophrenia could facilitate treatment 
planning and improve the outcome of the illness. However, current 
reliance on clinical interviews and corroboration of clinical data make 
diagnosis of schizophrenia challenging due to the complex and hetero-
geneous symptom presentations which can vary with the course of the 
illness, especially at early onset (Del Barrio, 2016; Fanous et al., 2012; 
Kennedy et al., 2014). Therefore, it is important to establish an objective 

approach which yields an accurate diagnosis and leads to an appropriate 
treatment in turn. 

Structural magnetic resonance imaging (sMRI) and diffusion MRI 
(dMRI) have been used to detect brain structural and microstructural 
abnormalities in patients with schizophrenia (Gong et al., 2019; Mitel-
man, 2019; Ott et al., 2019; Power et al., 2016; Shenton et al., 2001). 
Accumulating sMRI evidence suggests widespread grey matter re-
ductions, especially in frontal, temporal, thalamic and striatal regions 
(Fornito et al., 2009; Haijma et al., 2013; Koelkebeck et al., 2019; Kuo 
and Pogue-Geile, 2019), cortical thinning in frontal, temporal, cingulate 
and insular regions (Takayanagi et al., 2020; Van Erp et al., 2018; Yan 
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et al., 2019) and enlargement of ventricles (Gaser et al., 2004; Kuo and 
Pogue-Geile, 2019; Zheng et al., 2019) in schizophrenia patients 
compared to healthy controls. In parallel, dMRI or diffusion tensor im-
aging studies reported lower fractional anisotropy (FA) and higher mean 
diffusivity (MD) in multiple white matter tracts implicating frontal- 
striatal-thalamic circuits and the cingulum in schizophrenia and its 
prodrome (Di Biase et al., 2020; Kelly et al., 2018; Wang et al., 2016, 
2019). However, the heterogeneity in both the effect sizes and the 
regional distribution of the brain alterations reported across studies 
have prevented the application of group-level findings to individual- 
level diagnosis (Arbabshirani et al., 2017; Di Biase et al., 2020; Kelly 
et al., 2018). Given the high-dimensional multimodal neuroimaging and 
clinical data, there is an increasing need to develop automatic and 
standardized multimodal probes for accurate and objective classification 
of schizophrenia. 

Machine learning approaches have begun to demonstrate its poten-
tial in complementing the clinical diagnosis of psychiatric disorders 
using neuroimaging data (Arbabshirani et al., 2017; Rashid and Cal-
houn, 2020). Previous work on computer-aided classification of 
schizophrenia patients and healthy controls mainly focused on hand-
crafted feature-based machine learning approach, which requires 
feature extraction and reduction before classification. The most common 
features in previous studies are cortical thickness and voxel-based 
morphometry (via sMRI) (Chin et al., 2018; Nieuwenhuis et al., 2012; 
Salvador et al., 2017; Winterburn et al., 2019) as well as white matter 
microstructure such as FA (via dMRI) (Ardekani et al., 2011; Liang et al., 
2019; Mikolas et al., 2018). Traditional classifiers like support vector 
machine (SVM), random forest and logistic regression are the most 
widely used methods (Arbabshirani et al., 2017; De Filippis et al., 2019; 
Winterburn et al., 2019). However, the subtle, mixed, and widespread 
brain anatomical changes in schizophrenia limit the performance of 
such handcrafted machine learning approaches. Pre-selected features 
might not be efficient and generalizable across different cohorts with 
differing duration of illness thus causing the accuracy to vary across 
datasets, features and hyperparameter settings. Handcrafted feature- 
based machine learning also has difficulty in uncovering new features 
to facilitate biological inferences (Arbabshirani et al., 2017; Rashid and 
Calhoun, 2020; Winterburn et al., 2019). 

Convolutional Neural Network (CNN) has recently become a prom-
ising approach for medical image classification such as brain tumor, 
lung nodule and Alzheimer's disease (Iizuka et al., 2019; Khvostikov 
et al., 2018; Lin et al., 2018; Liu and Kang, 2017). As a data-driven deep 
learning method, CNN is capable of automatic feature learning which 
mitigates the subjectivity and variability in pre-selecting relevant fea-
tures. This is especially important for psychiatric disorders like schizo-
phrenia which has subtle, complex and widely distributed brain 
alterations (Lee et al., 2017). Deep model architecture with nonlinear 
layers also allows efficient mapping of complicated data patterns 
(Arbabshirani et al., 2017; Lee et al., 2017). Nevertheless, limited 
studies have applied CNN on structural neuroimaging data to differen-
tiate patients with schizophrenia patients from healthy controls. A 
recent study applied a sequential 3D CNN model on sMRI data for 
classification and achieved an area under the receiver operating char-
acteristic curve (ROC-AUC) of 0.96, but independent testing perfor-
mance degraded significantly (Oh et al., 2020). Complicated 3D CNN 
architectures have not been investigated though. Studies using transfer 
learning approaches that utilize powerful pretrained 2D CNN networks 
to extract features from deep layers are also lacking. Of note, multimodal 
feature extraction from different neuroimaging modalities is critical for 
understanding the neural substrates underlying schizophrenia from 
complementary perspectives, potentially leading to higher classification 
performance (Lei et al., 2020; Lerman-Sinkoff et al., 2019; Salvador 
et al., 2019). Although the automatic feature learning capability of CNN 
enables more prominent integration of multimodal inputs, multi- 
channel 2D and 3D CNN have not been employed and evaluated for 
schizophrenia discrimination. 

CNN models have demonstrated remarkable performance on image 
classification tasks but are often criticized as a “black box” as the 
learning process and predictions are not interpretable (Pinaya et al., 
2019). Gradient-based methods and up-convolutional net have been 
proposed to visualize 2D CNN representations and provide visual ex-
planations for decision making (Mahendran and Vedaldi, 2015; Sel-
varaju et al., 2017; Simonyan et al., 2014; Springenberg et al., 2015; 
Zeiler and Fergus, 2014; Zhang and Zhu, 2018; Zhou et al., 2016). As a 
state-of-the-art approach, gradient class activation map could localize 
the discriminative image regions from any CNN-based network without 
requiring architectural changes or re-training and could also be 
extended to 3D CNN (Selvaraju et al., 2017; Yang et al., 2018a). Iden-
tifying the critical regions for classification not only validates the un-
derlying rationale of decision-making to enable clinical adoption but 
also facilitates biological inferences to improve our understanding of 
schizophrenia. 

