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Abstract— Objective: Brain-computer interfaces (BCI) that en-
ables people with severe motor disabilities to use their brain sig-
nals for direct control of objects have attracted increased interest
in rehabilitation. To date, no study has investigated feasibility of the
BCI framework incorporating both intracortical and scalp signals.
Methods: Concurrent local field potential (LFP) from the hand-
knob area and scalp EEG were recorded in a paraplegic patient
undergoing a spike-based close-loop neurorehabilitation training.
Based upon multimodal spatio-spectral feature extraction and
Naı̈ve Bayes classification, we developed, for the first time, a novel
LFP-EEG-BCI for motor intention decoding. A transfer learning
(TL) approach was employed to further improve the feasibility. The
performance of the proposed LFP-EEG-BCI for four-class upper-
limb motor intention decoding was assessed. Results: Using a
decision fusion strategy, we showed that the LFP-EEG-BCI sig-
nificantly (p <0.05) outperformed single modal BCI (LFP-BCI and
EEG-BCI) in terms of decoding accuracy with the best performance
achieved using regularized common spatial pattern features. Inter-
rogation of feature characteristics revealed discriminative spatial
and spectral patterns, which may lead to new insights for better
understanding of brain dynamics during different motor imagery
tasks and promote development of efficient decoding algorithms.
Moreover, we showed that similar classification performance could
be obtained with few training trials, therefore highlighting the
efficacy of TL. Conclusion: The present findings demonstrated the
superiority of the novel LFP-EEG-BCI in motor intention decoding.
Significance: This work introduced a novel LFP-EEG-BCI that may
lead to new directions for developing practical neurorehabilitation
systems with high detection accuracy and multi-paradigm feasibil-
ity in clinical applications.
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I. INTRODUCTION

Instead of the conventional neuromuscular pathways, brain-
computer interface (BCI) enables people to directly interact with
external environment through brain signals [1]. Such characteristics
have attracted continuously growing interest in applying BCI in the
field of rehabilitation. Specifically, BCI could decode the motor
intentions of patients suffering from severe motor disabilities into
control signals of external devices, which have been proved to
promote neural plasticity through neurofeedback [2]–[5]. In fact, one
of the advantages of the BCI-based motor rehabilitation approach
over traditional therapy (e.g., physiotherapist therapy, constrained-
induced movement therapy) is the patient-oriented close-loop train-
ing paradigm that stimulates the motivation and does not require
remaining residual movement of paralyzed limbs [6]. Accumulat-
ing clinical studies have reported encouraging outcomes in motor
recovery through utilizing BCI approaches. For instance, a recent
review reported that state of the art controlled clinical researches on
BCI-based therapies for stroke motor rehabilitation achieved higher
clinical scores than the controlled condition [7]–[9]. Despite these
promising results, obstacles still remain for the wide applications
of BCI-based rehabilitation, including the task-oriented and subject-
oriented design of paradigms, the detection accuracy for users’ motor
intentions, the real-time signal processing methods and the stability
of the systems across different training sessions and/or subjects [10]–
[13]. Additional efforts are therefore needed to develop novel BCI
paradigms to further improve the practicability toward more effective
rehabilitation systems.

BCI decodes users’ intentions from various brain signals that
could be categorized into invasive BCI and non-invasive BCI [14].
Among non-invasive BCI, electroencephalogram (EEG)-based BCI
(EEG-BCI) is the most widely used method in stroke rehabilitation
due to its low-cost, easy-to-use, flexible regions-of-interest (ROI)
configuration, and adaptive to multiple experiment paradigms. For
instance, in our recent work, we reported that 103 out of 125 stroke
patients could successfully modulate EEG oscillation to use BCI
neurorehabilitation system, demonstrating the clinical practicability
of EEG-BCI for stroke rehabilitation [15]. However, the fact that
there exists so-called EEG-BCI illiteracy (about 20% of subjects)
who can’t control BCI using EEG signals [16], [17] may impede
the wide application of EEG-BCI technology. In addition, EEG
signals are easily contaminated by different types of artifacts [18],
which may lead to low decoding accuracy and affect the real-time
feedback results. In comparison with non-invasive BCI, invasive
BCI that decode users’ intentions from intracortical brain signals
(e.g., local field potential (LFP) and spike) is less affected by noise
and have already demonstrated its feasibility in detecting intentions
of paraplegic patients to directly control assistive tools [19]–[25].
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However, the long-term usage of spike signals is of concern due to the
tissue reaction that could lead to gradually reduced signal quality over
time [26] while the LFP signals were more stable than the spike [27],
[28]. Moreover, the intracortical acquisition system requires careful
pre-surgery calibration and location determination that could not be
easily modified once implemented. To date, no study has developed
a BCI system incorporating both intracortical and scalp signals that
could inherit advantages of long-term usage and high signal quality
(LFP-BCI) as well as flexible ROI configuration and multi-paradigm
extensibility (EEG-BCI) to further improve the feasibility of BCI in
neurorehabilitation.

