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Abstract
Neuroengineering research over the last two decades has
demonstrated promising evidence on the use of brain-computer
interface (BCI) to enhance functional recovery and indepen-
dence in individuals with motor impairments. By translating
brain activity, BCI bypasses the impaired neuromotor system, to
control computers/machines. BCI-controlled robots are
designed for motor assistance to aid paralyzed patients as well
as for rehabilitation to enhance motor recovery. In this article,
we review the advances in BCI and brain controlled robotics for
rehabilitation and assistance of upper and lower limb motor
functions over the last five years. The article emphasizes on the
emerging trends in BCI-controlled robotics to expand its inter-
vention capabilities as well as to resolve existing challenges
hindering its widespread clinical use.
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Introduction
Brain computer interface (BCI) is an emerging neuro-
technology that has demonstrated promising potential
to enhance the quality of life for people with neuro-
muscular disorders resulting from stroke, spinal cord

injury (SCI), and amyotrophic lateral sclerosis (ALS).
Leveraging the advances in neuroscience, robotics, and
machine learning, BCI research over the past two de-
cades has demonstrated its application as prosthetic,
assistive, and rehabilitation technology to replace, assist,
www.sciencedirect.com
and augment or restore the lost motor functionality of
the brain respectively. Assistive and prosthetic tech-
nology employ a straightforward implementation of BCI-
robotics in which the brain activity elicited by the user is
translated into a control output for a robot that executes
the intended task [1] thereby imparting independence
to the users. Rehabilitation technology employs a more
complex neurophysiologically guided design which fa-
cilitates neuroplasticity as a result of operant condi-
tioning feedback delivered through robot-guided
movement of the affected limb contingent upon

detecting neuromotor activity by BCI [2]. This mode of
BCI rehabilitation has demonstrated evidence of
neuromodulation and resultant augmentation in motor
outcome for stroke survivors who have reached a func-
tional plateau following traditional rehabilitation [3].

The key components of a BCI-robotic system are task-
specific brain activation patterns, brain data acquisi-
tion, brain decoding machine learning tools, and con-
trol/feedback device. Overall clinical efficacy of BCI-
robotics heavily rely on how closely the robot move-

ment correlates with the intended movement which in
turn relies on the robustness of BCI determined by
brain signal quality and the performance of decoding
tools [2]. Although invasive intracortical recordings
offer more reliable brain data with better spatial reso-
lution [4], the surgical risks in this approach have
encouraged most researchers to focus on non-invasive
recordings such as electroencephalography (EEG).
The mental state employed by BCI is the kinesthetic
imagination/attempt to move the target limb to facili-
tate cortical reorganization of the lesioned hemisphere

[2,5]. BCIs operated using power modulations associ-
ated with inhibition of the contralesional side and
excitation of the ipsilesional side have proven to be
effective for post-stroke motor recovery [3,6].
Furthermore, machine learning plays a critical role to
generate fast, accurate, and reliable control signals that
drive the robotic device. Several decoding algorithms
have been proposed in EEG-BCI [7]. However, linear
classifiers that decode sensorimotor rhythm based
features are extensively used in BCI clinical studies.
Furthermore, clinical study designs report the use of

different techniques [8] to deliver contingent feed-
back to the user, by integrating BCI with robotic de-
vices, electrical stimulation, and virtual reality.
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Related work
Over the last 2 decades, several BCIs using variety of
neural inputs, feedback modalities, and experiment
protocols have been reported. The most extensively
explored application of BCI is post-stroke upper ex-
tremity (UE) rehabilitation and comprehensive reviews
of this topic have been published recently in the arti-
cles [6,9e14]. Additionally [8,15], reported meta-
analyses evaluating the clinical effectiveness of BCI
for stroke recovery. Robot assisted rehabilitation, by
itself, has shown to promote recovery by employing

intensive and repetitive motor training. The robotic
devices and exoskeletons that can potentially be
coupled with BCI to be used in rehabilitation applica-
tions have been reviewed in reports [11,16] for UE and
[16e19] for lower extremity (LE). Further (PDE
Baniqued et al., medRxiv https://doi.org/10.1101/2019.
12.11.19014571), reported a systematic review of post-
stroke hand rehabilitation research using BCI-robotics.
The BCI applications for neuromuscular degeneration
and spinal code injury have been reviewed in arti-
cles [20e22].

