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Several studies in the recent past have demonstrated how Brain Computer Interface

(BCI) technology can uncover the neural mechanisms underlying various tasks and

translate them into control commands. While a multitude of studies have demonstrated

the theoretic potential of BCI, a point of concern is that the studies are still confined

to lab settings and mostly limited to healthy, able-bodied subjects. The CYBATHLON

2020 BCI race represents an opportunity to further develop BCI design strategies for

use in real-time applications with a tetraplegic end user. In this study, as part of the

preparation to participate in CYBATHLON 2020 BCI race, we investigate the design

aspects of BCI in relation to the choice of its components, in particular, the type of

calibration paradigm and its relevance for long-term use. The end goal was to develop a

user-friendly and engaging interface suited for long-term use, especially for a spinal-cord

injured (SCI) patient. We compared the efficacy of conventional open-loop calibration

paradigms with real-time closed-loop paradigms, using pre-trained BCI decoders.

Various indicators of performance were analyzed for this study, including the resulting

classification performance, game completion time, brain activation maps, and also

subjective feedback from the pilot. Our results show that the closed-loop calibration

paradigms with real-time feedback is more engaging for the pilot. They also show an

indication of achieving better online median classification performance as compared to

conventional calibration paradigms (p = 0.0008). We also observe that stronger and

more localized brain activation patterns are elicited in the closed-loop paradigm in which

the experiment interface closely resembled the end application. Thus, based on this

longitudinal evaluation of single-subject data, we demonstrate that BCI-based calibration

paradigms with active user-engagement, such as with real-time feedback, could help in

achieving better user acceptability and performance.
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1. INTRODUCTION

Over the last few decades, several neuroengineering and
neuroscience studies have demonstrated how Brain Computer
Interface (BCI) technology can uncover the neural mechanisms
underlying various tasks and translate them into commands
that control an application or device (McFarland and Wolpaw,
2011; Chaudhary et al., 2016; Abiri et al., 2019; He et al.,
2020). While many studies have demonstrated the theoretic
potential of BCI, especially by deploying novel machine learning
methods for detecting distinct task-specific attributes of the
brain, a point of concern that remains is that the studies are
still confined to lab settings and mostly limited to healthy
able-bodied subjects (Lotte et al., 2018). A few case-studies
using invasive and non-invasive BCIs have demonstrated the
application of BCI as a motor assistive technology for survivors
of spinal cord injury (SCI). The reports on BCI applications
for tetraplegic patients with SCI include multi-joint robotic
arm control using intracortical recordings (Hochberg et al.,
2006), cursor control using electrocorticographic activity (Wang
et al., 2013), hand orthotic control and wheel chair control in
virtual environment using non-invasive electroencephalographic
activity (Pfurtscheller et al., 2000; Leeb et al., 2007). The
articles (Chaudhary et al., 2016, 2020; McFarland et al., 2020)
have comprehensively reviewed the application of BCI as a
communication, control, and rehabilitation tool for tetraplegic
patients and highlighted that the research in this area is yet
to fully evaluate ease-of-use for the end-user and the safe and
efficient deployment of BCI in an out-of-the-lab environment.

In recent years, several BCI competitions have been conducted
with the goal of providing high-quality brain data to researchers
to build effective tools and algorithms that may potentially
be deployed in real-world environments (Sajda et al., 2003;
Blankertz et al., 2004, 2006; Brunner et al., 2008; Tangermann
et al., 2012). The data from these competitions are usually
published as open access, allowing researchers to further
investigate the brain activity data corresponding to various
motor and cognitive tasks. These competitions have served
as a means to benchmark the performance of offline BCI
and allowed researchers to evaluate and propose novel BCI
algorithms by analysing the previously recorded data. Moving
forward from offline paradigms, the first Cybathlon was held
in 2016 (Novak et al., 2018) included BCI as one of the six
race disciplines, introducing an opportunity for benchmarking
online BCI systems and to tackle the challenges of a real-world
practical assistive application of BCI for people with tetraplegia.
The competition succeeded in showcasing BCI to the general
public and demonstrating the potential of BCI technology. The
second Cybathlon 2020 BCI race (https://cybathlon.ethz.ch/en/
event/disciplines/bci) followed a similar format and introduced
a multiplayer racing game for the participation of tetraplegic
pilots. However, Cybathlon in 2020 took place in front of a
virtual audience and the races were recorded asynchronously
due to the COVID-19 pandemic. For playing the game, the pilot
was required to send correct commands using a BCI within a
certain time frame to control the behavior of a virtual avatar. This
research article presents a detailed report on the preparation and

training of a tetraplegic pilot to participate in the Cybathlon 2020
BCI race. This research investigated the design considerations for
a real-time, real-world application of BCI, such as the choice of
training paradigms, BCI processing and decoding pipeline, and
re-calibration strategies. A longitudinal analysis of the impact
of these design aspects on the BCI performance of the pilot is
reported in this article. In addition, neurophysiological evidence
to supplement the quantitative performance metrics is presented.

A major proportion of BCI literature has focused on
improving performance of BCI applications by enhancing the
decoding performance of signal processing andmachine learning
algorithms (He et al., 2020). While this is an important
contributing factor, research has also demonstrated that mutual
learning of the machine and the user is critical for a successful
closed-loop implementation of BCI (Perdikis et al., 2018; Perdikis
and Millan, 2020). In any case, the fundamental deciding factor
for the efficiency of a BCI system is how well the end-user can
generate distinct and consistent brain activity corresponding to
each mental task. This in turn results in well-calibrated BCI
decoders that can offer better real-time performance. However,
the calibration paradigms for data collection, often involve time-
consuming, monotonous and non-engaging visual interfaces.
Researchers often overlook how well the calibration paradigms
elicit the required brain activity in the end-user (Chavarriaga
et al., 2017; Roc et al., 2020). The design parameters of the
training strategy such as the type of interface used to deliver
instructions and feedback and the type of mental task performed
by the user are yet to be optimized at a subject level (Roc et al.,
2020). Accordingly, one of the primary goals of this research was
to investigate the type of calibration and training paradigm that
offers better acceptability from the pilot and whether this choice
is beneficial for the online BCI performance.

The rules of the game developed for Cybathlon 2020 BCI
race stipulated that pilots were required to send three unique
control commands to maintain the speed or avoid deceleration
of the avatar using their BCI and a fourth control command in
which the pilots were required to prevent sending any control
signals. This effectively required a BCI that was capable of
classifying neural features associated with four mental tasks for
which the pilot elicited distinct brain activation patterns. In this
research, three motor imagery (MI) tasks were chosen, since
they closely associated with the behavior of the avatar, namely,
“move left” (left hand MI), “move right” (right hand MI),
and “switch headlights on” (both feet MI). More importantly,
BCI literature has shown that these MI tasks typically elicit
different spatio-spectral patterns of brain activation (McFarland
et al., 2000; Neuper et al., 2006; Chaudhary et al., 2016).
Thus, an effective decoding algorithm can be used to extract
discriminative information from these patterns and use them
for classification. In a MI task, the pilot performed a mental
rehearsal of the movement without overt motor output. The
BCI used in this research was based on electroencephalography
(EEG), which non-invasively measures the electrical activity
of the brain. The aforementioned power modulations typically
occur in the sensorimotor region of brain, termed as event-
related desynchronisation/synchronization (ERD/ERS), and
characterized by distinct spectral activations time-locked to
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movement task onset. These features are widely used in EEG-
BCI to decode MI (McFarland et al., 2000; Neuper et al., 2006;
Pfurtscheller et al., 2006; Nam et al., 2011). Moreover, previous
studies in SCI patients have shown that the peak, the area,
and the amplitude of the ERD in the mu and beta rhythms
were significantly altered compared to healthy participants
(Müller-Putz et al., 2014; Foldes et al., 2017). Hence, the typical
BCI design required further optimization of the processing
pipeline to identify and extract distinct brain activity from the
tetraplegic pilot. Cybathlon game rules also required to confirm
that the control was achieved solely by using BCI and that ocular
or muscular artifacts do not impact performance. Considering
the susceptibility of EEG to electronic noise and physiological
artifacts arising from sources other than the brain, such as eye
movements (He et al., 2020), the BCI design also consisted
of pre-processing, including a real-time artifact detection
and correction.