Applying BCI technology typically requires careful calibration of
the decoding model at the beginning of each session, which may
take a long time and make it inconvenient for patients to use [29].
Recent work has suggested that transfer learning (TL) methods
could contribute to a short-time calibration thereby improving the
practicability of the BCI in rehabilitation [30] [31]. Heuristically, TL
learns the prior knowledge from source domain that usually contains
sufficient labeled data from relative conditions (i.e., data collected
from other subjects or from previous sessions of the same subject)
to reduce the calibration effort for the target tasks [32]. Several
recent attempts have been made to use the regularized common
spatial pattern (CSP) framework for TL to improve the calibration
efficiency [33]. The regularized CSP finds common information in
EEG signals to construct robust spatial filters [34], [35], which could
be applied to extract task-relative features from source domain data
to facilitate decoding of the target task. Specifically, in a recent
study [36], Cho et al., employed the regularized CSP-based TL for
a two-class motor imagery (MI) classification and found that the
proposed session-to-session TL strategies could achieve comparable
performance without prior calibration for a new session. More
recently, Jayaram and colleagues introduced a TL framework that
was capable of using cross-subject and cross-session shared data
structure and demonstrated its utility in MI detection of a patient with
amyotrophic lateral sclerosis [32]. In sum, TL method has already
demonstrated its superiority in BCI-related neurorehabilitation and
further development of TL could contribute towards practical and
user friendly rehabilitation systems [37].

Taking into account all of the above, we proposed a novel BCI
for neurorehabilitation that utilized concurrent LFP and EEG signals
(named LFP-EEG-BCI) and assessed its performance with data
collected from a paraplegic patient as he went through spike-based
close-loop neurorehabilitation training, where a desktop-based virtual
reality (VR) program was used to guide MI tasks with a bilateral
upper-limb exoskeleton providing feedback according to the decoding
results of spike signals. The primary objective of this study was to
explore the feasibility of motor intention decoding using both LFP
and EEG signals, which may contribute to a practical BCI-based
rehabilitation system with high decoding accuracy and long-term
usability. To this end, the power features of LFP and EEG from
multiple frequency bands were extracted using the regularized filter-
bank CSP method and Naive Bayes models were trained to decode
motor intentions. A decision fusion strategy was then applied to fur-
ther improve the decoding performance. Moreover, TL approach was
employed to reduce the calibration effort and improve the usability
of the proposed LFP-EEG-BCI. To the best of our knowledge, this
is the first attempt that utilizes intracortical LFP and scalp EEG
signals to decode motor intentions. The novel BCI developed in
this study may provide new insights toward effective and practical
neurorehabilitation approaches.

II. MATERIALS AND METHODS

A. Participant
In the current work, the volunteer participant is a 72-year-old male

who suffers from completely tetraplegic (ASIA impairment scale
A) following a traumatic cervical spine injury at C4/C5 level. The
participant was implanted with two 96-channel Utah intracortical
microelectrode arrays (4 mm × 4 mm, Utah Array with 1.4 mm
length, Blackrock Microsystems, Salt Lake City, UT, USA) in the left
primary motor cortex, with one array in the middle of hand knob area
(array-A) and the other located medially about 2 mm apart (array-
B). The signals from array-A were used in this study. The study was
approved by the Medical Ethics Committee of The Second Affiliated
Hospital of Zhejiang University (Ref. 2019-158) and was registered
in Chinese Clinical Trial Registry (Ref. ChiCTR2100050705). The
informed consent was obtained both verbally from the participant and
his immediate family members and signed by his legal representative.