Organization and overview
In this paper, we focus on the recent studies within last
5 years that reported rehabilitative and assistive use of
BCI-controlled robots that target upper and lower ex-
tremities (UE/LE). We present the current state-of-the
art stroke rehabilitation for UE/LE as well as research on
tetraplegic patients to operate gait exoskeletons and
prosthetic arms. In this paper, we emphasize on the

recent technological innovations reported in BCI-
robotics that show high potential for eventual clinical
application. The research trends include the use of
decoding tools such as deep neural networks, wearable
robots including soft robotics, training protocols
exploring BCI for priming and efficacy of other feedback
modalities and hybrid BCI systems supplemented with
non-brain signals. Lastly, the challenges to be addressed
in the current BCI and rehabilitation robotics and a few
anticipated directions of future research are presented.

BCI-robotics for UE motor rehabilitation
In light of the devastating motor impairments resulting
from stroke and its impact on the quality of life of the
survivor, the most common focus of clinical application
of BCI is post-stroke UE motor rehabilitation. The
breakthrough report in this field was published over a

decade ago [5] in which a magnetoencephalography
(MEG)-BCI controlled hand orthosis was used for
stroke rehabilitation. The study reported that the users
learned to modulate their mu rhythm amplitude to
achieve binary control of an orthosis, even though they
could not achieve significant clinical improvement.
Following this, a multitude of non-invasive BCIs were
reported as an intervention tool in combination with
Current Opinion in Biomedical Engineering 2021, 20:100354
feedback delivered using robot or orthosis. BCI for UE
stroke rehabilitation have been reviewed and system-
atically evaluated in articles [6,9,11e14].

Several controlled clinical trials investigating efficacy of
BCI-robotics have reported intervention-induced UE
motor improvement in terms of Fugl-Meyer Assessment
(FMA) and Action Research Arm Test (ARAT). The

studies however vary in the patient demographics,
impairment level, and lesion location, the intensity and
interval between experiment sessions and the type of
robot (haptic knob [23], a orthotic device [24e26], hand
exoskeleton [27e30]). The proof-of-concept study in
article [24] reported that BCI training with contigent
orthotic feedback prior to physiotherapy resulted in
significant improvement of FMA in chronic stroke pa-
tients. The recent studies using BCI-robotics are listed
in Table 1. These studies also explored the neurophys-
iological evidence of the effect of intervention and pro-

gression to motor recovery. To this end [27,29], reported
evidence of intervention-induced cortical plasticity
mechanisms as seen in functional and structural
neuronal reorganization. Another topic explored is the
long-lasting impact of BCI-intervention. Recent study in
article [25] reported significant FMA increment after
BCI-robotics intervention in chronic stroke subjects and
a 6 month follow-up revealed that the patients preserved
their FMA scores. In study [28], increment in both FMA
and ARAT were reported after a repetitive intense
rehabilitation during a 2e9 month follow-up after BCI-

robotics intervention. A BCI-exoskeleton for elbow
training was proposed in study [30], which not only re-
ported significant improvement in FMA and ARAT
scores, but also reported improvement in post-therapy
movement quality based on motion kinematics. Con-
trary to the classical BCI that trains grasp and reach
movement, [contd.].

[contd.] a BCI-based finger extension training for
chronic stroke patients using a finger-individuated
orthosis was reported in the study [32]. The results
indicate that the subjects with higher modulation of

sensorimotor rhythms (SMR) reported better functional
outcomes and improved finger extension ability. This
indicates the potential of BCI-robotics to integrate
rehabilitation of gross and fine hand movements.

The BCI studies mentioned above use bulky and hard-
bodied robots which are often expensive, require com-
plex controls, and restrict range of motion [33]. Soft
robots are class of robots that are light and wearable and
employ flexible mounted actuators. Application of soft
robots has been demonstrated to enhance efficacy of

hand rehabilitation [34]. Hence, by integrating soft
robots with BCI, a non-restrictive, natural, and realistic
movement can be introduced in the feedback loop
www.sciencedirect.com
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Table 1

BCI-robotics for post-stroke UE rehabilitation.