The rest of the paper is structured as follows. In section 2, the
details of study are presented including the training strategies,
components of BCI, and implementation of closed-loop BCI for
Cybathlon preparation, training, and final event. The research
outcomes of this study, including quantitative and qualitative
evaluation of BCI performance and analysis of the efficacy of
different calibration paradigms are presented in section 3. In
section 4, the discussion of the results are presented focusing on
the challenges and research avenues for future research that may
enhance the feasibility of a real-time real world application of BCI
for a tetraplegic patient.

2. MATERIALS AND METHODS

2.1. Ethics Statement and Recruitment of
the Pilot
All the protocols and procedures in this study have been
approved by the ETH Zurich Ethics Committee (EK 2019-
N-01). The inclusion criteria were aligned with those of the
Cybathlon 2020 BCI race. The latter stipulated that the result
of the formal neurological examination using the American
Spinal Injury Association (ASIA) International Standard for
Neurological Classification of Spinal Cord Injury (ISNCSCI)
must correspond to a neurological level of injury of C5 or above
(i.e., a spinal cord injury with impairment at and below the neck)
as well as an ASIA Impairment Scale (AIS) of A, B, or C. At least
three out of five keymuscles in each extremitymust have amuscle
function grading below 3 (i.e., no antigravity muscle strength).
The exclusion criteria consisted of cyber-sickness, epilepsy or
similar problems. Under these criteria, the pilot recruited for this
study is amale left-handed young adult who suffered a spinal cord
injury 6 years prior to the experiment at the neurological level of
C4. The pilot scores B on the ASIA impairment scale meaning
there is some sensory, but no motor function preserved below
the neurological level. He did not have any previous experience
in BCI experiments prior to this research. All the data reported
in this study were recorded either at the pilot’s home or at Neural
Control of Movement Lab at ETH Zurich.

2.2. Cybathlon 2020 BCI Race
A multiplayer computer racing game, named BrainDriver was
developed for the BCI Race in Cybathlon 2020. Seven tetraplegic
pilots competed asynchronously against each other and used a
BCI to control the behavior of a virtual avatar moving along
a virtual track. During the race, the pilots sat in front of their
respective screens and observed their avatar on the track. The
virtual race track was divided into dedicated zones (tasks),
indicated by road signs or lines on the ground and the pilots were
required to send appropriate commands using their BCI within
the correct time frame. Once the race started, each avatar moved
forward by itself toward the finish line of the race, by default.

Pilots were allowed to send three different commands to
control their avatar. Sending the appropriate command at the
right time was required to maintain the avatar’s speed, while
wrong input or no input (if input is required) slowed down the
avatar. Pilots could trigger their avatar to turn left (LEFT) or
right (RIGHT). In case of sudden changes in the environment,
i.e., streetlights turning off, the pilots were required to react with
the appropriate BCI input (HEADLIGHT). In certain parts of
the game, no signals were to be sent (NOINPUT) and avatars
decelerated if they received any command by accident. LEFT,
RIGHT, and NOINPUT commands could be anticipated by the
pilot, whereas the HEADLIGHT signal had to be generated in
response to a changing environment. The game covered a virtual
distance of 500 m and each track condition appeared four times
in total. The pilot who crossed the finish line first, or the pilot
who covered the longest distance within the race time limit of 4
min, was declared as the winner. In compliance with COVID-
19 pandemic restrictions, the format of Cybathlon 2020 BCI was
modified such that each pilot/team competed individually from
different locations. The pilot played three runs of the game during
a 3 h time window. The best game finish time out of the three was
counted toward the final ranking. All three games were recorded
and refereed by the Cybathlon organizing committee.

2.3. Experiment Set-Up and Training
The key elements considered in the design of a BCI experiment
and its implementation as a closed loop application were the BCI
processing pipeline, calibration paradigms, and data acquisition.
The recorded EEG data were then used for calibrating the BCI
and optimizing the training strategy for the pilot to control
the BCI. The calibration paradigms investigated in this research
consisted of both open-loop and closed-loop implementations
of BCI. The paradigms were evaluated for the efficacy in
eliciting distinct task-specific brain activity as well as for their
engagement of the pilot. The processing pipeline implemented
in this study was a conventional multi-class BCI decoder in
which each component was fine-tuned to optimize the decoding
performance. The duration of entire study was 1 year and 10
months, and the pilot was trained from May 2019 to March 2020
and July 2020 to Oct 2020. The interruption in training period
was due to the restrictions imposed by COVID-19 pandemic
protocols. An overview of each of these elements are illustrated
in Figures 1, 2 and their details are discussed further in the
following sub-sections.

Frontiers in Human Neuroscience | www.frontiersin.org 3 June 2021 | Volume 15 | Article 648275

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Robinson et al. Design Considerations for Long Term BCI

2.3.1. Calibration Paradigms
The traditional calibration paradigms used in motor BCI
systems involves an open-loop BCI design with a graphical
user interface (GUI) that presents instructions as audio-
visual cues (Pfurtscheller and Neuper, 2001). Here, the BCI
performance entirely relies on the subject’s ability to generate
neural commands by voluntarily initiating and consistently
carrying out the instructed motor tasks. There is still a lack
of understanding of how the factors such as presentation,
duration, presence of feedback etc., impact the pilot’s learning
and control of BCI (Roc et al., 2020). However, a general
consensus is that to ensure user participation, the interface
needs to be engaging as well as resemble the end-application.
This has also been also suggested by recent works (Škola
et al., 2019; Roc et al., 2020). Keeping this in mind, the
research presented in this paper investigated three different
modes of calibration paradigms and evaluated the pilot’s BCI
decoding performance, subjective feedback, and brain activation
patterns in each case. As mentioned earlier, the tasks used
to generate control commands were relaxation, MI of left
hand and right hand for three of the four control commands.
These MI tasks were chosen since they closely relate to the
behavior of the virtual avatar in the game and have been
seen to elicit different brain activation patterns underpinning
the corresponding neurophysiological mechanisms (McFarland
et al., 2000; Neuper et al., 2006). For the fourth control command,
we investigated two options: both feet and both hands, to identify
the MI class that would result in better overall classification
performance. The pilot was instructed to imagine self-paced
clenching of either hand and pedaling movement of feet for the
respective motor tasks.

The most commonly used BCI calibration paradigm is the
synchronous, open loop BCI that presents text-based or image-
based cues to indicate the expected motor tasks. Following this,
an experiment interface termed as arrow-based calibration, (aC)
was used in this research. The display screen associated with each
instruction across the timeline for aC is presented in Figure 1A.
The display on the left and right side of the dotted line indicated
a “REST” and motor task trial, respectively. The motor task could
be one of the three MI tasks used in this study, and as indicated,
a “REST” trial preceded each MI trial. The start of each task
trial was indicated by a red cross, and an audio alert was played
before every task cue. The task duration was 4 s, and the pilot was
instructed to fixate his eyes on the white cross at the center of the
screen while performing the task. At the end of the task, the cross
disappeared and the pilot was allowed to relax until the screen
remained blank.