B. Experimental Protocol
Fig. 1 presents the experimental protocol for neurorehabilitation.

The participant sat in a comfortable chair that supported his back
and head in front of a computer monitor. A bilateral upper-limb
exoskeleton with one degree of freedom at the elbow part were
placed on both left and right arms of the participant. A customized
desktop-based VR program with two virtual arms presented in the
first-person perspective was used to carry out rehabilitation training.
At the beginning of each trial, a text cue of “准备” (which means
get ready for the MI tasks) appeared on the screen with an auditory
notice, indicating that the participant should prepare to perform
MI task. After 1 s the text changed to the name of motor tasks
to be performed (including left elbow flexion, right elbow flexion,
both elbow flexion, and rest), and the virtual arms executed the
corresponding movement for 2 s. Then the text changed (including
left elbow extension, right elbow extension, both elbow extension,
and rest) and the virtual arms acted for 1 s. The patient was told
to continue performing MI following the virtual arms until the text
changed to “结束” (which means the end of the MI tasks) with
an auditory notice, and the exoskeleton drove the arms to complete
the action according to decoding results of spike signal to provide
neurofeedback. Specifically, the first 8 trials of each session (2 trials
per task) were used for the calibration of the spike-based classifier,
which was applied for the following online decoding of motor
intentions of the patient. The exoskeleton was triggered to provide
sensorimotor feedback once the intentions were correctly decoded and
concurrent LFP and EEG signals from the close-loop training trials
were used for the following offline analysis. Each session consists
of 40 trials (10 trials per task) and the participant took part in two
sessions each day. Signals from two days (i.e., Day1, Day2) with an
interval of two weeks were used in this study.

C. Data Acquisition and Preprocessing
In this study, EEG and LFP were recorded simultaneously during

the rehabilitation training.
1) EEG: EEG data were collected from 55-scalp electrodes ac-

cording to the international 10-20 system through a wireless system
(model: NeuSen W, Neuracle, China). Among the 55 channels, 3
were excluded to make space for the LFP recording setup. The
raw EEG signals were sampled at 1000 Hz with reference of CPz.
Electrode impedance was kept below 10 kΩ throughout the recording.
A standard EEG preprocessing pipeline was adopted using EEGLAB
toolbox [38], which includes band-pass filter into [1, 40] Hz, re-
reference to the common average reference, bad epochs exclusion
and independent component analysis (ICA) [39] for artifacts removal.
After that, the preprocessed EEG data were down-sampled to 250 Hz
for the following analysis.
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Fig. 1. Experimental protocol of neural rehabilitation training. A desktop-based VR program is used to guide motor imagery tasks. Intracortical
signals (spike and LFP signals) and EEG were collected simultaneously, where the spike signals were used to decode motor intention of the patient
and the outputs were set the trigger for controlling a bilateral up-limb exoskeleton that is used to provide sensorimotor feedback.

TABLE I
NUMBER OF INCLUSION TRIALS USED IN THIS STUDY

Left Right Both Rest Total
Day 1 31 27 27 33 118
Day 2 30 28 28 36 122

2) LFP: LFP data were collected from 96 channels using a Utah
array placed in the middle of the hand knob area. The sample rate
was set at 1000 Hz. The preprocessing of LFP signals includes zero-
phase band-pass filter into [1, 200] Hz and bad epochs exclusion.
Here, only epochs with good signal quality for both EEG and LFP
were included for the following analysis. In Tabel I, we showed the
details of data sets used in this study.

D. Feature Extraction and Classification

The CSP method [40] that has been proved to effectively cap-
ture the event-related desynchronization/synchronization (ERD/ERS)
characteristics of MI was utilized to extract features of EEG and LFP.
Mathematically, CSP tried to find a spatial filter w that maximizes
the following function:

J(w) =
wTC1w

wTC2w
, (1)

where Ci was the covariance matrix from class i ∈ [1, 2]. However,
the original CSP was sensitive to various noise and may suffer from
the overfitting problem if a small training set was used [41]. Recent
studies showed that regularization could improve the robustness of
CSP features [34]. Here, two previously-validated regularized-CSP
methods: shrinkage-regularized CSP (SRCSP) [42] and Tikhonov-
regularized CSP (TRCSP) [43] were adopted. The objective function
of the SRCSP was [42]:

J(w) =
wT C̄1w

wT C̄2w
, (2)

C̄i = (1− λ)Ci + λI i ∈ [1, 2], (3)

where λ was the regularization parameter that has a closed-form
analytical solution using oracle approximating shrinkage estimator,

which performed well in small sample data sets under Gaussian
distribution [44].

The objective function of the TRCSP is [41]:

J(w) =
wTC1w

wTC2w + αP (w)
. (4)

The regularization parameter α and P (w) in this work was set
according to [42] (α=1× 10−4 and P (w) = wTw) .