Study Number of patients Robotic device BCI training Outcome

(Ramos et al., 2019) [25] 28 chronic Hand & arm orthosis 20 sessions BCI: Gain in cFMA
(p = 0.015) at 6 months
after

(BCI:16 & Control:12) (2hrs/session, 5
sessions/week, 4
weeks)

intervention

(Wu et al., 2020) [29] 25 subacute Hand exoskeleton 20 sessions BCI: Gain in FMA
(16.93 ± 2.56, p < 0.05)

(BCI:11 & Control:14) (1hr/session, 5
sessions/week, 4
weeks)

Inter-group differences
p < 0.05 in FMA, ARAT,
WMFT

(Frolov et al., 2018) [27] Case study Hand exoskeleton 10 sessions Gain in cFMA>5 at 3
time points

1 chronic (1 session/day, 2 weeks)
(Carino et al., 2019) [26] 9 subacute Hand exoskeleton 12 sessions Gain in FMA for 6 out of

9 patients
(1hr/session, 3
sessions/week, 4
weeks)

(Kondur et al., 2020) [28] 11 chronic Hand orthosis 10 sessions Gain in FMA and ARAT
(p < 0.05) at 2 time
points

(1 session/day, 2 weeks)
(Bhagat et al., 2020) [30] 10 chronic Elbow exoskeleton 12 sessions Gain in FMA

(3.92 ± 3.73) and ARAT
(5.35 ± 4.62), p < 0.05

(2hrs/session, 3
sessions/per week, 4
weeks)

(Cheng et al., 2020) [31] 10 chronic Soft robotic glove 18 sessions BCI: Gain in FMA
(p = 0.0431)

(BCI:5 & Control:5) (1.5hrs/session, 3
sessions/per week, 6
weeks)

No intergroup
differences in FMA and
ARAT

FMA: Upper-Limb Fugl-Meyer Assessment; cFMA: Combined hand and arm scores (motor part) from the modified FMA; ARAT: Action Research Arm Test;
WMFT: Wolf Motor Function Test.
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which may have a positive impact in intervention. A
pilot study in this direction was presented in article [31]
which reported a stroke rehabilitation system inte-

grating EEG-BCI control of a soft robotic glove and task-
specific visual feedback. The study reported improve-
ment in FMA and ARAT and provided evidence of a
phenomenon of kinesthetic illusion in subjects. These
findings need to be confirmed by large scale clinical
trials, and neurological evidence for the link between
perceived motor activity and actual motor recovery.

BCI-driven exoskeleton for LE motor
rehabilitation
Post-stroke LE rehabilitation is a relatively less explored
application of BCI. An efficient BCI design involves
closed-loop accurate decoding of kinesthetic walking
intention and imagery by BCI as well as real-time con-
trol of the robot (or exoskeleton). While the former is
largely limited by yet non-optimized performance of LE
decoding, the latter poses several safety risks. A few
www.sciencedirect.com
studies in literature have demonstrated the feasibility of
decoding lower limb joint kinematics and kinetics
during walking using BCI. In studies [35e37], EEG was

recorded as the participant performed robot-assisted
gait training. In studies [35,36] moderate LE joint ki-
nematics decoding accuracies based on offline analyses
were reported. A connectivity analysis in study [37],
reported significant improvement in gait performance in
terms of functional ambulation capacity as well as in
functional connectivity and sensorimotor plasticity
following the gait training. The modulations in senso-
rimotor rhythms and movement related cortical poten-
tial associated with gait decoding performance have also
been investigated in study [38]. Furthermore, as

recently reviewed by Lennon et al. [19], there is a lack
of consensus regarding the spectral and temporal dy-
namics of neural encoding of gait patterns. This limits
the use of non-invasive brain data for consistent and
reliable gait decoding. Consequently, there are no clin-
ical controlled trials conducted till date that
Current Opinion in Biomedical Engineering 2021, 20:100354
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demonstrate effectiveness of BCI-robotics in LE stoke
rehabilitation.