To fill these gaps, we developed naive 3D CNN models trained from 
scratch and a deep feature approach using pretrained 2D CNN networks 
to identify patients with schizophrenia using 3D sMRI and dMRI data. A 
multi-channel input approach was utilized to integrate representations 
from different feature maps and modalities. We implemented a state-of- 
the-art handcrafted feature-based machine learning approach with SVM 
as a benchmark. We hypothesized that both 2D and 3D CNN models 
would outperform handcrafted feature-based machine learning and 
multimodal neuroimaging-based models (i.e., integrating both struc-
tural and diffusion MRI) would have better performance than single 
modality-based models. Further, we aimed to identify the discriminative 
brain regions for classification of schizophrenia based on the best 
models using the gradient class activation map approach. 

2. Methods 

2.1. Participants 

Two independent MRI datasets of schizophrenia and controls were 
used in this study which were comparable for age and gender for both 
groups (Table 1). The Northwestern University Schizophrenia Data and 
Software Tool (NUSDAST) is a repository of schizophrenia neuro-
imaging data collected from over 450 schizophrenia patients and 
healthy controls, which is publicly available on SchizConnect platform 
(Kogan et al., 2016; Wang et al., 2013). Overall, 141 schizophrenia 
patients and 134 healthy controls from this public dataset were included 
after quality control. 

A similar dataset, with both structural MRI and diffusion MRI from 
the Institute of Mental Health (IMH), Singapore, was included as an 
independent dataset (Ho et al., 2017a, 2017b). In this dataset, 148 
schizophrenia patients and 76 healthy controls were included after 
quality control. 

2.2. Image acquisition 

For the NUSDAST dataset, all MRI scans were collected using the 
same 1.5 T Vision scanner platform (Siemens Medical Systems). 

Table 1 
Subject demographics of the two datasets.   

NUSDAST IMH 

SZ HC SZ HC 

Subject number 141 134 148 76 
Age (years), mean 

(SD) 
35.06 
(12.78) 

32.88 
(14.05) 

32.72 
(9.04) 

31.33 
(9.77) 

Sex (male/female) 90/51 72/62 102/46 47/29 
Modality sMRI sMRI & dMRI 

Abbreviations: SZ - schizophrenia patients, HC - healthy controls, SD - standard 
deviation. 
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Acquisition of all scans was performed at the Mallinckrodt Institute of 
Radiology at Washington University School of Medicine, where scanner 
stability (e.g., frequency, receiver gain, transmitter voltage, SNR) and 
artifacts were regularly monitored from 1998 to 2006 (Wang et al., 
2013). 3D Turbo Flash images were acquired with following parameters: 
axial slice thickness = 1 mm, 180 slices, in-plane resolution = 1 × 1 
mm2, repetition time = 20 ms, echo time = 5.4 ms, flip angle = 7◦ and 
matrix size = 256 × 256 pixels. 

For the IMH dataset, all MRI scans were performed using the same 3- 
Tesla whole-body scanner MRI (Philips Achieva, Best, The Netherlands) 
with an 8-channel SENSE (Sensitivity Encoding) head coil at the Na-
tional Neuroscience Institute, Singapore, from 2006 to 2013 (Ho et al., 
2017a, 2017b). T1-weighted magnetization-prepared rapid acquisition 
with gradient echo (MPRAGE) images were acquired with following 
parameters: axial slice thickness = 0.9 mm, 180 slices, in-plane resolu-
tion = 0.9 × 0.9 mm2, repetition time = 7200 ms, echo time = 3.3 ms, 
flip angle = 8◦ and matrix size = 256 × 256 pixels. Diffusion MRI data 
were acquired with the following parameters: axial slice thickness = 3 
mm, 42 slices, in-plane resolution = 0.9 × 0.9 mm2, repetition time =
3.725 s, echo time = 56 ms, flip angle = 90◦, acquisition matrix size =
112 × 109 pixels, reconstruction matrix = 256 × 256 pixels. 15 
diffusion-weighted images (b = 800 s/mm2) of non-parallel directions 
and 1 baseline image (b = 0 s/mm2) were obtained. Three runs of such 
DW-MRI images were acquired in the same session and were concate-
nated for processing. 

2.3. Image processing 

Processing of the structural MRI data was performed using Compu-
tational Anatomy Toolbox in Statistical Parametric Mapping 12 
(SPM12) for voxel-wise estimation of grey matter (GM), white matter 
(WM) and cerebrospinal fluid (CSF) compartment (Kurth et al., 2015) 
following our previous work (Ng et al., 2016). Images with motion ar-
tifacts were excluded after visual quality control. Subject-level proba-
bility maps were obtained from T1-weighted images with the following 
steps: (i) skull stripping; (ii) linear (FLIRT) and nonlinear (FNIRT) 
registration to the Montreal Neurological Institute (MNI) 152 standard 

space (Andersson et al., 2007); (iii) segmentation of the brain into GM, 
WM and CSF compartments with 1.5 mm isotropic resolution; (iv) 
modulation by multiplying voxel values with the linear and nonlinear 
component of the Jacobian determinant. The diffusion MRI data were 
preprocessed using FSL (http://www.fmrib.ox.ac.uk/fsl) with the 
following steps following our previous work (Ho et al., 2017b): (i) head 
movements and eddy current distortion correction with reference to the 
first b = 0 volume via affine registration of the diffusion-weighted im-
ages; (ii) diffusion gradients rotation to improve consistency with the 
motion parameters; (iii) visual inspection of signal dropout, artifacts and 
additional motion (subjects with >3 mm of motion displacement during 
the scan were excluded); (iv) tensor fitting to diffusion data at each voxel 
to create fractional anisotropy (FA) and mean diffusivity (MD) maps; (v) 
nonlinear registration to FMRIB58_FA standard space with FNIRT. For 
computational efficiency, all the resulting feature maps (GM, WM, CSF, 
FA and MD) in the standard space were downsampled from 1.5 × 1.5 ×
1.5 mm3 (121 × 145 × 121) to 3 × 3 × 3 mm3 (61 × 121 × 61). 

2.4. Study design 

We employed three approaches to classify schizophrenia patients 
and healthy controls (see detailed study design in Fig. 1). To compare 
with the state-of-the-art handcrafted feature-based machine learning 
approach, we implemented linear and nonlinear SVM classifiers as the 
benchmark as SVM achieved the best performance in most previous 
studies for neuroimaging-based schizophrenia classification (Rozycki 
et al., 2018; Salvador et al., 2017; Winterburn et al., 2019). To utilize 
powerful pre-trained 2D CNN networks, we applied deep feature 
approach based on feature maps extracted from pre-trained networks in 
a 2D manner. To exploit the 3D contextual information and investigate 
the effect of model structure, we developed naive 3D CNN models which 
were trained from scratch with different architectures and depths. 