In order to extract power oscillation in different brain rhythms
effectively, a filter-bank approach was used [45], [46]. For EEG
data, signals from 19 electrodes (including FC5, FC3, FC1, FC2,
FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CP2,
CP4 and CP6) overlaying the motor cortex were used for further
analysis. Then, EEG data were bandpass filtered into 17 frequency
bands (center frequency from 4 Hz to 36 Hz with bandwidth of
4 Hz and 50% overlapped). We used a 1 s EEG epoch (XEEG,
[0.5, 1.5] s after the beginning of MI tasks) for feature extraction.
Since the CSP method was designed for binary classification, one-vs-
one approach was used to extract features to distinguish four-class
MI tasks, resulting in C2

4 = 6 spatial filter matrixes WEEG per
frequency band. The first and last two columns were selected and
ended up with 408 (4 × 6 × 17) features. The CSP features FP (p
= 1, 2, 3, & 4) were calculated as:

Fp = log[var(WT
EEG(:, p)×XEEG)] (5)

Likewise, LFP data were initially filtered into 7 frequency bands (i.e.,
δ: 1 − 4 Hz, θ: 4 − 8 Hz, α: 8 − 13 Hz, β: 13 − 30 Hz, low-γ:
30 − 50 Hz, medium-γ: 50 − 100 Hz, and high-γ: 100 − 200 Hz).
The same 1 s epoch (XLFP , [0.5, 1.5] s after the beginning of MI
tasks) was used to calculate 168 (4 × 6 × 7) features with spatial
filters WLFP :

Fp = log[var(WT
LFP (:, p)×XLFP )] (6)

For each signal, feature selection was performed based on the Pearson
correlation between features and training labels. The selected features
and their corresponding labels L ∈ [Rest, Left Hand, Right Hand,
Both Hand] were then used to train a Naive Bayes classifier with
an assumption of Gaussian distributed data. In order to assess the
generalization ability of different CSP methods, we performed 25
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Fig. 2. The workflow of proposed framework. The LFP signals from left hand knob area and EEG signals were collected simultaneously and EEG
data from regions of interest were used for analysis. The CSP filters were used to extract the multi-frequency power features of LFP and EEG. Then
a correlation-based method was used to select task-relative features and Naive Bayes models were trained for decoding LFP features and EEG
features separately. A decision fusion strategy was applied to vote for final results based on the predicted results and posterior probability from
Bayes classifiers.

times of 5-fold cross-validation for the four-task MI classification.

E. Decision Fusion

Since the LFP and EEG signals encoded motor intention in
different aspects, a decision fusion strategy was applied to combine
information from both EEG and LFP signals to further improve the
classification performance. Specifically, the trained Bayes models
were used to get the predicted results of LFP features and EEG
features. Let PLFP /PEEG ∈ [0, 1] being the posterior probability
and LLFP /LEEG being the predicted labels, the final results L were
calculated as:

L =

{
LLFP , PLFP ≥ PEEG

LEEG, PLFP < PEEG.
(7)

Here, we set PLFP = 1, if LLFP was Rest (abbreviated as Rt
hereafter) or Left Hand (abbreviated as LH hereafter) given that the
LFP features were significantly outperformed EEG features during
distinguishing these two tasks; while EEG features were used to
improve the classification performance in the condition of Right Hand
(abbreviated as RH hereafter) and Both Hands (abbreviated as BH
hereafter) tasks. The workflow of the proposed analysis framework
is illustrated in Fig. 2.

F. Feature Visualization

In order to better understand the spectral and spatial properties
of brain activity during different MI tasks, the most discriminative
CSP filters of LFP and EEG as well as the proportion of selected
features within each frequency band were assessed. The CSP filters
were thought to reflect the importance of the channels [47], which
indicated whether the channels were active during MI tasks. The
most important features contributing to the classification model were
determined as the CSP filters that were most frequently selected
during the cross-validation (e.g., in at least 80% of the iterations).
Since the CSP filters are data-driven and may vary with different
training trials being selected, a normalization strategy was applied
to yield robust spatial filters. We first took the absolute values of
CSP filters and normalized them into the range of [0, 1], then the
normalized vectors were averaged through all the cross-validation
cases. Thus, the values of normalized filters lie in [0, 1], with a larger
value indicating a greater importance of the corresponding channel.