The research also investigated the use of BrainDriver game
interface for pilot training and acquiring calibration data.
Figure 1B indicates the display of the game and how each task
was associated with the game environment. The game may be
interpreted as a randomized and repeating combination of four
types of MI zones described in section 2.2. As can be seen in
Figure 1B, a white horizontal line across the track depicted the
beginning of an MI zone. Two types of MI zones corresponding
to the right and left turns of the virtual track were controlled
by the pilot by performing right and left hand MI, respectively.

The caution sign and turning off of the headlight served as the
cue for both hand or both feet MI (third type of MI zone).
The no input sign on the track cued relaxation (fourth type of
MI zone). To enable continuous generation of correct control
commands, the pilot was asked to start performing the task once
the virtual avatar/vehicle crossed the white line on the track and
keep performing MI for the entire duration of zone. Thus, a
continuous stream of control commands were provided to the
game throughout the entire duration of the race. To avoid any
learning effect on the pilot, the race track for each game was
randomly generated prior to each recording. Thus, the pilot
remained unaware of the order in which tasks needed to be
performed to control the game. The research first examined an
open-loop implementation of this interface, in which the control
of the virtual avatar was generated by a computer program,
which always accurately generated the expected control. This
was termed as game-based calibration (gC). The interface in gC
was visually more engaging than aC and allowed the pilot to
familiarize with the end application.

The drawback in both approaches explained above was the
lack of presentation of feedback in the interface. A feedback
can represent the BCI detection accuracy of the brain activity
generated by the pilot and can act as an incentive for the
pilot for better engagement, regulation and control. Thus, the
research also investigated a closed-loop implementation of BCI-
BrainDriver game in which the behavior of the avatar was
controlled by the pilot using the BCI. This interface was used in
the final evaluation as well, and hence, was termed as game-based
evaluation (gE). Compared to open-loop designs, gE ensured the
involvement of the pilot, and allowed him to self-regulate his
brain activity to improve performance. However, this approach
required a pre-calibrated BCI decoder whose performance may
be a bottleneck in collecting high quality brain data.

2.3.2. Training
This paper features a longitudinal evaluation of the BCI training
of a single tetraplegic participant. The impact of each calibration
paradigm and training strategy on BCI performance, and how
they vary across different experiment sessions were further
investigated. The entire training period was divided into three
phases as indicated in Figure 2A. In phase I, the conventional
aC paradigm was used to record data in which the pilot executed
different MI tasks. The data collected was then analyzed offline
to select the motor tasks that were used for the rest of the
study. In phase II, the protocol consisted of calibration (aC, gC)
and evaluation (gE) runs. The data from phase II was analyzed
retrospectively to determine the training strategy for phase III.
The data from phase II was also used to train a BCI classifier
model which was used in phase III. In phase III, the protocol
consisted of only gE runs. The objectives of each training phase
and the experiment details are explained in the following sub-
sections. The training period ended 2 weeks prior to Cybathlon,
after which the pilot participated in a pre-finals practice race and
the Cybathlon finals. The performance of the subject across the
entire training period and Cybathlon was tracked and reported
in section 3.1. The data collected was used for further analyses as
explained in section 2.3.3.4.

Frontiers in Human Neuroscience | www.frontiersin.org 4 June 2021 | Volume 15 | Article 648275

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Robinson et al. Design Considerations for Long Term BCI

FIGURE 1 | Timeline and experiment interface under different calibration paradigms. (A) Arrow-based calibration paradigm (aC): The conventional MI-BCI interface is

modified to include a “REST” trial prior to every motor task. The visual cues presented to the pilot and the associated instruction is illustrated. (B) Game-based

calibration paradigm (gC) and game-based evaluation paradigm (gE): The BrainDriver interface is used to deliver visual cues. In gC, the game control is automatically

generated by a program which replicates the expected input to control the game accurately. In gE, the BCI controls the game in real-time. In both these paradigms,

the pilot is instructed to generate relevant brain activity to play the game. The white horizontal line across the track, in the snapshots, depicts the beginning of the next

MI zone.

FIGURE 2 | Overview of experiment. (A) Strategy: summary of the training sessions that were analyzed in preparation to participate in Cybathlon. The objective of

each experiment phase is indicated along with the number of experiment runs across the training sessions. (B) Setup: BCI facilitates a closed-loop interaction

between the pilot and the game interface. The brain activity generated by the pilot as he performs mental tasks are translated to commands to control the movement

of a virtual avatar in the game.

2.3.2.1. Phase I: BCI Familiarization and Selection of Tasks
The primary objective of this phase was to introduce the
BCI system to the pilot, familiarize him with both offline
and online BCI setups as well as the BrainDriver game
and the execution of MI tasks. The second objective was
to identify the motor tasks that help to attain better BCI
performance for the pilot. The three tasks namely right

and left hand MI and rest were fixed throughout the
experiment, however, the fourth task was chosen based on
pilot’s feedback on the ease-of-execution, the offline evaluation
of brain activation patterns and decoding performance.
This phase lasted from May 2019 to January 2020, and
the pilot participated in 10 experiment sessions during
this time.
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As indicated in Figure 2A, only four out of the ten recorded
sessions were used in the offline evaluation and further analysis.
Of the remaining sessions, five had to be discarded from the
final analysis due to technical issues (e.g., malfunctioning of
triggering device) and one session was discarded due to too
much distraction in the recording environment. The standard
calibration interface, aC, was employed in the four sessions
chosen for further analysis. Out of these four sessions, the pilot
performed both hand MI for the first two and both feet MI
for the next two sessions, during the third motor task trials.
As indicated in the figure, the pilot participated in two runs of
experiment in every session. In each run, 10 trials of each of the
MI tasks and 30 trials of rest were recorded. During this phase,
a few practice sessions were also conducted to allow the pilot to
familiarize himself with the BrainDriver game. In these sessions,
game control was delivered partially by a BCI and partially by a
computer programme.

2.3.2.2. Phase II: BCI Calibration and Pilot Training
The objective of this phase was to investigate and identify the
calibration approach that offered the best user engagement and
helped to acquire data with the best decoding performance.
This phase spanned from February to March 2020 and July to
September 2020 and consisted of seven experiment sessions that
followed a standard paradigm as follows. In every session, the
pilot participated in one run of aC, followed by eight runs of gC.
The recording lasted for about 40min per session. The aC yielded
20 trials of data belonging to each MI task and 60 trials of data
belonging to rest task. Each run in gC yielded four trials of data
in each class. Following the calibration, the pilot participated in
four runs of online game play, gE. A BCI model was calibrated
using the data collected during gC and was used in these four
game runs. The game finish time (τfinish) for each gE run was
also recorded.

2.3.2.3. Phase III: Evaluation of BCI
The final phase of training focused on allowing the pilot to
learn to control the BCI and hence only the closed-loop game
interface gE was used. This phase lasted for 2 months (October
to November 2020) and included six sessions. A BCI classifier
model was pre-calibrated using the entire data collected, i.e., data
from aC, gC, and gE from all sessions, during the previous phase.
In each session, the pilot performed eight runs of gE. The game
control in the first four runs was generated by the pilot using this
pre-calibrated BCI. A new BCI model was then calibrated using
the data from the first four runs of gE, which yielded 16 trials per
task. This model was then used to generate game control in the
last four runs of the session. This training strategy was followed
for all six sessions in phase III.