GM, WM and CSF probability maps were used as inputs for structural 
MRI models trained on the NUSDAST dataset. Nested 5-fold cross- 
validation was used to select hyperparameters and obtain testing re-
sults for all the models. To test the generalizability of trained models, 
sMRI models that trained on the NUSDAST dataset were further tested 

Fig. 1. Study design. We employed three approaches to classify schizophrenia patients and healthy controls. We implemented linear and nonlinear SVM classifiers as 
the benchmark methods. We applied deep feature approach which classified feature maps extracted from pretrained networks to utilize the powerful pretrained 
networks. Naive 3D CNN models trained from scratch with different architecture and depths were developed to exploit 3D contextual information. GM, WM and CSF 
probability maps were used as inputs for structural MRI models trained on the NUSDAST dataset. Nested 5-fold cross-validation was used to select hyperparameters 
and obtain testing results for all the models. To test the generalizability, sMRI models trained using the NUSDAST dataset were further tested on the independent IMH 
dataset with ensemble approach. We also developed multimodal models using GM, WM, CSF, FA and MD maps as inputs and evaluated on the IMH dataset using 
cross-validation. Lastly, we used gradient class activation map approach to interpret 3D CNN models with the best performance to identify brain regions whose GM, 
WM, CSF, or white matter microstructure contributed significantly to the classification of schizophrenia patients. 
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on the independent IMH dataset with an ensemble approach. 
In addition, we developed multimodal models using GM, WM, CSF, 

FA and MD maps as inputs for all three approaches above. We performed 
cross-validation on the IMH dataset and compared the classification 
performance with single-modality models. 

Lastly, we evaluated the interpretability of our derived 3D CNN 
models with the best performance with reference to previous literature. 
Gradient class activation map approach was employed to identify brain 
regions whose GM, WM, CSF or white matter microstructure contributed 
significantly to the classification of schizophrenia patients. 

Further details of each step are given as follows. 

2.4.1. Handcrafted feature-based machine learning 
To make a comparison with the state-of-art approach using hand-

crafted feature-based machine learning, we employed voxel-based 
morphometry as handcrafted features and SVM as classifiers to imple-
ment a benchmark method. GM, WM and CSF probability maps 
extracted from sMRI as well as FA and MD maps extracted from dMRI 
were employed as features and flattened as feature vectors. Feature 
reduction was completed by principal components analysis (PCA) with 
99% variance explained for each input map. Linear SVM and nonlinear 
SVM with the Radial Basis Function (RBF) kernel were trained and 
tested. 

2.4.2. Deep feature based on pre-trained 2D CNN 
To investigate the impact of model architecture, we employed six 

state-of-the-art CNN models pre-trained on ImageNet dataset: VGG16 
(Simonyan and Zisserman, 2015), Xception (Chollet, 2017), Resnet101 
(He et al., 2016), Densenet121 (Huang et al., 2017), Inception_v3 
(Szegedy et al., 2015) and Inception_resnet_v2 (Szegedy et al., 2017). 
Each 2D slice of the 3D maps was used as input to pre-trained networks 
and the deep feature map taken from the last convolutional layer was 
used as the resulting extracted features. To fully utilize the contextual 
information of 3D images, the feature maps from each 2D slice of the 
three views (axial, coronal and sagittal) were combined and flattened as 
a large feature vector at the individual level. Feature reduction was 
performed with PCA with 99% variance explained for each input map 
and classification was completed with linear SVM. 

2.4.3. Naive 3D CNN models 
Typical CNN models consist of sequential convolutional layers, 

pooling layers and fully connected layers and they use backpropagation 
to learn multi-level features (Lee et al., 2017). The convolutional layer 
computes the output of neurons that are connected to local regions in the 
input, each computing a dot product between their weights and a small 
region they are connected to in the input volume. The pooling layer 
performs a downsampling operation along the spatial dimensions. The 
fully connected layer connects each neuron to all the numbers in the 
previous volume and computes the class probabilities. Note that in 3D 
CNN networks, the convolutions and pooling operate in a cubic manner 
with 3D feature volumes instead of 2D feature maps thus fully utilizing 
the 3D contextual information in brain structural imaging. Furthermore, 
advanced architectures interconnect the layers and form modules with 
more complicated topologies, such as inception module and residual 
module (He et al., 2016; Szegedy et al., 2015). In this study, the 
following three types of 3D CNN model architectures with different 
depths were implemented and evaluated. 

2.4.3.1. Sequential models. Sequential models followed the typical CNN 
sequential architecture with convolutional layers, pooling layers and 
fully connected layers. The convolutional kernel and pooling kernel 
were set with 3x3x3 dimensions using grid search. GM, WM and CSF 
probability maps extracted from sMRI along with FA and MD maps 
extracted from dMRI were employed as independent input maps con-
necting to different network branches. The resulting feature maps from 

each branch were flattened and connected to a fully connected layer 
with 128 neurons. Output was obtained by sigmoid function. 

Three sequential models with different number of layers were 
trained and tested. As shown in Fig. 2A, Sequential_1 consists of one 
convolutional layer (Conv), one maxpooling layer (Maxpooling) and one 
fully connected layer (FC) thus giving rise to a Conv+Maxpooling+FC 
structure; Sequential_2 has a 2(Cov + Maxpooling) + FC structure as it 
consists of two levels of convolutional layer and maxpooling layer 
connecting to a fully connected layer; Sequential_3 has a 3(Con-
v+Maxpooling) + FC structure as it consists of 3 levels of convolutional 
layer and maxpooling layer connecting to a fully connected layer. The 
deeper the network, the smaller the feature volumes become. 

2.4.3.2. Inception models. Inspired by the GoogLeNet (Szegedy et al., 
2015), a 3D inception module was utilized in inception models (Fig. 2B 
and C). The inception module divides the network into multiple 
branches with different convolutional kernels thus allowing operating 
convolutions with different kernels on the same level. The inception 
module not only improves the performance of the network but also 
controls overfitting and reduces computational expenses. 

2.4.3.3. Inception_resnet models. Inspired by the residual module (He 
et al., 2016), inception_resnet models combined inception architecture 
and residual module to utilize information from previous layers 
(Fig. 2D). Inception_resnet_1 model has the same arterial structure as 
Inception_1 model with an extra connection that adds up the output 
from the previous layer and output from the inception module. Simi-
larly, Inception_resnet_2 model has two extra connections adding out-
puts from different layers together. 