G. Transfer Learning

TL has shown its superior in reducing the number of calibration
trials and enhancing the classification performance. Here, the reg-
ularized CSP framework for TL (TLRCSP) [35] was employed to
further improve the practicability of the proposed LFP-EEG-BCI.
Specifically, the multi-modal electrophysiological data of Day 1 were
set as the source domain and the data of Day 2 were set as the target
domain. The objective function of TLRCSP is:

J(w) =
wTC1w

wTC2w + λP (w)
, (8)

where C1, C2 were calculated using the source domain data and
training trials of the target domain data, and λ is a user-defined
regularization term, which is set as 1 manually in this study. The
penalty term P (w) was introduced to measure the difference between
covariance of source domain data (Cs) and target domain data (Ct),
which could be calculated as follow:

P (w) = wT |(Cs − Ct)|w. (9)

The idea of P (w) was to seek spatial filters that could minimize
the difference between Cs and Ct while maximizing the difference
of variances of two classes. However, Eq. (9) could not be solved
directly with Rayleigh quotient and the upper bound of |Cs − Ct|
was minimized instead. Specifically, for symmetric matrix M =
Udiag(Vi)U

T , the upper bound Γ(M) was defined as:

Γ(M) = Udiag(|Vi|)UT = U |V |UT , (10)

such that |Γ(M)| ≥ |M |. Then the new penalty term P (w) was
calculated as:

P (w) = wT Γ(Cs − Ct)w, (11)

Γ(Cs − Ct) = U |V |UT , (12)

UV UT = Cs − Ct. (13)

The training data of the target domain were randomly selected to
construct spatial filters with the source domain trials and filter-bank
CSP features were calculated as mentioned above. Feature selection
was based upon the correlation between features of training trials of
the target domain and the corresponding labels. After that, features
of the source domain and target trials were used to train a Naive
Bayes classifier. Five-fold cross-validation was repeated 5 times to
validate classification performance. The framework of TL was shown
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in Algorithm 1. We randomly selected 10%, 20%, 50% of target
data as training trials to validate the efficiency of transfer learning.
The results of the non-transfer method were also calculated (i.e.,
the spatial filters were constructed using selected target trials by
Eq. (4) and training the classifier using features of target trials) for
comparison. The random selection was repeated 25 times and the
averaged classification results were used to validate the performance
of TL.

Algorithm 1 Transfer Learning
Input:

source domain data: {DS}n , n = 1, 2.., N
target domain training data: {DT }m ,m = 1, 2, ..,M
LS/LT ∈ [1, 2, 3, 4]: training labels of source/target domain

Output:
The trained Naive Bayes model
Begin
Compute Cs = 1

N

∑
n cov({DS})

Compute Ct = 1
M

∑
m cov({DT })

for l = 1:4 do
Find DSl ∈ DS and DTl ∈ DT with LS/LT = l
Compute Cl = 1

Nl

∑
nl cov({DSl}) + 1

Ml

∑
ml cov({DTl})

end for
1) Construct spatial filters Ws by Eq. (8), Eq. (11)−(13)
2) Calculate features of DT as FT by Eq. (5) and Eq. (6)
3) Select features according to the correlation between FT and
LT . Get spatial filters w ∈Ws that yield these features
4) Calculate features of DS as FS using w by Eq. (5) and Eq. (6).
Train Naive Bayes classifier using {FT , LT } and {FS , LS}
End

III. RESULTS

A. Performance of Different CSP Methods

To assess the performance of various CSP methods (Fig. 3),
separate one-way ANOVA with the types of CSP as the factor
was used in two days. The ANOVA of classification performance
revealed that there existed significant differences between different
LFP features (F1,3 = 252.79, p < 0.001 for Day1 and F1,3 = 181.53,
p < 0.001 for Day2) while no significant difference was observed
for the EEG features. Post-hoc analyses were performed using paired-
sample t-test. For LFP signals, the performance of both regularized
CSP (SRCSP/TRCSP) was significantly better (p < 0.01) than that
of CSP. Between both regularized CSP methods, we found that the
TRCSP method outperformed the SRCSP method (t124 = 9.199, p
< 0.001 for Day1; t124 = 1.783, p = 0.077 for Day 2). Therefore,
the TRCSP method was used for further analysis.