The game performance and the offline analysis of data from
phase II and phase III indicated that a BCI calibrated based on
multiple-sessions of gE offered the best performance for the pilot;
and the performance improved further when the BCI is calibrated
using data from gE recorded immediately prior to the evaluation
game. Hence, a BCI model was calibrated using all the recorded
data from phase III and was used in both the pre-finals practice
session and the final session. The practice session was conducted

on the day prior to Cybathlon finals. For these two sessions,
similar to phase III, the pilot participated in four runs of gE, that
used pre-calibrated BCI model from phase III for game control.
A new BCI model was then calibrated using these four runs.
Subsequently, the pilot engaged in three game runs using this new
BCI model.

2.3.3. BCI Processing Pipeline
In this study, EEG was recorded using a BrainVision 64-channel
actiChamp amplifier with actiCap active electrodes. The EEGwas
recorded at a sampling rate of 500 Hz. From phase II onwards,
four electrodes from the actiCap were used to record vertical
and horizontal electrooculographic (EOG) activity. One pair of
electrodes was placed below and above the right eye (vEOG) and
the second pair (hEOG) was placed at the outer canthi of the
eyes using adhesive tapes. For the analysis and classification, a
4 s data segment was extracted from the acquired multi-channel
data. In the offline mode, 4 s segments synchronized to the task
onset were extracted. In the online mode, at regular intervals of 1
s, a segment containing the last 4 s of data was extracted from the
EEG datastream. The recorded data belonged to one of the four
distinct tasks and the data segments were labeled accordingly as
ω ∈ {Left MI, Right MI, Feet MI, Rest}. Since the pilot was asked
to keep performing the corresponding MI continuously within
anMI zone, the classified labels from the extracted time windows,
described above, were then compared with the correct labels that
were required by the game tomeasure classification performance.
This section details the signal processing and machine learning
components of BCI that were employed in the translation of the
acquired and extracted brain activity to game control commands.

2.3.3.1. Artifact Removal
The Cybathlon BCI race regulations required a mandatory
artifact rejection or correction approach to ensure that the game
control was not influenced by ocular activity. To incorporate
this, the proposed EEG signal processing pipeline started with
an artifact removal module, specifically designed to detect and
correct eye movement artifacts in real-time. The first step in this
approach was to detect whether an EEG channel was corrupted
by vertical or horizontal movement of the eyes. For every 4 s
segment of EEG, in both offline and onlinemodes, the correlation
of EEG channel data with the four EOG channels in terms
of Pearson’s correlation coefficient was computed. The EEG
channels were then sorted according to the maximum average
absolute correlation with the vEOG and hEOG channels. Two
EEG channels with the highest correlation were then marked for
artifact correction.

The data from the corrupted channels were then removed
and interpolated using the remaining EEG channels. The
interpolation was carried out using spherical splines, which is
a typical artifactual signal replacement tool in EEG analysis
(Perrin et al., 1989). This approach was defined to suit both
offline and online BCI designs, and offered fast and efficient
execution without the need for pre-trained prior-data dependent
model. Figure 3 illustrates three data segments of EEG (blue
plot) that the algorithm automatically detected as corrupted by
EOG (shown in red). The data that was interpolated from the
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FIGURE 3 | Demonstration of artifact removal. (A–C) Illustrates three different instances of artifact correction employed in the BCI used in this research. The blue line

indicates a segment of data that the algorithm identified as corrupted by ocular artifact and the red line indicates the simultaneously recorded electrooculugram (EOG)

signals. The green line displays the same segment after correction, with visibly reduced EOG peaks.

remaining channels is indicated by the green plot. It can be
observed that, after artifact correction, the amplitude of artifact
peak in EEG channel is considerably reduced, whereas the rest of
the segment remains minimally affected.

The artifact removal was followed by low pass filtering of EEG
at 40 Hz using a Chebyshev Type II filter. This step removed
high frequency noises and powerline interference at 50 Hz.
The preprocessed data was then passed on to the next step for
feature extraction.

2.3.3.2. Feature Extraction and Classification
The BCI used in this study employed the classical feature
extraction algorithm Filter Bank Common Spatial Pattern
(FBCSP) (Ang et al., 2008, 2012) which is a widely used algorithm
for benchmarking EEG datasets. FBCSP was originally reported
for the classification of 4-class MI (left hand, right hand, feet, and
tongue) data and was the winner of BCI Competition IV Dataset
2a. The algorithm comprisedmulti-band spectral filtering of EEG
data, followed by spatial filtering by Common Spatial Pattern
(CSP) algorithm in each frequency band. The features were then
derived as log-variance of spatially filtered signal. A subset of
features were selected based on mutual information, which were
then sent for classification. In this study, the parameters of FBCSP
(such as number of CSP filters) were fine-tuned and modified for
a multi-class implementation using data from phase I. A one-
vs.-one approach was employed in which the FBCSP filters were
computed for k = 6 binary combinations of four classes of data.
The features were then accumulated and fed to a Support Vector
Machine (SVM) classifier with a Gaussian kernel. The procedure
for calibration is summarized in column 1 of Algorithm 1.

The first step in FBCSP algorithm was multi-band (f = 9)
filtering of preprocessed EEG using Chebyshev Type II band-
pass filters. The frequency ranges were 4–8, 8–12,..., 36–40 Hz.
The next step computed a CSP projection matrix, Wk that
transformed the EEG data in each band so as to increase the
discrimination in terms of the signal variance between two
classes. The feature vector, Fk was derived as the normalized log-
variance of the CSP filtered data from the first and last m = 2

columns in each band. For the classification of features a SVM
classifier was employed, using the LIBSVM toolbox (Chang and
Lin, 2011). For each k, a classifier was trained as Ck.

2.3.3.3. Online Engine and Feedback
A closed-loop design of the BCI was implemented to deliver real-
time feedback to the user by translating the EEG activity to game
control commands. From the multi-channel EEG datastream,
every 1 s, a 4 s segment of data was extracted, Xt . This data
segment was passed through the data processing steps mentioned
in the above sub-sections and converted to a feature vector, Ftk . A
set of classifier outputs were determined by each of the k = 6
binary classifier as ŷtk. The final output was determined by a
simple voting of class labels as ŷt (Chang and Lin, 2011). The steps
are summarized in column 2 of Algorithm 1. The BCI output
was mapped to one of the four game controls and was sent to
the BrainDriver game.

2.3.3.4. Offline Analysis
In order to evaluate the various design parameters used in the
final BCI, a series of offline analyses were performed on the
recorded data. The objectives and steps involved in these analysis
are listed below.

Cross-validation analysis: This study investigated the type of
calibration interface which efficiently engaged the user to elicit
more discriminative, task-specific brain activation patterns. To
evaluate this, the classification performance of data collected
under the three different experimental interfaces (aC, gC, and gE)
was determined by a 10-fold cross validation. Before the analysis,
the dataset was balanced to ensure that equal number of trials
were taken from each class ω. This was achieved by randomly
selecting the same number of trials for each class as the class
with the lowest number of trials. Typically, the “REST” class
contained more trials than the other classes. Therefore, a subset
of trials from this class were randomly picked to match the sizes
of the other classes. The average kappa value across 10-folds, κcv
was used as the performance metric to quantitatively assess the
efficacy of the calibration paradigms.
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Algorithm1:Calibration and evaluation.

