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a b s t r a c t

The detection of attentive mental state plays an essential role in the neurofeedback process and the
treatment of Attention Deficit and Hyperactivity Disorder (ADHD). However, the performance of the
detection methods is still not satisfactory. One of the challenges is to find a proper representation for
the electroencephalogram (EEG) data, which could preserve the temporal information and maintain
the spatial topological characteristics. Inspired by the deep learning (DL) methods in the research of
brain–computer interface (BCI) field, a 3D representation of EEG signal was introduced into attention
detection task, and a 3D convolutional neural network model with cascade and parallel convolution
operations was proposed. The model utilized three cascade blocks, each consisting of two parallel 3D
convolution branches, to simultaneously extract the multi-scale features. Evaluated on a public dataset
containing twenty-six subjects, the proposed model achieved better performance compared with the
baseline methods under the intra-subject, inter-subject and subject-adaptive classification scenarios.
This study demonstrated the promising potential of the 3D CNN model for detecting attentive mental
state.

© 2021 Elsevier Ltd. All rights reserved.
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1. Introduction

Attention refers to the capacity to concentrate on certain
hings. Human attention has made a tremendous impact (positive
orrelation) on our memory, learning, and cognitive ability, af-
ecting our daily life (Qian et al., 2018). Attention Deficit and Hy-
peractivity Disorder (ADHD) is a developmental disorder of child-
hood with inattention symptoms. Children with ADHD usually
exhibit a deficit of sustained attention, or lethargic problems.

Previous studies demonstrated that quantitative EEG (QEEG)
could be a promising tool for ADHD diagnosis and treatment (Qian
et al., 2019; Yeo et al., 2018). The attention level (attention
or non-attention) of a subject can be measured and quantified
from electroencephalogram (EEG), and serve as a control sig-
nal in the brain–computer interface (BCI) system (Wai, Dou,
& Guan, 2020). Then, a potential therapy to effectively treat
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ADHD is adopting BCI-based neural feedback system, e.g., BCI-
based attention training game system, to improve inattention
symptoms (Fuchs, Birbaumer, Lutzenberger, Gruzelier, & Kaiser,
2003; Lim et al., 2012; Qian et al., 2018). Besides, this kind of
BCI system is also valuable for improving memory and attention
in healthy elderly, preventing Alzheimer’s disease (Jiang, Abiri, &
Zhao, 2017), etc. Therefore, in recent years, developing BCI-based
attention training system has attracted increasing interest in the
research community.

The performance of these BCI systems depends on the effec-
tiveness of attention detection methods. In the early researches,
some conventional methods were adopted (Fahimi et al., 2017;
iu, Chiang, & Chu, 2013). These methods first extracted hand-
rafted features from EEG data, and then adopted certain classi-
iers to classify these features. For instance, Hamadicharef et al.
dopted the filter-bank and common spatial pattern filters to
xtract spectral–spatial features, and used a fisher linear discrim-
nant classifier to classify these features (Hamadicharef et al.,
009). The obtained maximal and minimal accuracies were 89.4%
nd 60.1%, respectively. Liu et al. conducted research to monitor
tudents’ attention status during their learning process (Liu et al.,
013). Various common features, such as the power spectral den-
ity and energy value of each frequency band, were calculated and
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ombined together. A polynomial kernel support vector machine
SVM) classifier was used to classify the combined features, and
ielded an accuracy of 75.87%. In another study, Fahimi et al.
xplored the most discriminative features to classify attention
nd non-attention states based on a large dataset with 120 ADHD
hildren (Fahimi et al., 2017). The common features, frequency
and powers and their ratios, were firstly extracted from the EEG,
nd then subject-specific feature selection was performed with
utual information. An SVM classifier was used, and obtained ac-
uracies of 65.42% and 65.55% on the conditions of within-session
nd cross-session tasks, respectively. In the methods described
bove, the procedures for feature extraction and classification
ere separated.
Different from conventional methods, deep learning (DL) has

eceived increasing attention because of its end-to-end manner
nd simultaneous training of feature extractor and classifier.
ecause the DL methods have made remarkable achievements in
any fields such as computer vision and speech recognition in

ecent years, they have been introduced for EEG studies, such as
eizure detection (Raghu, Sriraam, Temel, Rao, & Kubben, 2020;
siouris et al., 2018; Wei, Zhou, Chen, Zhang, & Zhou, 2018),

motor imagery (Kwon, Lee, Guan, & Lee, 2019; Ma, Qiu, Du,
Xing, & He, 2018; Robinson, Lee, & Guan, 2019; Sakhavi, Guan,