2.4.4. Nested cross-validation and ensemble approach 
To avoid overfitting, we used nested cross-validation consisting of an 

inner loop and an outer loop. The outer loop split data into 5 folds and 
each round used 4 folds for training and the remaining for testing. The 
inner loop further split the training data from the outer loop into 5 folds 
and used cross-validation to select hyperparameters for 3D CNN models 
(optimizer, kernel size, kernel number) and nonlinear SVM (kernel type, 
kernel coefficient, regularization term) (Supplementary Table 1). 
Testing results were obtained through outer 5-fold cross-validation 
which averaged the test error over multiple train–test splits. The 
testing results for naive 3D CNN were reported as the average of 10 
repeats to reduce randomness generated from the training process. 
Furthermore, a random seed was appointed for the data split of nested 
cross-validation to reduce randomness and ensure consistency of 
training and testing data among different approaches and different re-
peats. Training and testing were completed using a NVIDIA V100 
TENSOR CORE GPU with batch size 5 and maximum epoch 150 (Sup-
plementary Table 2). 

After the nested cross-validation on the NUSDAST dataset, we took 
the ensemble approach to evaluate the classification performance on the 
independent testing IMH dataset. Specifically, 5-fold cross-validation 
trained 5 optimized models in each fold for handcrafted feature-based 
machine learning and deep feature based on pretrained 2D CNN net-
works. Independent testing results on the IMH dataset were determined 
by majority voting among 5 predictions from the 5 models trained for 
each method. For naive 3D CNN, we selected 5 models from one repeat 
of 5-fold cross-validation with the highest accuracy out of 10 repeats and 
the independent testing results on the IMH dataset were determined by 
majority voting among 5 selected models. 

2.4.5. Interpretation 
To interpret the 3D CNN models and classification decision process, 

we adopted the gradient class activation map approach on both single 
and multi-modality models with the best performance to localize the 
brain regions that contributed significantly to the classification of 
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schizophrenia patients. The discriminative regions were determined by 
calculating the backpropagated class signal at the last rectified con-
volutional layer of each input branch and thus heat maps were generated 
separately for GM, WM, CSF, FA and MD for each individual. Subse-
quently, one sample t-test (familywise error corrected at p < 0.01) 
identified the critical regions for classification at the group-level. 

3. Results 

3.1. Nested cross-validation results on the NUSDAST dataset with sMRI 
models 

Accuracy, sensitivity, specificity and ROC-AUC from nested cross- 
validation (mean and standard deviation) were reported for sMRI 
models trained on the NUSDAST dataset (Table 2). In general, both 2D 
and 3D CNN models outperformed handcrafted feature-based machine 
learning approaches. Nonlinear SVM with the RBF kernel achieved an 
averaged accuracy of 70.22% and ROC-AUC of 0.78. Deep feature based 
on pretrained inception_v3 outperformed nonlinear SVM with an accu-
racy of 72.41% and ROC-AUC of 0.82. Naive 3D CNN models trained 
from scratch further exceeded the performance of deep feature based on 
pretrained 2D CNN networks with an accuracy of 79.27% and ROC-AUC 
of 0.81. 

The classification performance of different models was further 
visualized in Figs. 3A and 4A. Fig. 3A directly compared the accuracy of 
different models in bar charts. Both 2D and 3D CNN models obtained 
higher accuracy than handcrafted feature-based machine learning. 
Naive 3D CNN model inception_resnet_1 achieved the highest accuracy. 
Fig. 4A further demonstrated model performance regarding sensitivity 
and specificity with prediction probability of patients plotted. Random 
predictions for both controls and patients had a distribution peak at 

around 0.5 while predictions generated by models had a distribution 
peak towards 0 for controls and 1 for patients. In concordance with 
accuracies and ROC-AUC reported in Table 2, handcrafted feature-based 
machine learning performed slightly better than random predictions. 
Deep feature based on pre-trained 2D CNN outperformed handcrafted 
feature-based machine learning. Naive 3D CNN models distinctly sepa-
rated patients from controls with wider gaps between the prediction 
distribution peaks of the two groups. 

Replication of the same cross-validation process was performed on 
the sMRI data of the IMH dataset and demonstrated similar observations 
(Supplementary Table 4 and Supplementary Fig. 1). 

3.2. Independent testing results on the IMH dataset with sMRI models 

To further test the generalizability of our models, accuracy, sensi-
tivity, specificity and ROC-AUC on the independent testing IMH dataset 
were reported for sMRI models trained on the NUSDAST dataset (Table 3 
and Fig. 3B). Naive 3D CNN inception_resnet_1 model achieved the 
highest accuracy of 70.98% and ROC-AUC of 0.75. Handcrafted feature- 
based machine learning had inferior performance with low accuracy. 
Deep feature based on pretrained 2D CNN and naive 3D CNN models 
with sequential architecture achieved higher accuracy but sensitivity 
and specificity were greatly imbalanced. Meanwhile, 3D CNN models 
with more complex architecture obtained higher accuracy as well as 
more balanced sensitivity and specificity. 

Prediction distributions of the models corresponded well with the 
findings on accuracy, sensitivity, specificity, and ROC-AUC. Hand-
crafted feature-based machine learning approaches and deep feature 
based on pre-trained 2D CNN barely differed from random predictions. 
Sequential models categorized most subjects into one class and thus 
resulted in highly imbalanced specificity and sensitivity. On the other 

Fig. 2. Architectures of the naive 3D CNN models. A) Three sequential models with different numbers of layers were trained and tested. Sequential_1 model contains 
1 convolutional layer (Conv), 1 maxpooling layer (Maxpooling) and 1 fully connected layer (FC); Sequential_2 model has two levels of convolutional layer and 
maxpooling layer connected to one final fully connected layer; Sequential_3 has structure 3(Conv+Maxpooling) + FC, representing 3 levels of convolutional layer and 
maxpooling layer connecting to fully connected layer. B) 3D inception module was utilized in inception models. The inception module divides the network into 
multiple branches with different convolutional kernels. C) Inception_1 model contains 1 convolutional layer and 1 maxpooling layer followed by an 3D inception 
module, the fully connected layer is replaced by a convolutional layer and sigmoid function. Inception_2 model contains 2 inception modules. D) Inception_resnent 
models employed the same stream structure as inception models. An extra connection adds the output from the previous layer and output from the inception module 
together. Inception_resnet_1 model has one inception module while inception_resnet_2 model has two inception modules. 
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hand, naive 3D CNN inception models and inception_resnet models 
satisfactorily separated patients from controls with prediction distribu-
tion peaks apart from each other, and thus achieved better classification 
results with more balanced sensitivity and specificity. 