B. Performance of Decision Fusion

From Fig. 3, we showed the classification performance through
utilizing single modal data and found that both LFP and EEG
features achieved classification accuracy higher than the chance level
with the best performance obtained using the TRCSP method. More
importantly, we found that the proposed hybrid-decoding model sig-
nificantly (p < 0.05 for both LFP and EEG in two days) outperformed
the single modal model (Table II). Particularly, the data fusion method
utilized EEG features to improve the classification result of RH vs.
BH tasks of LFP features showed that the mean accuracy was 4.44%
higher than that of LFP features (t24 = 2.678, p = 0.013) for Day1
and 2.86% (t24 = 2.649, p = 0.014) for Day2, which lead to the
superior classification results in the LFP-EEG model.
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Fig. 3. Comparison of classification accuracy using different CSP
methods. The TRCSP achieved the best performance for LFP feature
extraction. ∗: p<0.01 (paired-sample t-test)

TABLE II
CLASSIFICATION RESULTS OF FOUR-CLASS MI TASKS

Mean Accuracy ± Standard Error (%)
EEG LFP Fusion

Day1 54.24±2.16 79.49±2.50 81.53±3.26
Day2 50.49±4.58 73.77±2.90 75.08±2.76

C. Properties of LFP and EEG
We then interrogated the spatial and spectral characteristics of the

most contributed features during various MI tasks. Specifically, 25
LFP features and 30 EEG features were selected based on the cross-
validation results.

1) LFP: For the normalized filters of Rt vs. MI tasks, we observed
a value of 1 for Channel-71 and values below 0.25 for other channels.
We observed a value of 1 for Channel-65 in the LH vs. BH case while
we found a value of 1 for Channel-36 in the LH vs. RH case. As
for the normalized filters of RH vs. BH, we found a value close
to 0.97 for Channel-5 and a value around 0.69 for Channel-7 (Fig.
4(a)). Moreover, most of the selected features were from β and γ
frequency bands. Specifically, features from β, medium-γ and high-
γ oscillation were used to differentiate Rt and MI tasks. On the
other hand, γ rhythms contained the main difference of LFP features
between different MI tasks.

2) EEG: Although the normalized filters of Rt vs. MI tasks ex-
hibited similar spectral pattern, that is the most contributing features
were from low frequency bands (including δ, θ, α and low-β),
the spatial patterns were complex across three classification models
(Fig. 4(b)). Specifically, the spatial patterns of Rt vs. LH filter got
high values around Channel C1 and C5; with Rt vs. RH showed
high values around Channel FC3 and CP3; with Rt vs. BH showed
high values around Channel Cz and C1. Moreover, the features that
differentiated various MI tasks distributed over a wide frequency
spectrum. The spatial patterns of LH vs. RH showed more importance
at Channel Cz, C2, and CP2; with LH vs. BH had high score at Cz
and C1, and RH vs. BH had high score at C1.

D. Performance of Transfer Learning
In Table III, we showed the feasibility of TL approach for reducing

calibration trials and enhancing classification performance. Particu-
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Fig. 4. The spatial weights and spectral distributions of a). LFP features b). EEG features under different motor imagery tasks. The spatial
weights are normalized to [0, 1] with larger values indicating more importance of the corresponding channels. The spectral distribution illustrates
the proportion of features from each frequency band.

TABLE III
CLASSIFICATION RESULTS OF TRANSFER LEARNING WITH DIFFERENT

NUMBER OF TARGET TRIALS

Target Number∗ Mean Accuracy ± Standard Error (%)
Transfer Non-transfer

12 67.30±3.55 33.98±7.89
24 70.08±5.13 49.63±9.63
60 74.10±2.96 71.41±4.18

∗ note: target number is the number of training trials used for
4 tasks, e.g. 12 target number means that 3 trials of each
task is used.

larly, the TL method achieved satisfactory classification rate using
only 12 training target trials (that is 3 trials per class), while the
non-transfer approach required much more training data to achieve
the similar result. As expected, we found that the performance of TL
enhanced moderately as the number of target trials increases (12 vs.
24, t124 = -1.987, p = 0.058; 24 vs. 60, t124 = -3.509, p = 0.002).
Besides, the classification accuracy of TL method is significantly
better than that of non-transfer case even under large number of target
training trails (t124 = 2.871, p = 0.008 for target trials number = 60).

IV. DISCUSSION

In the current exploratory work, we successfully built, for the first
time, a novel LFP-EEG-BCI using concurrent LFP and EEG signals
and assessed its performance during the neurorehabilitation training
of a paraplegic patient. The significant findings are as follows: first,
in comparison with the original CSP and the SRCSP method, we
found that the TRCSP method could effectively extract salient power
features of LFP and EEG for different MI tasks. Second, we showed
that decision fusion approach through incorporating the predicted
results of both LFP and EEG features significantly improved the

classification performance. Third, the most contributing features of
LFP and EEG for the classification models exhibited different spectral
and spatial patterns. Finally, we demonstrated the efficacy of the TL
method in improving the practicability of the proposed BCI. These
findings are discussed in greater detail below.