Yan, 2018; Stieger, Engel, Suma, & He, 2021), mental workload
lassification (Zhang & Li, 2017), emotion recognition (Cui et al.,
020; Ding, Robinson, Zeng, & Guan, 2021), etc. DL method was
lso introduced to perform attention detection tasks. For instance,
ahimi et al. developed an end-to-end deep convolutional neural
etwork (CNN) for attentive detection tasks using single bi-polar
hannel EEG data (Fahimi et al., 2019). The proposed method ob-
ained an accuracy of 76.20% on the leave-one-subject-out(LOSO)
pproach, i.e., inter-subject classification. In that study, an adap-
ive technique was also adopted to evaluate the performance of
he proposed method, i.e., subject-adaptive classification (Fahimi
t al., 2019). For this classification approach, a pre-trained model
as first obtained by training the DL model with training data

rom other subjects, and further fine-tuned by some training data
rom the test subject. This fine-tuning method could overcome
he problem of data distribution shift when transferring the
nowledge to the target subject (Zhang, Robinson, Lee, & Guan,
021). With this subject-adaptive classification scenario, their
odel yielded a higher average recognition accuracy of 79.26%.
he results indicated the potential of DL method for attention
etection tasks using EEG data.
Inspired by previous studies that adopted the 3D representa-

ion for EEG signal (Chao & Dong, 2019; Zhao et al., 2019), we
roposed an end-to-end 3D convolutional neural network (3D
NN) model for attention classification tasks using multiple chan-
el EEG data. The proposed model could explore the spatial and
emporal information simultaneously, and extract the features
n a multi-scale manner by using three cascade blocks, each of
hich has two parallel branches of 3D convolution layers with
ifferent sizes of convolutional kernels. Inter-subject and subject-
daptive classification scenarios were used to evaluate the effec-
iveness of the proposed framework and baseline methods in this
tudy. To verify whether the classification accuracy obtained with
nter-subject classification strategy was higher than that obtained
y training and testing based on single-subject data, an intra-
ubject classification was also used. Evaluated on a public dataset
f twenty-six subjects, the experimental results show that the
roposed method yields better performance compared with the

aseline methods on the three classification strategies. e

130
. Materials and methods

.1. Datasets and preprocessing

The experiment was evaluated on a public dataset, which was
cquired from twenty-six healthy participants (Shin et al., 2016,
018). This dataset provided both EEG and fNIRS recordings. Only
he EEG data of the discrimination/selection response (DSR) task
ere adopted in the current study.
The DSR task included three sessions, and each session con-

ained three series of twenty trials. Each subject performed 180
rials in the DSR task experiment. Each series contained an in-
truction period(2 s), a task period(40 s), and a rest period(20 s).
uring the instruction period, ‘O: press a button’ was presented
n the monitor. During the task period, the experiment started
ith a 250 ms short beep, and ended with another 250 ms short
eep followed a ‘STOP’ display lasting for 1 s on the monitor. For
he remaining time in the task period, a symbol ‘O’ or ‘X’ was
andomly selected to present for 0.5 s, and then a fixation cross
or 1.5 s. When the symbol ‘O’ or the symbol ‘X’ was presented,
he participants need to press the ‘target’ button (number 7) with
heir right index finger or ‘non-target’ button (number 8) with
heir right middle finger. In each series, the symbols ‘O’ and ‘X’
ppeared at a 30% chance and 70% chance respectively. In the rest
eriod, the subject was required to relax and gaze on the fixation
ross on the monitor, and avoid excessive eye movements.
EEG data were recorded at a sampling rate of 1,000 Hz by a

rainAmp EEG amplifier, and subsequently resampled to 200 Hz.
hirty EEG active electrodes were placed on a stretchy fabric
ap according to the international 10–5 system (Oostenveld &
raamstra, 2001). More descriptions of the experiment paradigm
ere provided in the Shin et al. (2018).
During the preprocessing procedure, the EEG data were band-

ass filtered between 0.5 and 40 Hz, and then referenced to the
verage reference. EEG data in the DSR task period were served
s attentive data, and the data in the rest period were served as
he non-attentive data. 2 s sliding window with 1 s overlap was
pplied to segment the EEG data under two conditions. Because
he periods of task and rest were not matching, the first half
f the DSR task data in each trial were used in our attention
lassification task.