Subsequent testing on the NUSDAST dataset based on models trained 
with the IMH dataset yielded similar conclusions (Supplementary 
Table 5 and Supplementary Fig. 1). 

3.3. Nested cross-validation results on the IMH dataset with sMRI+dMRI 
models 

To evaluate whether the integration of multimodal images could 
further improve classification results, we built up models using all three 
approaches with a combination of sMRI and dMRI maps. Accuracy, 
sensitivity, specificity and ROC-AUC trained on the IMH dataset were 
reported for sMRI+dMRI models (Table 4 and Fig. 3C). Overall, multi-
modal sMRI+dMRI models outperformed single-modal sMRI models. 
Comparing with the cross-validation results on sMRI models (Supple-
mentary Table 4), multimodal sMRI+dMRI models achieved superior 
performance for all three approaches, especially for specificity. Multi-
modal inception_resnet_1 model obtained the highest accuracy of 
81.02%, ROC-AUC of 0.84 and 5.31% improvement on specificity when 
compared with the sMRI inception_resnet_1 model. The corresponding 
visualization of prediction distributions is included in Fig. 4C. Multi-
modal 3D CNN models showed superior ability to differentiate patients 
from controls with wider gaps between their prediction distribution 
peaks. 

3.4. Interpretation of the trained CNN models 

To examine the interpretability of our models, we applied the 
gradient class activation map approach on multi-channel and 

multimodal inception_resnet_1 models which had the highest classifi-
cation accuracy on the NUSDAST dataset and IMH dataset to localize the 
discriminative regions for classification. Individual-level heatmap 
(Fig. 5, left) and group-level statistical maps (Fig. 5, right) were gener-
ated for each input channel (GM, WM, CSF, FA and MD). 

Overall, the brain regions within GM, WM, CSF, or white matter 
microstructure that contributed significantly to the classification of 
schizophrenia patients resembled previous literature in schizophrenia 
(Fig. 5, Supplementary Tables 6 and 7). Specifically, grey matter volume 
in the bilateral insula, orbital prefrontal cortex, putamen, caudate, 
amygdala, thalamus and cerebellum lobule VI were found to be critical 
features for classification. In addition, the WM volume of widespread 
deep WM regions and corpus callosum as well as the CSF of the third 
ventricle and fourth ventricle were identified. Using dMRI, the FA in 
frontotemporal, interhemispheric and cortico-striatal-thalamic white 
matter tracts, including corpus callosum, fornix, corona radiata and 
thalamic radiation as well as the MD in the lateral ventricle, third 
ventricle and fourth ventricle were reported from group-level discrimi-
nation maps. 

4. Discussion 

This study investigated the performance of both 2D and 3D CNN on 
the classification of schizophrenia patients based on multimodal struc-
tural brain imaging. Deep feature based on pretrained 2D CNN and naive 
3D CNN models trained from scratch were compared with handcrafted 
feature-based machine learning. Naïve 3D CNN models achieved supe-
rior performance in terms of both cross-validation and generalizability 
on an independent testing dataset. For the first time, we also demon-
strated that multimodal neuroimaging-based CNN models which inte-
grated both structural and diffusion MRI accomplished performance 
superior to single modality-based models. Furthermore, the 3D CNN 

Table 2 
Single modal (sMRI) cross-validation results on the NUSDAST dataset.    

ACC SP SE ROC-AUC 

Handcrafted feature-based machine learning 
Linear SVM 69.85% 

(±4.02%) 
67.98% 
(±4.70%) 

71.63% 
(±3.93%) 

0.78 
(±0.04) 

Nonlinear SVM (RBF kernel) 
70.22% 
(±5.28%) 

75.41% 
(±3.56%) 

65.25% 
(±7.95%) 

0.78 
(±0.05) 

Deep feature based on pretrained 2D CNN 

VGG16 
68.05% 
(±5.22%) 

63.53% 
(±9.81%) 

72.29% 
(±5.89%) 

0.75 
(±0.04) 

Xception 66.59% 
(±7.92%) 

69.43% 
(±7.81%) 

63.84% 
(±10.87%) 

0.73 
(±0.07) 

Resnet101 70.59% 
(±6.83%) 

69.52% 
(±9.59%) 

71.55% 
(±10.72%) 

0.78 
(±0.04) 

Densenet121 
69.07% 
(±3.21%) 

67.95% 
(±7.84%) 

70.12% 
(±8.21%) 

0.79 
(±0.05) 

Inception_V3 
72.41% 
(±4.70%) 

70.94% 
(±8.45%) 

73.74% 
(±5.86%) 

0.82 
(±0.05) 

Inception_resnet_V2 72.40% 
(±3.82%) 

70.88% 
(±4.38%) 

73.77% 
(±9.17%) 

0.79 
(±0.06) 

Naive 3D CNN models 

Sequential_1 77.78% 
(±3.56%) 

80.32% 
(±6.98%) 

75.35% 
(±8.08%) 

0.82 
(±0.04) 

Sequential_2 
76.50% 
(±3.52%) 

75.91% 
(±7.12%) 

77.07% 
(±2.58%) 

0.79 
(±0.05) 

Sequential_3 
73.91% 
(±2.17%) 

73.13% 
(±7.13%) 

74.57% 
(±4.48%) 

0.77 
(±0.04) 

Inception_1 77.71% 
(±4.05%) 

76.90% 
(±6.62%) 

78.42% 
(±5.36%) 

0.81 
(±0.04) 

Inception_2 76.24% 
(±3.52%) 

78.08% 
(±4.47%) 

74.42% 
(±7.40%) 

0.79 
(±0.05) 

Inception_resnet_1 
79.27% 
(±3.92%) 

80.44% 
(±5.96%) 

78.15% 
(±4.12%) 

0.81 
(±0.05) 

Inception_resnet_2 
78.76% 
(±3.70%) 

81.54% 
(±5.12%) 

76.10% 
(±4.55%) 

0.81 
(±0.05) 

The results of outer cross-validation of all three approaches are listed with mean (+/− standard deviation). Both deep features based on pretrained 2D CNN models and 
naive 3D CNN models obtained higher accuracy than handcrafted feature-based machine learning. Naive 3D CNN models obtained higher accuracy than deep feature 
2D CNN models. The highest accuracy obtained within each approach is highlighted in bold. The highest accuracy is obtained by Inception_resnet_1 across all ap-
proaches. Abbreviations: ACC – accuracy, SP – specificity, SE – sensitivity, ROC-AUC - area under the receiver operating characteristic curve. 
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models were interpreted with gradient class activation maps to identify 
brain regions critical for classification. We localized insula, orbital 
prefrontal cortex, striatum, thalamus, cerebellum lobule VI in grey 
matter volume, cortico-subcortical fiber tracts in FA and enlarged ven-
tricles in CSF and MD. These areas were consistent with previous liter-
ature and supported the salience network/striatum dysfunction 
hypothesis in schizophrenia. 