Nevertheless, recent reports on technological advances
of BCI gait decoders promise high accuracy and poten-
tial for continuous gait decoding. Recently [39], re-
ported a rigorous comparison of several EEG-based gait
decoding approaches to evaluate their feasibility in the

design of an online decoding system. Based on the
comparison of methods ranging from simple linear de-
coders to recurrent neural networks (RNN), this study
provided technical recommendations on how to attain
precise control of BCI-based exoskeleton using variants
of RNN based on offline benchmarking. Also, it is worth
noting that, a recent study on healthy subjects using a
long short-term memory (LSTM) deep neural network
achieved robust reconstruction of gait [40] evaluated in
both offline and online scenarios.
BCI-robotics for motor assistance
BCI using invasive intracortical recordings have been
shown to enable neural control of a robotic arm as well
as lower limb exoskeleton. A case study in article [41]
was the first report on using invasive-BCI that allowed a

tetraplegic patient with SCI to continuously control a
multi-joint robotic arm. Further studies have reported
neuroprosthetic control of prosthetic arm by tetraple-
gic patients paralyzed as a result of stroke [42] or
ALS [43,44]. The articles [20e22] comprehensively
reviewed the application of BCI in paralysis as a
communication, control, and rehabilitation tool.
Following this, there has been an increased interest to
design non-invasive BCI to control robotic arms with
higher degrees of freedom for possible motor assistance
as well as rehabilitation. This is in contrast to the
classical non-invasive BCI that rely only on uni/bidi-

rectional motor control. Recent studies on non-invasive
BCI have reported higher dimensional continuous
motor control using novel decoding approaches as well
as control strategies to tackle low signal-to-noise ratio
of non-invasive signals. The studies have been evalu-
ated in healthy individuals [45e48] and in paralyzed
patients and amputees [49,50].

A closed-loop prosthetic control by BCI was reported in
article [50] using EEG and in article [49] using MEG.
Recently [45,46], demonstrated accurate continuous

control of a robotic arm with multiple degrees of
freedom by combination of two sequential low dimen-
sional controls. In study [48], an online BCI control of a
virtual robot in a simulated environment using low fre-
quency time domain movement-related cortical poten-
tials was demonstrated. Further, two novel and
unconventional research directions were reported in
task strategy [51] and in control framework [52] of BCI.
In contrast to the conventional collaborative tasks
Current Opinion in Biomedical Engineering 2021, 20:100354
executed by BCI-robots [51], reported a multitasking
strategy by simultaneously controlling a robotic arm
using BCI while user’s own arm performed another task.
In study [52], a control framework for BCI-robot was
presented that generated a continuous robot trajectory
from a stream of discrete BCI outputs. These systems
were evaluated by healthy subjects and the results
indicated potential for better and realistic robotic con-

trol using BCI. The technological advances also include
deep learning-powered BCI [47], that continuously
controlled a robotic arm to six directions in a 3D space.
The study reported a multi-directional convolution
neural network-bidirectional LSTM network-based
deep learning. With the integration of these techno-
logical innovations, non-invasive BCI will be capable of a
continuous and highly dexterous control to an assistive
robotic device.

Studies that report BCI-control of LE exoskeleton have

been reviewed in articles [17,53] and are limited to non-
invasive BCI. Currently, the studies that demonstrate
closed-loop BCI-LE exoskeleton [38,54] detect gait
intention of the SCI user to trigger the movements of
the exoskeleton. Several studies that report offline gait
decoding (mentioned in Section BCI-driven exoskel-
eton for LE motor rehabilitation), are yet to be evalu-
ated in a real-time control scenario. Recent studies have
also reported the use of steady state visually evoked
potential (SSVEP) [55] and imagined hand movement
[56] to control LE exoskeleton for healthy subjects.
Conclusion and future prospects
BCI research is currently at an exciting juncture, as
several studies have confirmed its clinical impact and
presented neurophysiological evidence for BCI-
induced neuroplastic changes. While the potential of