A. CSP Methods for Feature Extraction

The CSP method has been widely used for feature extraction
and has demonstrated its feasibility in BCI-based neurorehabilitation
studies [31]. In order to improve the performance under scenarios
of small training samples and prevent overfitting, various regularized
versions of CSP algorithms were introduced [41]. In line with early
studies [42], we found that two widely-used regularized CSP methods
(i.e., SRCSP and TRCSP) outperformed the original CSP method.
This finding may therefore provide new evidence to support the
superiority of regularized CSP in LFP-BCI. Besides, the TRCSP
achieved significantly better classification performance than SRCSP,
indicating that the spatial penalty in TRCSP could effectively re-
veal the characteristics of brain signals with high local similarity.
However, the improvement of two regularized CSP methods for EEG
features failed to show statistical significance. It may be caused by
the relatively low signal-to-noise ratio and the limited number of
trials in EEG. It should also be aware that the patient was naive
to EEG-BCI prior to the current work and no training session of
modulating EEG was carried out [48], which may lead to the lower
decoding performance of the EEG-BCI in comparison with the LFP-
BCI. In addition, the performance of CSP methods applied in this
proof-of-concept study might be affected by the nonstationarity of
brain signals. More advanced CSP framework that considering the
distribution of features and optimization of spatial filters selection was
of interest to further improve the performance of MI detection [49].
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B. Multimodal Data Fusion

The hybrid-decoding BCI aimed at measuring task-specific brain
rhythms from both micro- and macro-scope. Specifically, LFP fea-
tures revealed the activities of neurons, while EEG features mod-
eled the global characteristics of the brain to provided additional
information on various MI tasks. It was noteworthy mentioning
that the primary objective of the current exploratory work was to
take advantage of multimodal signals to achieve better decoding
accuracy of motor intention for neurorehabilitation. A decision fusion
strategy was employed to combine the decoding results from LFP and
EEG spectral power features. Although the significantly improved
decoding performance was achieved, our LFP-EEG-BCI did not make
full use of the multimodal brain signals. First, additional efforts could
be made to investigate feasibility through applying advanced data
fusion techniques [50]–[52] and utilizing various spatio-spectral EEG
features, e.g. connectivity that revealed the cooperation of various
brain areas [53]. Besides, deep learning has reported promising
results to extract features directly from raw EEG [54] and LFP
signals [55], [56]. The fusion strategy for features extracted by deep
learning approach could also be explored in future work. Moreover,
the hybrid of LFP and spike has also been reported to produce
better decoding performance than using single model [20], [21].
In comparison, we supposed that the superiority of our LFP-EEG-
BCI over LFP-spike-BCI was the ability to incorporate multiple
paradigms. The idea came from the exploration of EEG-based hybrid
BCI that utilized MI-based BCI and other paradigms (e.g., P300)
for multidimensional decoding [57]. Similarly, the proposed LFP-
EEG-BCI could contribute to practical and self-initiated rehabilitation
systems by taking advantage of multimodal brain signals, which
used LFP (or hybrid spike, LFP and EEG) to decoded motor-related
intentions and evoked potentials recorded by EEG to select tasks [58].

C. Most Contributing Features

The coefficients of CSP filters (spatial patterns) reflected the
importance of channels [47], that is, signals recorded by channels
with higher absolute values were better correlated with the tasks.
Thus, the spatial patterns revealed different properties of brain activity
patterns under various MI tasks. For LFP, we found that the patterns
were rather robust and discriminative, with one channel having a
value close to 1 and the others close to 0 for most cases. The
findings were in line with [59] that reported the effectiveness of stable
spatial patterns of LFP derived from CSP methods for movement
directions decoding. Of note, the activity patterns derived from RH
and BH tasks were less robust, which may lead to the limited
classification performance of LFP-BCI. This could be attributed to
the embedded information of RH in BH trials that were recorded
from the leftward placed recording system. Besides, most of the
features selected were from γ (>50 Hz) and β frequency bands
that revealed the spectral encoding structure of LFP signals for
motor-related information. These findings were consistent with the
results reported in previous LFP-BCI studies, for example, the β
and γ bands LFP were used for detecting patients’ intention of
selection [28] as well as prediction of kinematic information (e.g.,
movement directions) [21], [60]. Additionally, as suggested in [21],
[60] that the β rhythm and γ (>50 Hz) rhythm of LFP showed a
disparity of motor modulation. Specifically, the γ-LFP signals and
spike were highly correlated with movement direction modulation
while β-LFP contained independent information. In our study, the
β rhythm played an important role in the classification of Rt and
MI tasks only while the γ rhythm worked in all the classification
cases. We therefore posited the spectral encoding structure of LFP
signals that signals from γ rhythm contained information of which

limb to act as well as the start of movement while β rhythm coded
the movement initiation in a different way.