4.1. CNN performed better than handcrafted feature-based machine 
learning 

The classification performance in previous studies varied due to 
different subject selection criteria, preprocessing protocols and model 
implementation settings (Arbabshirani et al., 2017; Winterburn et al., 
2019). We implemented the benchmark handcrafted feature-based 
machine learning and CNN models on the same data for a fair compar-
ison among different approaches. In our cross-validation results, deep 
feature approach based on pre-trained 2D inception_v3 outperformed 
nonlinear SVM with a gap of 9.05% in accuracy. Naive 3D inception_-
resnet_1 model trained from scratch outperformed deep feature 
approach with 6.87% improvement in accuracy. Compared to other 
diseases such as Alzheimer's disease which is characterized by distinct 
and specific atrophy patterns, the neuroanatomical alterations in 
schizophrenia tend to be subtle, variable and widely distributed (Kelly 
et al., 2018; Van Erp et al., 2018). The superior performance of CNN 
models reported here further demonstrated its powerful capabilities of 

anatomical contextual information extraction and feature learning, 
which are critical for schizophrenia classification. A recent study on 
predicting clinical improvement in psychosis with functional MRI 
compared handcrafted feature-based machine learning and deep 
learning, which yielded consistent findings with our work (Smucny 
et al., 2021). Further, the independent testing results indicated higher 
generalizability of 3D CNN models compared to handcrafted feature- 
based machine learning, which is critical to real-world applications. 
Feature extraction in handcrafted feature-based machine learning might 
be affected by heterogeneity in clinical and demographic factors such as 
disease duration, medications, age, and hence pose restrictions on 
applying trained models to new data (Arbabshirani et al., 2017). Our 
approach demonstrated the potential of 3D CNN as an efficient deep 
learning model for classifying schizophrenia with unseen data. 

4.2. 3D naive CNN performed better than deep feature based on 
pretrained 2D CNN 

Our results showed that naive 3D CNN trained from scratch out-
performed deep feature approach based on pretrained 2D CNN in terms 
of both cross-validation and independent testing results. Previous 
studies compared 2D and 3D CNN models as well as models trained from 
scratch and transfer learning in other classification tasks (Kermany 
et al., 2018; Litjens et al., 2017; Yang et al., 2018b; Yu et al., 2019; Zhu 
et al., 2019). Transfer learning that included both fine-tune and deep 
feature approaches have been shown to be superior in many 2D image 

Fig. 3. Classification Accuracy in cross-validation and 
independent testing across all models. Row A represents 
cross-validation results on the NUSDAST dataset using 
sMRI models. Some deep feature models performed better 
than handcrafted feature-based machine learning. Naive 
3D CNN models achieved higher accuracy than both 
handcrafted feature-based machine learning and deep 
feature based on pretrained 2D CNN. Row B represents 
independent testing results on the IMH dataset using sMRI 
models trained with the NUSDAST dataset. Most naive 3D 
CNN models achieved relatively high accuracy except 
sequential_2 model. Row C represents cross-validation 
results on the IMH dataset using sMRI+dMRI models. 
Naive 3D CNN models achieved higher accuracy than 
both handcrafted feature-based machine learning and 
deep feature based on pretrained 2D CNN. In overall, 3D 
Inception_resnet_2 model achieved the highest accuracy 
across all tasks.   
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classification tasks, especially when compared to new models trained 
from scratch with limited sample sizes (Kermany et al., 2018; Yang et al., 
2018b; Yu et al., 2019). Deep feature approach outperformed the fine- 
tune approach in a task of tumor classification based on MRI patches 
(Zhu et al., 2019). Moreover, 3D CNN models trained from scratch 
performed better than 2D models trained from scratch in the classifi-
cation of pulmonary nodules (Dou et al., 2017; Liu and Kang, 2017). 

To date, there is no consensus regarding the performance compari-
son between transfer learning approaches based on 2D CNN and 3D CNN 

models trained from scratch. Our results suggest that 3D networks are 
more suitable for 3D MRI data-based classification as compared to 2D 
networks. With convolution and pooling in 3D CNN models operating in 
a cubic manner using 3D kernels, 3D CNN models are naturally more 
suitable for volumetric medical image processing with higher profi-
ciency in processing 3D spatial and contextual information than 2D 
networks. This in turn results in more efficient feature representations 
across levels, which is critical for schizophrenia identification. 

4.3. Multimodal inputs and complex topologies improved classification 
accuracy 

Multimodal imaging-based models integrating sMRI and dMRI data 
outperformed single-modal models with only sMRI data for all three 
approaches. Notably, the integration of multimodal information greatly 
improved classification specificity, which is essential for classification 
with imbalanced classes. Multimodal features provide information from 
different perspectives thus allowing models to understand the neural 
substrates associated with schizophrenia with complementary infor-
mation from various modalities. Previous studies illustrated the benefits 
of combining sMRI and dMRI as well as fMRI for the classification of 
schizophrenia using handcrafted feature-based machine learning (Isobe 
et al., 2016; Lei et al., 2020; Saarinen et al., 2020; Salvador et al., 2019), 
suggesting the possibility of future research involving the incorporation 
of additional neuroimaging modalities. 