.2. The proposed 3D CNN model

.2.1. 3D representations for EEG signals
CNN is a kind of feed-forward neural network, and its rep-

esentational learning ability has attracted much attention. Al-
hough the DL models using 2D convolution have achieved good
esults in EEG processing and analysis, the input EEG signal
ith the shape of electrodes × sample points in these models

gnored the topological information between EEG data from dif-
erent electrodes on the scalp. Owing to the exciting performance
chieved in the image and video fields, 3D models were gradually
pplied to some brain signal classification tasks, such as motor
maginary (Lee, Jeong, Shim, & Kim, 2020; Zhao et al., 2019),
motion recognition (Chao & Dong, 2019), brain MRI segmenta-
ion (Chen, Dou, Yu, Qin, & Heng, 2018; Coupé et al., 2020), speech
ynthesis (Angrick et al., 2019) and brain tumor predicting (Elazab
t al., 2020), etc. Inspired by these tasks, we introduced a 3D
odel for detecting attentive mental state in the current study.
As shown in Fig. 1, 28 EEG electrodes were converted into
9 × 9 spatial matrix according to the spatial distribution on

he cap. The relative locations of electrodes are described in
ig. 1(a). Black dots denote the electrodes used in this work,
nd red dots (TP9 and TP10) represent the reference and ground

lectrodes discarded in the following analysis. The middle part
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Fig. 1. The process of constructing a 3D representation for EEG data. (a) Spatial
distribution of electrodes on the cap, (b) the corresponding 2D-matrix of the
electrode locations, and (c) the 3D representation of the EEG data.

Fig. 2. The diagram of the proposed 3D CNN model.

of Fig. 1 describes the mapping matrix. Zero padding was used
at the positions without electrodes. There are two reasons for
this padding operation. One is to obtain rectangle-shaped data,
which is more suitable for the inputs of the CNN model, the
other is to better simulate the relative position of electrodes on
the brain cap without introducing extra noises. Combining the
two-dimensional spatial matrix with the temporal dimension, the
three-dimensional representation of EEG data (9 × 9 × 400) was
obtained as shown in Fig. 1(c). With this kind of representation,
the spatial topological relationship between electrodes can be
better extracted while thoroughly maintaining the temporal fea-
tures. After expanding dimension in the final axis, a matrix with
a size of 9 × 9 × 400 × 1 was input into the proposed 3D CNN
model.

2.2.2. The structure of the proposed 3D CNN model
Inspired by previous studies (Zeng, Huang, Xu, Shen, & Chen,

2021; Zhao et al., 2019), an end-to-end 3D CNN model was pro-
osed for attention classification task, and its diagram is shown in
ig. 2. The details of structure are summarized and demonstrated
n Table 1, including the number of filters, kernel size, strides, and
he activation functions.

The 3D CNN model consists of an input layer, three cascade
locks, a flatten layer, and three dense layers. The three cascade
locks are designed to extract multi-scale features. Each block
ontains a transitional layer with 3D convolution operation, and
wo parallel branches of 3D convolution with different sizes of
ernels. For the transitional layer, it is used before the two par-
llel branches, which could extract some concrete features from
131
he raw EEG signal or merge information from the previous block.
he sizes of kernel and stride of this layer in Block 1 are set to
× 3 × 5 and 2 × 2 × 4, and those in Blocks 2 and 3 are set

o 2 × 2 × 3 and 2 × 2 × 2, respectively. With this strategy,
he network has a larger receptive field for improving attentive
etection performance. For the two parallel branches as shown in
he top right corner of Fig. 2, each branch consists of two cascade
D convolution layers with the same number of kernels. The
izes of kernels in the two branches are different, which ensures
he model to simultaneously detect spatial and temporal features
ith large and small receptive fields. The padding strategy is
pplied to keep the same size for the input and output of each
ayer. To some extent, this operation can prevent the rapid loss
f the spatial information as the network became deeper. At the
nd of each branch, the results are combined together using a
oncatenation operation and input to the next block (denoted by
he symbol ‘con’ in the gray circle). As described in the lower
ight corner of Fig. 2, each 3D convolution layer is followed by
bath-normalization layer and an activation function layer. The

ormer can reduce the internal covariance shift and accelerate
he training process, and the latter can enhance the nonlinear
epresentation ability of the neural network.