For EEG signal, we applied a filter-bank approach to extract
subject-specific frequency features instead of using the widely ex-
plored µ and β rhythms [61]. The selected most contributing features
indicated that the motor intention of LH mainly encoded in low-
frequency signals (δ, θ, α) while low-β rhythms contained extra
information related to movement intention of RH and BH. In addition,
δ oscillation seemed to be most correlated with RH MI. The spatial
patterns of EEG suggested that signals from C1, Cz, C2 channels
were most relevant to elbow MI tasks, which were in line with the
homunculus theory as well as previous EEG-BCI rehabilitation find-
ings [62]. The discriminative spatial patterns and spectral properties
could be utilized as prior knowledge for the future development of
more effective decoding algorithms.

D. TL Improves the Practicability of the LFP-EEG-BCI

Although the TL has shown its superiority in improving the
calibration efficiency and reducing the requirements of training trials,
only a few studies have explored its feasibility in BCI-based studies
using intracortical signals [63]. Here, we demonstrated that similar
classification performance (> 70%) could be achieved using only 6
training trials per class through utilizing TL in comparison with 15
training trials without the application of TL. This finding therefore
provided novel evidence to support the beneficial effects of TL for
BCI studies. The proposed TL method in this work required a pre-
defined parameter λ to regularize the knowledge transferred from
the source domain [35]. In order to assess the generalizability and
demonstrate that our findings were not dependent upon the arbitrary
selection of this parameter, we performed an additional analysis
with different values of λ (range from 0.1 to 2) and found our
main findings intact (data not show). According to [21], intracortical
signals (i.e., LFP) encoded motor intentions in a similar way within
a short time interval (i.e., two weeks in this work), which may lay
the physiological foundation for the TL to capture task-related LFP
features using data collected from previous sessions. In EEG-BCI
studies, the cross-subject TL that utilizes the same task-specific EEG
data from other subjects has been widely adopted and demonstrated
its efficacy in the calibration [33]. Given that the participant in the
current work is a quadriplegic patient, the cross-subject TL may
lead to a more practical solution to improve convenience and user-
friendliness. Moreover, further attempts could be made to employ a
complete TL framework including data alignment, spatial filtering,
feature engineering and classifier learning [64], [65] to further im-
prove the performance of the LFP-EEG-BCI.

V. CONCLUSION

In this paper, we introduced a novel LFP-EEG-BCI that incor-
porates both intracortical LFP and scalp EEG signals and assessed
its feasibility with data from a paraplegic patient. We showed that
the proposed BCI significantly outperformed these two conventional
single-modal BCIs (LFP-BCI, and EEG-BCI) in decoding motor
intention during rehabilitation training. A CSP-based transfer learning
strategy was developed to further improve the practicability of
the LFP-EEG-BCI via reducing the number of training trials. To
the best of our knowledge, this is the first attempt to develop a
practical LFP-EEG-BCI and our findings provide some of the first
quantitative insights into the effectiveness of LFP-EEG data fusion for
motor intention detection. More importantly, we demonstrate that the
proposed BCI may lead to new directions for developing a long-term
recording-stable neurorehabilitation system for paraplegic patients.
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APPENDIX

LIST OF ABBREVIATIONS AND ACRONYMS

BCI Brain-Computer Interface
BH Both Hand
CSP Common Spatial Pattern
EEG Electroencephalography
EEG-BCI EEG-based BCI
ICA Independent Component Analysis
LFP Local Field Potential
LFP-BCI LFP-based BCI
LFP-EEG-BCI BCI using concurrent LFP and EEG
LH Left Hand
MI Motor Imagery
Rt Rest condition
RH Right Hand
SRCSP Shrinkage-Regularized CSP
TRCSP Tikonov-Regularized CSP
TL Transfer Learning
TLRCSP Regularized CSP for TL
VR Virtual Reality
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