In addition to using multimodal inputs, 3D CNN models with com-
plex topologies such as inception module and residual module improved 
the classification accuracy further. The inception module divides the 
network into multiple branches with different convolutional kernels 
thus allowing operating convolutions with different kernels on the same 
level (Szegedy et al., 2015). The residual module allows incorporation of 
information from previous layers (He et al., 2016). Together, the 
inception module and residual module enhanced the feature learning 
process of CNN and upgraded the performance of developed models. A 

Fig. 4. Prediction probability distribution of schizophrenia and controls in cross-validation and independent testing across all approaches. Random predictions for 
both controls (blue) and patients (orange) have a distribution peak at around 0.5 (first column). Y-axis represents the predicted probability of being patient from 0 to 
1. Prediction probability distributions are presented in the following order: handcrafted feature-based machine learning are in the green box, deep feature based on 
pretrained 2D CNN are in the red box and naive 3D CNN models are in the purple box. Row A represents cross-validation results on the NUSDAST dataset using sMRI 
models. Predictions generated by the proposed models demonstrated higher than randomness accuracy, which had wider gaps between the predicted probability 
distributions of controls and patients. Naive 3D CNN models performed the best with clear separation of patients and controls. Row B represents independent testing 
results on the IMH dataset using sMRI models trained with the NUSDAST dataset. Handcrafted feature-based machine learning approaches and deep feature based on 
pretrained 2D CNN barely differ from random predictions. Most naive 3D CNN models obtained relatively higher performance, but sequential models categorize all 
subjects into one class. Inception models and Inception_resnet models obtained better classification results with more balanced specificity and sensitivity. Row C 
represents cross-validation results on the IMH dataset using sMRI+dMRI models. Handcrafted feature-based machine learning and deep feature based on pretrained 
2D CNN performed better than random predictions. Naive 3D CNN models demonstrated better performance with wider gaps between the prediction of patients and 
controls. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
Single modal (sMRI) independent testing results on the IMH dataset.    

ACC SP SE ROC- 
AUC 

Handcrafted 
feature- 
based 
machine 
learning 

Linear SVM  54.02%  85.53%  37.84%  0.72 

Nonlinear SVM (RBF 
kernel)  

42.41%  97.37%  14.19%  0.73 

Deep feature 
based on 
pretrained 
2D CNN 

VGG16  66.52%  59.21%  70.27%  0.71 
Xception  65.62%  36.84%  80.41%  0.70 
Resnet101  64.73%  69.74%  62.16%  0.73 
Densenet121  70.09%  42.11%  84.46%  0.73 
Inception_V3  67.86%  36.84%  83.78%  0.71 
Inception_resnet_V2  65.18%  48.68%  73.65%  0.70 

Naive 3D CNN 
models 

Sequential_1  62.95%  75.00%  56.76%  0.73 
Sequential_2  54.46%  93.42%  34.46%  0.72 
Sequential_3  70.09%  46.05%  82.43%  0.72 
Inception_1  68.30%  68.42%  68.24%  0.74 
Inception_2  66.96%  65.79%  67.57%  0.71 
Inception_resnet_1  70.98%  63.16%  75.00%  0.75 
Inception_resnet_2  66.96%  72.37%  64.19%  0.61 

The testing results on the independent IMH dataset using ensemble approach 
with models trained on the NUSDAST dataset are listed. The best testing accu-
racy is achieved by the Naive 3D CNN models - Inception_resnet_1, indicating 
better generalizability. 
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Table 4 
Multimodal (sMRI and dMRI) cross-validation results on the IMH dataset.    

ACC SP SE ROC-AUC 

Handcrafted feature-based machine learning 
Linear SVM 76.37% 

(±3.96%) 
52.50% 
(±13.27%) 

88.51% 
(±5.88%) 

0.82 
(±0.02) 

Nonlinear SVM (RBF kernel) 
74.58% 
(±6.36%) 

74.92% 
(±5.27%) 

74.32% 
(±11.74%) 

0.81 
(±0.04) 

Deep feature based on pretrained 2D CNN 

VGG16 
76.85% 
(±6.36%) 

55.25% 
(±12.92%) 

87.86% 
(±5.87%) 

0.82 
(±0.05) 

Xception 72.45% 
(±8.56%) 

46.08% 
(±11.22%) 

85.91% 
(±9.75%) 

0.77 
(±0.07) 

Resnet101 74.18% 
(±5.80%) 

52.50% 
(±5.82%) 

85.20% 
(±11.23%) 

0.81 
(±0.03) 

Densenet121 
77.26% 
(±3.93%) 

55.08% 
(±11.93%) 

88.51% 
(±7.54%) 

0.84 
(±0.06) 

Inception_V3 
74.19% 
(±5.57%) 

48.75% 
(±9.29%) 

87.22% 
(±4.32%) 

0.81 
(±0.04) 

Inception_resnet_V2 70.54% 
(±3.51%) 

46.00% 
(±5.33%) 

83.10% 
(±5.70%) 

0.77 
(±0.03) 

Naive 3D CNN models 

Sequential_1 78.07% 
(±3.64%) 

53.87% 
(±19.14%) 

90.46% 
(±7.74%) 

0.81 
(±0.06) 

Sequential_2 
76.61% 
(±3.72%) 

49.85% 
(±19.84%) 

90.20% 
(±8.13%) 

0.79 
(±0.06) 

Sequential_3 
74.81% 
(±4.94%) 

50.91% 
(±22.99%) 

87.10% 
(±9.61%) 

0.75 
(±0.08) 

Inception_1 80.28% 
(±2.24%) 

64.39% 
(±13.52%) 

88.41% 
(±6.91%) 

0.84 
(±0.02) 

Inception_2 76.78% 
(±3.06%) 

57.67% 
(±20.43%) 

86.64% 
(±11.31%) 

0.79 
(±0.05) 

Inception_resnet_1 
81.02% 
(±2.52%) 

70.42% 
(±12.00%) 

86.44% 
(±6.45%) 

0.84 
(±0.03) 

Inception_resnet_2 
79.43% 
(±2.46%) 

63.73% 
(±18.18%) 

87.39% 
(±8.74%) 

0.84 
(±0.03) 

The cross-valuation results using both sMRI and dMRI of all three approaches are listed with mean (+/− standard deviation). Naive 3D CNN models achieved higher 
accuracy than both handcrafted feature-based machine learning and deep feature approach. Multimodal models generally outperformed the single-modal models 
based on sMRI only. The highest accuracy obtained by each approach is highlighted in bold. The overall highest accuracy was obtained by Inception_resnet_1. 