After three cascade blocks, the obtained features are flattened
nto a vector, followed by three fully connected layers. Except for
he activation function of the last dense layer being set as Softmax,
he activation functions of other layers are set as ReLU .

.3. Baseline methods

In order to evaluate the proposed 3D method, both conven-
ional algorithm and DL models were adopted as baseline meth-
ds. Owing to its superior performance, FBCSP was used as the
onventional baseline method in the current study (Ang, Chin,
hang, & Guan, 2008). For DL models, DeepCNN proposed by
ahimi et al. was selected as the benchmark method of attention
lassification task (Fahimi et al., 2019). As the DL methods for
etecting attentive mental state were limited, some popular DL
odels for EEG data classification were also adopted as baseline
ethods, i.e., ShallowNet, DeepNet, and EEGNet (Lawhern et al.,
018; Schirrmeister et al., 2017). These models have been applied
o several BCI paradigms such as P300, movement-related cortical
otentials, and sensory-motor rhythms, etc. Brief descriptions of
hese baseline models are presented as follows.

BCSP (Ang et al., 2008). Filter Bank Common Spatial Pattern
FBCSP) is a state-of-art method for BCI classification (Ang, Chin,
ang, Guan, & Zhang, 2012). It can effectively optimize the

ubject-specific CSP features from multiple filter bands based
n mutual information. FBCSP has been used for attention de-
ection (Fahimi et al., 2019). Since the most suitable frequency
ange for attention detection is 0.5–40 Hz, nine frequency ranges
f sub-bands were used, i.e., 0.5–8 Hz, 4–12 Hz, 8–16 Hz, . . . ,
2–40 Hz, in the current study. Six-order Butterworth filter was
sed for bandpass filtering. We implemented the FBCSP method
ith the open source FBCSP toolbox which is available at https:

/fbcsptoolbox.github.io/.

hallowNet (Schirrmeister et al., 2017). ShallowNet is a model
ith a shallow architecture inspired by the pipeline of the popu-

ar FBCSP algorithm (Ang et al., 2012). The first two layers are a
emporal convolution layer and a spatial convolution layer, which
erform the bandpass filtering and spatial filtering operations.
fter these layers, ShallowNet uses a squaring nonlinearity, a
ean pooling operation, and a logarithmic activation function in
equence.

https://fbcsptoolbox.github.io/
https://fbcsptoolbox.github.io/
https://fbcsptoolbox.github.io/
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able 1
he settings of the proposed 3D CNN model. k denotes the size of convolution kernel, s denotes the strides, and BN denotes the batch-normalization layer. ReLU and

Softmax represent the corresponding activation function layer, and the number in brackets stands for the number of convolution kernels or units of fully connected
layers.
Model Structure Input shape Output shape

block1

Transition Conv3D(16), BN, Relu
k = 3 × 3 × 5, s = 2 × 2 × 4

9 × 9 × 400 × 1 4 × 4 × 99 × 16

Two-branch
conv3D(16), BN, Relu
k = 2 × 2 × 3, pad = ‘same’

conv3D(16), BN, Relu
k = 3 × 3 × 5, pad = ‘same’ 4 × 4 × 99 × 16 4 × 4 × 99 × 16

conv3D(16), BN, Relu
k = 2 × 2 × 3, pad = ‘same’

conv3D(16), BN, Relu
k = 3 × 3 × 5, pad = ‘same’

Concatenate 4 × 4 × 99 × 16
and
4 × 4 × 99 × 16

4 × 4 × 99 × 32

block2

Transition Conv3D(16), BN, Relu
k = 2 × 2 × 3, s = 2 × 2 × 2

4 × 4 × 99 × 32 2 × 2 × 49 × 16

Two-branch
conv3D(16), BN, Relu
k = 2 × 2 × 3, pad = ‘same’

conv3D(16), BN, Relu
k = 3 × 3 × 5, pad = ‘same’ 2 × 2 × 49 × 16 2 × 2 × 49 × 16

conv3D(16), BN, Relu
k = 2 × 2 × 3, pad = ‘same’

conv3D(16), BN, Relu
k = 3 × 3 × 5, pad = ‘same’