Input: Preprocessed EEG data
for training,
X ∈ ℜs×c×t ;
Class labels of training
data,
y ∈ I1×t , I ∈ {0, 1, 2, 3}

Output: Calibrated BCI
model,Wk and Ck

foreach k ∈ 1, 2.., 6 do
Obtain data X, y for binary
combination k;
Compute multi band
spatial filters,
Wk ∈ ℜf×2m×c using
{X, y};
Determine features
corresponding to X as
Fk ∈ ℜ2mf×t

Accumulate features
F = Fk,∀k

foreach k ∈ 1, 2.., 6 do
Compute SVM classifier,
Ck using {F, y}

Input: BCI model,Wk and
Ck;
Preprocessed
single-trial test data
Xt ∈ ℜs×c

Output: Classified label for
test data ŷt

foreach k ∈ 1, 2.., 6 do
Determine features
corresponding to Xt as
Ftk ∈ ℜ2mf×1 usingWk

Accumulate features
F = Ftk ,∀k
foreach k ∈ 1, 2.., 6 do

Determine classified
output label ŷtk
corresponding to each
Ck;
Voting ŷt

Pseudo-online analysis: In this analysis, the closed-loop BCI
implementation was replicated using the data recorded during
closed-loop testing. The objective was to compare the online
performance of different BCI calibrated models on the same data
stream. The kappa value κ was used as the quantitative metric of
the pseudo-online BCI performance.

A quantitative assessment of the efficacy of different
calibration paradigms was carried out using κcv and κ and
were then subjected to the Wilcoxon Rank Sum test. These
metrics indicate how well the calibration interface elicits distinct
task-specific brain activity from the pilot, in terms of the
detection of tasks within the same run (κcv) and the online BCI
performance on a separate game run (κ). The interface with
higher performance might be more suitable for a self-motivated
calibration in a practical application.

2.3.3.5. EEG Data Analysis
Analysis of Both Hands vs. Both Feet MI: Phase I of our training
shared three MI classes (Left hand, Right hand, and “Rest”
class) for all sessions, while they differed in the fourth class
(Both hands vs. Feet class). Thus, we sought to investigate
which choice of the fourth class was more dissociable from
the remaining three classes, so we could make an informed
decision on which class to continue the training process with.
Although the overall classification performance, as measured
by κ , was the key performance metric for this comparison,
we also sought to further assess the discriminative ability of
the underlying neural features associated with these classes. To
this end, we employed representational similarity analysis (RSA,
Nikolaus Kriegeskorte, 2008) assessing the pairwise distances that
Both hands class and Feet class exhibited when compared to

other three classes. For this analysis, we used the bandpowers
in the mu and beta bands to compute the distances associated
with the mutivariate patterns of each class. The following steps
were undertaken. The preprocessed data were band pass filtered
within the known sensorimotor frequency range (8–30 Hz: mu
and beta bands). The band powers from the preprocessed and
filtered data (between 8 and 30 Hz) were averaged across all trials
within a particular class. Standardized Euclidean distances were
then calculated for each of the four sessions of phase I in the
following way. We started by comparing the pairwise distances
between the Both Hands class, and the remaining three classes
(i.e., Both hands vs. Left, Right and Rest), with the pairwise
distances between Both Feet class, and the remaining three
classes (Both Feet vs. Left, Right and Rest). This resulted in four
representational dissimilarity matrices, each representing all the
pairwise distances between the classes. Finally, distances relating
the Both Hands and the Both Feet classes vs. the remaining
three classes were extracted and statistically compared. Larger
distances indicated greater separability of that class from the
remaining three classes.

Comparison of Calibration Paradigms: In phase II, we
first endeavored to find neurophysiological evidence of more
discriminative information elicited as response to the proposed
game-based calibration paradigm gC and the online games with
real feedback as compared to aC. This would then provide us
with motivation to select a more effective paradigm for phase
III. For this purpose, we compare the efficacy of aC and gC
in producing discriminative brain activation patterns which are
necessary to effectively differentiate between different MI classes.
For aC, this corresponds to the task execution period, as shown
in Figure 1. For gC and the online games, a 4s time window
immediately following the onset of an MI zone was extracted. As
can be seen in Figure 1, the onset of a new MI zone was marked
by a white horizontal line across the virtual track. Therefore,
the EEG data corresponding to the time instant when the avatar
crossed this line was used to mark the beginning of the 4 s
time window. We also compare the brain activation patterns
of the online games and compare them to those elicited by
aC and gC, to demonstrate the motivation behind using the
games with real-time feedback as our calibration paradigm in
phase III (gE). This is done by comparing the relative power
of EEG data in the mu EEG frequency band (8–12 Hz), which
is computed as the absolute power of the mu band normalized
by the wideband power in the preprocessed EEG data low pass
filtered at 40 Hz (Neuper et al., 2006), across the three paradigms
in phase II and visualized as a head topoplot. For the online
games, the time window used for this analysis was extracted
similar to that of gC. Since we use a FBCSP-based model, we
expect that a certain paradigm eliciting greater discriminative
brain activations would showmore localized information around
the typical sensorimotor regions of the aforementioned relative
power patterns obtained from EEG (Neuper et al., 2006).
Diffused patterns, on the other hand, may result in inferior
classification performance.

Table 1 presents a summary of the usage of data collected
during phase I, II, and III under multiple runs of aC, gC, and gE
paradigms for the aforementioned analyses. The results of these
analyses are reported in the next section.
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TABLE 1 | Summary of the usage of data for classification and data analysis.

Phase I Phase II Phase III
Analysis

aC aC gC gE gE gE

Cross-validation analysis

CalibrationPerformance of calibration paradigms

Online evaluation

Calibration
Impact of recalibration

Online evaluation

Analysis of brain activation patterns

3. RESULTS

The main aim of this work is to investigate the effectiveness
of using a closed-loop calibration protocol in an online BCI
system over a conventional, open-loop calibration protocol.
However, before proceeding to the results, we first present
some preliminary analyses to identify the most suitable metrics
to evaluate the performance of different calibration protocols.
Thus, this section presents the BCI performance of the pilot
across multiple sessions in the training period and the results
of the offline analysis. The study is designed toward preparing
the pilot to participate in Cybathlon 2020 BCI race. Therefore,
the primary outcome of the study is performance in terms
of game finish time (τfinish), which is inversely correlated
with classification performance of the BCI, as expected. The
pilot participated in several online game sessions across the
training period and the variations in τfinish are presented in this
section. This research investigated the design considerations for
a practical BCI system and conducted a longitudinal evaluation
of BCI performance under different calibration paradigms. The
results of the quantitative assessment of the various elements of
calibration paradigms such as the calibration interface and the
frequency of calibration are reported in this section.

3.1. Game Finish Time and Cybathlon
Performance
In this section, we present the results of training, in terms of the
game finish time, across the entire training period. In Figure 4A,
the red and green markers indicate the performance in gE runs
from phase II and phase III of training, respectively marked
chronologically on the x-axis. The blue markers indicate the
performance in three runs during a pre-finals practice game and
the purple markers indicate the three runs during the Cybathlon
finals. The qualifying time of 240 s, as per the rules of Cybathlon
BCI race, is indicated by the orange horizontal line. It can be
observed that most games in which the pilot set a qualifying time
were toward the end of phase III of training, which continued
until the Cybathlon finals. The best performance of the pilot
(214 s) was also attained during phase III. We also examined
the trend in performance across the training period and the
impact of training on performance. The linear trend of the
pilot’s performance, denoted by the black dashed line, across
the entire training indicates a moderate impact of BCI training
(r = −0.1598), as measured via Pearson’s correlation coefficient.