BCI is encouraging, with only limited number of clinical
trials available, its intervention efficacy is only moder-
ately conclusive at present. The clinically meaningful
differences observed from small sample clinical trials
are not generalizable and reports on impact of inter-
vention in activities of daily living are limited. These
factors hinder the translation of rehabilitation therapies
into standard clinical practices. As mentioned in Sec-
tion BCI-robotics for UE motor rehabilitation, the
design parameters in current BCI systems are largely
heterogeneous. Hence, future research must consider

standardization of the rehabilitation protocols to opti-
mize the intervention effect, as well as confirm the
effect size of BCI with large sample size and long-term
studies [12e15]. Nevertheless, several promising re-
sults have been reported in recent publications that
merit further research and large scale validation. In this
section, we discuss these technological trends to be
considered that may further enhance the efficacy of
BCI-robotics. An illustration of BCI-robotics framework
www.sciencedirect.com
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Figure 1

Schematic of BCI-robotics system. BCI system employs invasive and non-invasive modalities to acquire neural activities generated when the user
performs a motor task. The signal processing and machine learning tools then extract relevant features from the acquired signals. A control signal to
operate a robotic device is generated by classification and translation of these features. Assistive BCI enables the user to control movement of robots.
Rehabilitative BCI facilitates robot-guided motor training and targets recovery of neuromotor function of the user. The research and advances in each
component that merits further investigation are listed.
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for motor rehabilitation and assistance is given in
Figure 1. The figure also lists the state-of-the-art design
practices as well as emerging trends in BCI-robotics.

In rehabilitation BCI, several studies have reported
priming the brain prior to intervention to enhance the
overall functional outcome. Although some studies
[57,58] have reported tDCS to potentiate the effects of
BCI, very limited evidence is available on its efficacy [15].
Recently, pre-movement SMR training to enhance motor
performance was demonstrated in healthy [22] and
chronic stroke patients [32]. Further, intensive strategies
by integrating BCI-robotics with other interventions such
as BCI-neuromuscular electrical stimulation [15] and

BCI-virtual reality [59] may be considered for positive
impact. In motor assistance, several case studies have
demonstrated continuous control of robots using invasive
BCI. To improve the reliability of non-invasive BCI in
delivering precise and accurate robotic-control, a solution
proposed in literature is the use of hybrid or shared control
[17,60]. An autonomous control of hand exoskeleton by
tetraplegic patients was demonstrated in study [60] using
hybrid system in which ocular activity supplemented the
motor imagination based brain activity. Further, shared
control strategy in which sensors mounted on robots to
www.sciencedirect.com
assist in making motor control decision [17] may also be
considered.

One potential challenge in deployment of BCI-
controlled robotics for clinical application is the accep-
tance and ease-of-use for the user. Whether it is move-
ment generated by the robot or robot-guided movement
of the limb, the efficacy of the system depends on
whether the user perceives a realistic movement and can
experience a sense of ownership/agency (SoO/SoA). This
factor of embodiment has been found to have beneficial
effects in rehabilitation [61] as well as in neuroprosthesis
[62]. Hence, a design consideration in future BCI-
robotics may be to include subjective assessment of

SoO/SoA [61]. In rehabilitation applications, based on
satisfaction and usability assessment by user [34], soft
robots have been reported to be acceptable by individuals
with neurological impairments. Hence, natural and non-
restrictive movement delivered BCI-controlled soft ro-
botics is a step in the right direction to enhance overall
efficacy of BCI in stroke rehabilitation [31].

Lastly, one of the critical factors that determines the
overall efficacy of BCI is the machine learning tools that
it employs for motor detection. Currently, the clinical
Current Opinion in Biomedical Engineering 2021, 20:100354
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studies report the use of linear decoders for both UE and
LE decoding [17]. It is worth noting that most of the
high-performing classification and decoding algorithms
reported in recent BCI publications have not yet actu-
ally been validated in closed-loop BCIs. We emphasize
the evaluation of the powerful innovative decoders
[39,63] as well as control strategies [52] to generate
smooth, accurate and reliable control of robots with

higher degrees of freedom for higher clinical impact.

In summary, over the last few years, as highlighted in
this article, several technological advances that can
enhance clinical capabilities of BCI-controlled robotics
have been reported. Further research and large-scale
clinical evaluations are essential to fully exploit the
benefits of BCI in motor control and rehabilitation.
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