Fig. 5. Gradient class activation mapping for schizo-
phrenia classification. The left panel shows heat maps 
generated by gradient class activation map of one repre-
sentative subject at the convolutional layer in each 
network branch of different modalities respectively. Hot 
colors represent more significant contribution to classifi-
cation results. The right panel represents T maps (Bon-
ferroni correction at p < 0.01) generated from group-level 
statistical analysis with heat maps of all subjects in each 
modality. Bright colors represent a higher chance that 
these regions contribute more to classification results at a 
group-level. The region names in grey matter and FA are 
listed in Supplementary Tables 6 and 7. (For interpreta-
tion of the references to color in this figure legend, the 
reader is referred to the web version of this article.)   
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previous study examining the classification of lung nodules using CT 
also found that the inception module outperformed sequential models 
(Liu and Kang, 2017) but the residual module did not enhance the CNN 
models' performance. The small scaling factor used in that study might 
have attributed but another plausible factor is the training sample size as 
a previous study with a rather large sample size achieved good cross- 
validation performance with sequential models (Oh et al., 2020). 
Future work is needed to validate the hypothesis that training the pro-
posed multimodal 3D CNN models with complex topologies with a 
larger sample yields higher accuracy and generalizability. 

An interesting observation is that models with deeper architecture 
did not improve accuracy. Sequential_1 model, which had the least 
layers, achieved the highest accuracy among the three sequential 
models. Inception_1 and inception_resnet_1 model outperformed incep-
tion_2 and inception_resnet_2 model, both of which had deeper archi-
tectures. This is in line with a previous study, which had the same 
observation and concluded that using 3D CNN to classify lung nodules 
using CT did not need a very deep network (Liu and Kang, 2017). Our 
speculation is that preprocessing steps like downsampling and regis-
tration to standard template caused spatial or finer information loss, 
which in turn affected the efficient feature representations at very deep 
layers and subsequently led to lower performance of models with deeper 
architecture. Future investigations using high-resolution 3D neuro-
imaging data in native space is needed to evaluate models with deeper 
architectures. 

4.4. Gradient class activation map identified critical regions for 
classification 

Explanation of the classification process verifies the accountability of 
the model and also leads to biological inference (Guidotti et al., 2018). 
Using the gradient class activation map approach, we identified grey 
matter volume in the insula, striatum, thalamus, FA in cortico- 
subcortical fibers and enlarged ventricles as crucial brain structural 
features for differentiating schizophrenia patients from controls. These 
findings coincide with earlier schizophrenia literature. 

Converging evidence have shown widespread grey matter reduction 
and cortical thickness thinning in frontal, temporal lobes and subcortical 
regions including striatum and hippocampus (Bora et al., 2011; Haukvik 
et al., 2018; Koelkebeck et al., 2019; Mitelman, 2019; Pergola et al., 
2015; Van Erp et al., 2018; Zheng et al., 2019). Specifically, our results 
resembled previous meta-analysis findings that schizophrenia is asso-
ciated with grey matter reduction at bilateral insula, medial frontal 
cortex and the thalamus (Bora et al., 2011). Insula is the critical 
component of the salience network which is responsible for switching 
between default mode network and central execution network (Srid-
haran et al., 2008). Abnormalities in the frontal lobe (especially insula, 
orbital prefrontal cortex and anterior cingulate cortex), striatum and 
thalamus suggest impairment in the cortico-striatal-thalamic loop cir-
cuits, which serve as a discrete regulatory loop circuit for salience 
network. Cerebellum lobule VI found in our results corresponds to the 
cerebellar contribution to the salience network (Habas et al., 2009). 
Along with our findings here, it collectively supports the salience 
network dysfunction hypothesis which impairs cognitive control, 
behavior and emotion thereby leading to symptoms of schizophrenia 
(Fornito et al., 2012; Miyata, 2019; Palaniyappan et al., 2013; Pala-
niyappan and Liddle, 2012; Peters et al., 2016; Van Den Heuvel and 
Fornito, 2014). 

In parallel, widespread FA was reported in dMRI meta-analysis 
studies with regional specificity at frontotemporal, interhemispheric 
and corticothalamic regions forming the cortico-striatal-thalamic loop 
circuits. This is in line with our findings from the FA maps and salience 
network dysfunction hypothesis (Cookey et al., 2014; Di Biase et al., 
2020; Kelly et al., 2018). We also identified ventricles as significant 
regions from CSF and MD maps, which corroborate with previous re-
ports of ventricle enlargement (Gaser et al., 2004; Kempton et al., 2010; 

Kuo and Pogue-Geile, 2019; Wright et al., 2000). The findings of our 
study suggest that the 3D CNN model we developed has the potential to 
identify crucial neuroanatomical features for classification of psychiatric 
illnesses such as schizophrenia from healthy controls. This in turn allows 
for a better understanding of the neural basis of schizophrenia. 

4.5. Limitations and considerations 

There are some considerations related to the adoption of 3D CNN 
models in neuroimaging-based classification. Firstly the high computa-
tional cost during training caused by the high dimensionality of input 
data and the large number of parameters may constrain the development 
of 3D CNN models. In this study, we downsampled the input maps to 
reduce the GPU memory requirement. The depths of the models are also 
affected by the GPU memory constraints. Secondly, the increasing 
number of parameters in 3D CNN compared to 2D CNN makes it difficult 
to train the 3D models with limited training samples. It limits both the 
model architecture and the model performance. The major limitation of 
this study is that the sample size is relatively modest, especially for 3D 
CNN network training. This might result in less efficient feature 
extraction and lower generalizability. Registration error and down-
sampling may also ignore some subtle anatomical differences and low- 
level contextual features that could be important for classification. 
Furthermore, the 2D CNN transfer learning approach adopted here did 
not contain any manipulation of the produced feature maps. Further 
research on deep feature fusion across dimensions and scales might 
improve the performance of pretrained 2D CNN models. Future work in 
native brain space with data augmentation is needed to improve 
generalizability by accounting for inter-subject anatomical variability 
and data quality variation across sites. 

5. Conclusion 

To classify patients with schizophrenia and healthy controls using 3D 
brain MR images, we developed multimodal 3D CNN models with 
different architectures and utilized deep feature approach based on 2D 
pretrained CNN. Our study demonstrated the superiority of using 3D 
CNN models and multimodal deep learning features extracted from 
sMRI and dMRI data over approaches using handcrafted feature-based 
method and single neuroimaging modality. Based on the learned 3D 
CNN models, we further localized the crucial regions for classification 
which consisted of grey matter volume in insula, orbital prefrontal 
cortex, striatum, thalamus, FA in cortico-subcortical fiber tracts and 
enlarged ventricles. These findings were in agreement with previous 
literature and supported the salience network/striatum dysfunction 
hypothesis in schizophrenia. This study highlighted the potential of CNN 
for automatic and efficient feature extraction from 3D brain structural 
imaging data and multimodal imaging information integration, thereby 
providing an interpretable framework for objective imaging-based as-
says for individual-level classification in psychiatric disorders. 
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