The linear fit, however, is not statistically significant (p = 0.25)
as the high variability between data points affects the estimation
of the linear model. Nevertheless, it still indicates an inverse
relationship between these variables.

In order to further investigate the research objectives defined
in this work, a BCI performance indicator that correlated with
τfinish was required. In this sub-section, the relevance of kappa
(κ) as a standard metric to compare across the calibration and
closed-loop BCI performances, across multiple calibrated models
is presented. The relationship between κ and τfinish is presented
in Figure 4B. As expected, the linear regression between the two
shows a significant linear fit (p < 0.001) and an inverse relation
(r = −0.4262) between these two performance indicators. We
present the variation in κ across game runs throughout our
training period in Figure 5A. In each recording session, the pilot
played four games and the data points in Figure 5A indicate
the mean and its standard error of κ . In Figure 5B, the overall
performance across all the sessions is displayed using red and
green boxes that indicate performances in phase II and phase
III, respectively. It can be observed in Figure 5A that, similar to
τfinish, the improvement across the timeline was not significant.
However, as indicated in Figure 5B, the median performance in
phase III (κ = 0.15) was higher compared to phase II (κ =

0.10), although the difference between them was not statistically
significant (p = 0.12). It can also be noted that the highest single
game performance (κ = 0.33) was achieved in phase III.

In Figure 5A, it can also be observed that in both phases of
training, while the performance holds steady for initial sessions,
the performance falls as the training progresses. This may be
accounted for by considering the increasing variability in EEG
activity which could also be specific to each motor task. To study
this further, the classification performance of each class (and
hence the corresponding motor task), was investigated using the
standard metrics of recall and precision. For each class, ω, recall
indicates the ratio of samples correctly identified as belonging to
ω to the total number of samples in that class. Precision indicates
the ratio of samples correctly identified as belonging to ω to the
total number of samples classified as this class. The recall and
precision values across sessions are presented in Figures 5C,D.
As observed in the recall values, the classification of Feet MI was
consistently superior. The overall recall from phase II to phase III
showed an improvement of 0.15 (p = 0.1) The precision values
of Feet MI were also higher compared to other classes and it
showed a significant (p = 0.0025) improvement from phase II
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FIGURE 4 | Performance of the pilot across the training period and Cybathlon. (A) Cybathlon BCI race required the pilot to navigate a virtual distance of 500 m in

under 240 s. The game finish time, τfinish achieved by the pilot throughout the training is shown in this figure. The black dashed line indicates the linear fit and the

qualifying time is indicated by the horizontal orange dashed line. The performances in phase II, phase III, pre-finals, and final Cybathlon race are indicated by red,

green, blue, and purple markers, respectively. (B) The relationship between performance metrics κ and τfinish across the training phases II and III. Sessions with higher

decoding performance, κ record shorter race finish time, τfinish. The black dashed line shows the linear fit and the significant p = 0.0016 inverse relation between the

two metrics.

to phase III. Across training sessions, the occurrence of samples
mislabeled as Feet MI were reduced and this could be due to
the pilot’s ability to produce more distinct brain activity and the
BCI model being able to identify them. For the Right MI, the
recall value was observed to increase across time denoting that
the subject was able to train to control this task. Subsequently,
compared to phase II, a significant (p = 0.0091) increase in recall
of Right MI was observed in phase III. However, the precision
corresponding to this class was still low indicating that many
other samples were misidentified as Right MI.

The recall and precision values for Left MI remained poor
across the sessions. For Rest class, the recall deteriorated toward
the end of the training period resulting in a significant (p =

0.0074) drop in phase III compared to phase II. While the
precision indicates that in some sessions there were fewer
samples incorrectly identified as Rest, the classifier failed to
identify most of the samples belonging to this class. We
also computed the weighted F-scores to quantify the overall
performance across sessions. The F-scores were obtained as
0.31 and 0.34 for phase II and phase III, respectively, and the
difference was not statistically significant (p = 0.16). This
observation is similar to the κ computed across sessions.

3.2. Performance of Each Calibration
Paradigm
One of the major goals of this study was to investigate the efficacy
of different calibration paradigms. This research employed

three different types of calibration paradigms, two of which
used an open-loop BCI (aC, gC) but varied in GUI design,
and the third one used a closed-loop BCI design (gE). To
compare the performance we report the 10-fold cross-validation
performance (κcv) of the data recorded using each paradigm and
a combination of the two open-loop paradigms. In each case, we
further evaluate the performance (κ) of the models calibrated on
the data recorded under each of these paradigms.

The results are presented in Figure 6. The box plots in
Figure 6A present the cross-validation performance, κcv, across
seven sessions, using aC, gC, and combined aC + gC and six
sessions using gE. In each box, the horizontal dash indicates
median value, the top and bottom edges of the box indicate
the 25th and 75th percentiles and the vertical line indicates the
range. Based on κcv, the closed-loop game based calibration, gE
(κcv=0.24), offered a slightly better median performance than
conventional aC (κcv=0.22). The difference, however, was not
significant (p = 0.44). Compared to open-loop game based
design, gC (κcv=0.11), the closed-loop game design, gE elicited
higher median kappa, however, the difference in performance
was not statistically significant (p = 0.07).

The boxplots in Figure 6B, are online game performance
using BCI, calibrated using each of these paradigms. The
evaluation is based on four game runs in each of the seven
sessions, for aC, gC, and combined ac+gC and six sessions for gE.
In this study, to compare the closed-loop BCI performance using
different models, we implemented a pseudo-online BCI pipeline.
Hence, the performance is estimated for different models using
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FIGURE 5 | Evaluation of BCI performance using κ. (A) The figure shows κ for each session in phase II (in red) and phase III (in green). In each session, the pilot

played four games and the data points indicate the mean and its standard error of κ. (B) The overall performance across all the sessions is displayed in red and green

boxes indicating the performances in phase II and phase III, respectively. In each box, the horizontal dash indicates median value, the top and bottom edge of the box

indicates the 25th and 75th percentiles, while the vertical line indicates the range of values. (C,D) The recall and precision values, respectively, across sessions for

each of the MI classes. The columns indicate the metrics for each class, ω ∈ {Left MI, Right MI, Feet MI, Rest} and the boxplots show the change in these metrics

from phase II to phase III. Columns marked with ** imply statistically significant differences with p < 0.001.

the same recorded datastream from the experimental sessions,
without fresh experiments with the pilot. Therefore, they do
not take into account the subjective brain activity modulations
that could happen during a real-time implementation of each
of the models individually. The online performance shows
a noticeable inversion in the trend compared to the cross-
validation performance. The BCI model trained on gE resulted in
a very significant (p = 8e− 4) superior performance (κ = 0.15),
compared to conventional aC (κ = 0.04). The results from gC
trained BCI model was κ = 0.10, which is again significant
(p = 3.7e−4) compared to aC. In both the results, a combination
of both open-loop paradigms (ac + gC), showed comparable
performance (κcv = 0.13 and κ = 0.10) to gC.

3.3. Impact of Recalibration in
Performance
Another BCI design parameter that was evaluated in this research
is whether a zero-calibration approach using a pre-trainedmodel,
trained on multiple sessions of data could be used for game
evaluation on a separate game run. To evaluate this, a “multi-
session” data pool was created using all the data recorded over
the seven sessions during phase II. The classification performance
of this multi-session data was determined by a 10-fold cross-
validation. The average four-class classification accuracy and
kappa value across the 10-folds was 45.74 ± (3.85)% and 0.28 ±
(0.05)%, respectively. This data was then used to calibrate a

BCI model. In each session of phase III, out of the eight game
runs, the first four were used to calibrate a “same-session” BCI
model. Using these two models, the last four runs in every
session of phase III were evaluated. The performance across six
sessions in phase III using “multi-session” and “same-session”
models are presented in Figure 7A. Each box corresponds to
the performance across the four game runs in each session. The
horizontal dash indicates the median value, the top and bottom
edges of the box indicate 25th and 75th percentiles and the
vertical line indicates the range. The overall performance across
all game sessions in phase III is summarized in Figure 7B. It can
be observed that the performance of the models calibrated on the
same day (κ = 0.15) offered significantly (p = 0.0081) higher
game performance compared to a pre-trained model (κ = 0.08).

Since engagement and motivation are subjective factors,
quantitative ratings were obtained from the pilot on all the
experiment sessions. The pilot was asked to rate his mental and
physical readiness on a scale of 1–5 (Alertness: 1 = very sleepy, 2
= sleepy, 3 = neither sleepy nor alert, 4 = alert, 5 = extremely alert
and Physical tiredness: 1 = very tired, 2 = tired, 3 = neutral, 4 =
fresh, 5 = lively, energetic) before and after each of the calibration
runs. As expected, the monotonous design of aC resulted in a
drop in the mental (δ = −0.14) and physical (δ = −0.43) states.
The closed-loop game design, gE, however increased the alertness
level of the pilot (δ = +0.17), but still caused a drop in energy
level (δ = −0.17). The pilot’s alertness level after gC increased
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FIGURE 6 | Performance of different calibration paradigms. (A) Box plots

present the cross-validation performance, κcv, across seven sessions, using

arrow-based calibration (aC), game-based calibration (gC) and combined

aC+ gC and six sessions using game-based evaluation (gE). In each box, the

horizontal dash indicates median value, the top and bottom edges of the box

indicate the 25th and 75th percentiles and the vertical line indicates the range.

(B) The boxplots represent online game performances using BCI, calibrated

using each of these paradigms. The evaluation is based on four game runs in

each of the seven sessions, for aC, gC, and combined aC+ gC and six

sessions for gE. Columns marked with * imply statistically significant difference

(p < 0.05).

(δ = +0.14), similar to gE. Unlike gE, it was also seen to increase
the energy level of the pilot (δ = +0.14). The results presented
in Figures 6, 7 indicate that a better BCI performance may be
achieved with the help of (1) a calibration interface that offers
active user engagement by real-time feedback, using a closed-
loop protocol (gE) over an open-loop protocol (aC and gC) and
closely resembles the end application; and (2) calibrating the BCI
on the same day prior to evaluation so as to minimize variability
between BCI model and the data for evaluation.

3.4. Analysis of Brain Activation Patterns
3.4.1. Comparison of Dissimilarity Patterns

Associated With Both Hands and Feet Classes
Sessions 5 and 6 used Both Hands as the fourth MI class and
resulted in κcv = −0.008. Sessions 9 and 10 used Both Feet as
the fourth MI class and resulted in κcv = 0.3333. Thus, multi-
class classificationwith Both FeetMI wasmuch better than that of
Both Hands MI. We further investigated the neurophysiological
signals to verify the discriminative ability of the evoked brain
patterns corresponding to the fourth class vs. the other three
classes. Dissociability of classes was assessed by comparing the
pairwise differences between Both hands class, and the remaining
three classes (Both hands vs. Left, Right and Rest), with the
pairwise differences between Feet class, and the remaining three
classes (Feet vs. Left hand, Right hand and Rest). The mean
dissociability and its standard deviation were: MBothHands =
0.49, SDBothHands = 0.17; MFeet = 0.68, SDFeet = 0.21. Wilcoxon
Rank Sum test revealed that the Feet class exhibited higher
dissociability in comparison to the Both hands class (p = 0.03).
Thus, this analysis further confirmed the comparatively higher
discriminative ability of the Feet class as compared to Both hands
as also observed from the classification performance above. We

FIGURE 7 | BCI performance with recalibration. (A) BCI performance across

six sessions in phase III using “multi-session” and “same-session” models.

Each box corresponds to the performance across the four game runs in each

session. The horizontal dash indicates the median value, the top and bottom

edges of the box indicate the 25th and 75th percentiles and the vertical line

indicates the range. (B) Summary of the overall performance across all game

sessions in phase III for the “multi-session” and “same-session” models.

Columns marked with ** imply statistically significant difference with p < 0.001.

therefore opted to proceed with the Feet class as the fourth
MI class.

3.4.2. Evolution of Patterns Across Different

Paradigms
As mentioned earlier, we first compared the strength of neural
activations across the different kinds of paradigms. Figure 8
shows the topoplots in the mu band (Neuper et al., 2006) for one
exemplary session, namely Session 17, from phase II for each aC,
gC, and online game sessions (gE) for the three MI classes, using
the channels above the motor and sensorimotor regions. While
the gE seems to show stronger relative mu power depression and
also more localized to the sensorimotor area, the same is seen to
be weaker and much more diffused across a larger, widespread
brain region in aC. Similar characteristics were also observed for
other sessions. Similarly, Supplementary Figure 1 shows that the
EEG channels over the sensorimotor region in phase III using gE
were more discriminative whereas the peripheral channels seem
to contribute more discriminative information to phase II using
gC. A similar observation can also be made from the FBCSP
topoplots shown in Supplementary Figure 2.

4. DISCUSSION

This paper presented a long-term evaluation of BCI performance
including one tetraplegic pilot. The results are based on data
recorded during a period of 1 year and 10 months in which the
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FIGURE 8 | Evolution of brain activity. Topoplots showing brain activation patterns computed as the relative power (in dB) in the mu band (8–12 Hz) for the

arrow-based calibration (aC), game-based calibration (gC), and the online games (gE) for Session 17 for the pilot in phase II.

pilot prepared to participate in the Cybathlon 2020 BCI race.
Results demonstrated how certain BCI design considerations
such as the BCI interface design, pilot training and BCI
calibration strategies impact the overall BCI performance as
well as the practical usability and end-user acceptance of
BCI application.

Taking into account the need to enable and motivate the
pilot to elicit distinct brain activities that are critical to control
a BCI application, the present research investigated the BCI
performance under different calibration paradigms varying in
the presentation of instructions, feedback, and frequency of
calibration of BCI. With regard to the visual interface used for
the calibration experiments, the results indicated that a closed-
loop game design that is similar to the end application offered
the best median performance and user engagement, compared
to traditional interfaces as well as other open-loop designs. The
results in Figures 6A,B demonstrated that while the traditional
MI design such as aC may perform better in a cross-validation
analysis, a model calibrated on this data failed in a closed-loop
game performance such as the Cybathlon BrainDriver game.
The additional elements in a real-time BCI game environment
may elicit different responses in the user’s brain compared to
the ones elicited by a simple visual interface. In case of gC,
it can be observed that the online performance is comparable
to that of a gE calibrated model. But at the same time gC
reported the lowest κcv across all the paradigms. As indicated
in section 3.3, the subjective assessment scores of the pilot’s

mental and physical readiness showed that he experienced
greater engagement during gE as compared to other protocols.
Even though, gE reported the best user engagement and cross-
validation performance, this was not fully reflected in the online
performance of gE calibrated model whose performance was
higher, yet not statistically significant compared to gC. This may
be explored in the future with the help of adaptive techniques
to minimize the difference between calibration and evaluation
datasets. Nevertheless, the results on subjective assessment and
overall median performance provided evidence on the apparent
advantages of a gE based calibration protocol. Several studies on
BCI have reported the need to focus on the user-centric aspects of
training protocols (Lotte et al., 2013; Chavarriaga et al., 2017; Roc
et al., 2020) and user satisfaction/acceptance as a critical factor
in long-term practical BCI applications (Holz et al., 2015). This
study and the presented results fills these existing gaps in BCI
and demonstrates the impact of calibration protocols in BCI.

We also presented brain activation maps for different
paradigms, demonstrating the ability of the proposed closed-
loop calibration paradigms (gE) in producing stronger and more
localized EEG patterns over conventional paradigms. In Figure 8,
it can be seen that the strength of the relative mu power
suppressions followed the order gE > gC > aC (in dB) for
most cases. We further visualized the CSP patterns from the two
phases of training and then quantified the relationship between
the discriminative power of various EEG channels and the overall
classification performance. From the Supplementary Figures 1,
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2, it is apparent that phase III includes correlated channels
with the BCI performance around the sensorimotor region as
compared to more laterally located areas in phase II. Figure 6
shows that gE resulted in the highest median classification
performance as compared to the other calibration sessions. On
the basis of these results, we postulate that adopting gE to
recalibrate our classification models indeed seemed to improve
the quality of the FBCSP filters obtained. As noted in Figures 5,
6, the improvement in classification performance in phase III
also seemed to be correlate with the above observations in brain
activation patterns for the different calibration paradigms. Thus,
adopting the proposed closed-loop recalibration strategy may
have also helped to further improve the median classification
performance observed. Prior works in the literature have shown
that different subjects may have varying brain spatial activation
patterns during MI tasks, which have been said to increase the
inter-subject and intra-subject variability of BCI decoders (Saha
et al., 2017; Saha and Baumert, 2020). Even though our study
only constitutes a single subject, we can see such variability in
our results as well.

Past studies in literature have mentioned that several factors
could be considered to enhance user-engagement in a BCI
system (Škola et al., 2019; Roc et al., 2020). These include
using calibration protocols that are closer to the end-application
that the subject will use and using active feedback to inform
the subject about his BCI performance. In this study, we were
able to use some of these recommendations and observed the
aforementioned improvement in user-engagement as enabled by
moving from aC to gC in phase II and subsequently to gE in
phase III. This also seemed to be correlated with the increasing
strength of neural activation patterns seen in this work. Thus,
our observations from the behavioral results may be correlated
with the response of the underlying neural mechanisms to the
various changes in training paradigms. On the basis of the trends
in BCI performance as well as brain activation patterns for
the different calibration paradigms, we suggest that it may be
helpful to recalibrate the model to the data that are more closely
indicative of the final task that needs to be performed by the
subject. These observations seem to be in line with recent review
studies in literature (Škola et al., 2019; Roc et al., 2020). However,
it is also to be noted that while user-engagement may be one of
the possible explanations, theremight be other co-existing factors
(such as role of feedback modality, etc.) leading to the above
observations. Thus, future efforts should be expended toward
investigating these factors in greater detail using systematic
case-control studies.

Although our results seemed encouraging, our study is
not devoid of limitations. Firstly, we noticed that the pilot’s
brain activity seemed to be undergoing continuous evolution
throughout the training period across all phases. This can also
be seen in Supplementary Figure 1 wherein there appear to
be different groups of channels that are more discriminative
(i.e., have higher Fisher Ratios) across the various sessions.
We also noticed that there was major inter and intra-session
variability in the EEG data. Although this is a known limitation
of EEG data in general, this made it extremely challenging to
use a common model across multiple sessions while maintaining

usable classification performance. In this work, we chose to
address this issue by recalibrating the classifier model to the
same day’s data in phase III. Our results show that it is indeed
important to account for this continuous variation in EEG data
for a usable BCI system and to maintain sustained engagement
from the user. Future efforts may be driven toward more
sophisticated approaches to address this issue such as using
adaptation or transfer learning approaches. Because of such
factors we noticed that while the proposed training paradigm was
successful in keeping the user engaged and maintain reasonable
classification accuracy, a significant learning effect was only seen
for some MI tasks while only a weak trend, if present at all, could
be seen for others. Moreover, the rules of Cybathlon BCI Race
required teams to include appropriate artifact removal steps in
the real-time classification pipeline. Since we desired to minimize
the computational overhead added by the preprocessing and
artifact removal steps to the BCI pipeline while providing high
quality clean data to the BCI decoder, we chose to fix the
number of channels marked for artifact removal to two. This
number was empirically determined by analysing the effect of
this parameter on the classification performance and amount
of artifact removed. We found that this strategy was capable of
identifying and removing artifacts, if present, satisfactorily as
shown in this work. However future efforts may be devoted to
develop more efficient methods that may also be able to detect
the presence of an artifact prior to employing the artifact removal
steps. This may avoid removing some important brain-related
signals when there is little or no artifact in the signal. Dynamically
adapting the number of channels to be corrected for artifacts may
further help to produce higher performing BCI decoders. Overall,
the above shows that there is still a lot of room for future studies
to improve the current state of art in long term longitudinal
training of SCI patients using a BCI system.

Lastly, we would also like to highlight that given the chain
of calibration protocols used for the longitudinal training of
our pilot to address his constantly evolving brain patterns, a
few confounding factors also need to be kept in mind. Within
a session the time duration and cue presentation was slightly
different, which might have affected the pilot’s mental state and
workload. However, we tried to keep a track of the pilot’s mental
and physical fatigue by taking his feedback at regular intervals.
While phases I and II started with aC, phase III directly started
with gE. Thus, the choice of including the former may also
have a role to play in the overall performance of the pilot on
a given session, as aC was adjudged to be the most exhaustive
and monotonous calibration protocol by the pilot. However,
irrespective of the calibration phase, as mentioned earlier, we
tried to keep an account of his mental workload by taking regular
feedback. While comparing the performances of the calibration
paradigms aC, gC, and gE, the total number of trials per class
were slightly different, as indicated in Figure 2A. However, even
though gE contained the fewest trials overall, it still seemed to
perform better than conventional paradigms. Although we tried
to increase the training data for gE by using more games for
developing the model, this did not result in further improvement
in classification performance on the remaining games during the
pseudo-online analysis.
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To conclude, in this study, we proposed to use an online
BCI system, providing real-time feedback for the purpose of
long term training of a tetraplegic SCI user. We chose to train
the pilot directly on the game which was designed for the
virtual BCI race that the pilot was supposed to participate in
for Cybathlon 2020. Our results showed that by moving from a
conventional offline, open-loop calibration paradigm to a real-
time online calibration paradigmwith continuous feedback using
a graphical user interface that closely depicted the ultimate task to
be performed by the user helped improve the quality of the BCI
classifier as well as produce more discriminative brain activity
patterns from the pilot. Neurophysiological evidence obtained
suggested that improvement in behavioral characteristics of the
pilot’s game profile (such as the classification performance of the
BCI and the subjective indices of user-engagement and fatigue)
were underpinned by reorganization of neural mechanisms
to produce more discriminative patterns in response to the
proposed calibration methodology.
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