Concatenate 2 × 2 × 49 × 16
and
2 × 2 × 49 × 16

2 × 2 × 49 × 32

block3

Transition Conv3D(32), BN, Relu
k = 2 × 2 × 3, s = 2 × 2 × 2

2 × 2 × 49 × 32 1 × 1 × 24 × 32

Two-branch
conv3D(32), BN, Relu
k = 2 × 2 × 3, pad = ‘same’

conv3D(32), BN, Relu
k = 3 × 3 × 5, pad = ‘same’ 1 × 1 × 24 × 32 1 × 1 × 24 × 32

conv3D(32), BN, Relu
k = 2 × 2 × 3, pad = ‘same’

conv3D(32), BN, Relu
k = 3 × 3 × 5, pad = ‘same’

Concatenate 1 × 1 × 24 × 32
and
1 × 1 × 24 × 32

1 × 1 × 24 × 64

Full-Connected
Layers

Dense(32), BN, Relu 1536 32
Dense(32), BN, Relu 32 32
Dense(2), Softmax 32 2
DeepNet (Schirrmeister et al., 2017). This model was simulta-
neously proposed with ShallowNet (Schirrmeister et al., 2017).
he DeepNet was inspired by those successful architectures in
omputer vision. In contrast to ShallowNet, DeepNet has a deeper
rchitecture that composed of four blocks. The first block includes
temporal convolution layer performing a convolution over time
imension and a spatial layer performing spatial filtering across
he dimensions of all the electrodes and all the filters after tempo-
al convolution. No activation function is used in these two layers.
fter the first block, three standard blocks with convolution and
ax-pooling are adopted. The final layer is a fully connected

ayer with a softmax activation function. A detailed description of
eepNet and ShallowNet could be found in the Ref. Schirrmeister
t al. (2017).

EGNet (Lawhern et al., 2018). This model has a compact CNN
rchitecture designed for EEG analysis. It begins with a temporal
onvolution to capture frequency information, then a depthwise
onvolution is used to learn frequency-specific spatial filters. Af-
er these two layers, a separable convolution that is useful for EEG
eature extraction is used to optimally learn the combined feature
aps. Finally, a flatten layer is added, and a fully connected

ayer with softmax activation function is adopted for classifica-
ion. EEGNet has become a benchmark model for different EEG
lassification tasks. A detailed description of the EEGNet can be
ound in Ref. Lawhern et al. (2018).

eepCNN (Fahimi et al., 2019). DeepCNN is the first DL model
ased on CNN for detecting attentive mental state using raw EEG
ata. It is composed of three convolution layers which performed
D convolution, a max-pooling layer, a flatten layer and two

ully connected layers. The max-pooling layer is used after the

132
first convolution layer. Besides, the dropout was implemented to
avoid over-fitting problem. With inter-subject strategy, DeepCNN
yields better performance than the baseline methods, such as
ShallowNet and FBCSP, etc (Fahimi et al., 2019). DeepCNN demon-
strated the great potentials of the end-to-end network structure
for EEG data analysis, and the effectiveness to learn features from
raw EEG data.

2.4. Model implementation and experimental evaluation

The three-dimensional representation of EEG signals, as shown
in Fig. 1(c), was fed into the proposed 3D deep model as input,
the two-dimensional EEG representation (electrods×timesteps)
was fed into the other five baseline methods. To provide a fair
comparison, the implementation of other baseline DL models was
set the same as the original Refs. Fahimi et al. (2019), Lawhern
et al. (2018) and Schirrmeister et al. (2017) except for DeepNet.
To make the model fit for current data (400 sample points), the
kernel size (1 × 10) and pooling size (1 × 3) of DeepNet were
reduced to 1 × 5 and 1 × 2 respectively, which were initially
designed for the EEG data with 522 sample points.

In the stage of the training process of DL models, the binary
cross-entropy was used as the loss function. Adaptive moment
estimation (ADAM) optimizer was adopted as the optimization
method (Kingma & Ba, 2014), and the batch size was set to
32. The learning rate of intra-subject and inter-subject strategy
was initially set to 0.001, and then multiplied by 0.4 every ten
epochs. Note that the learning rate of the adaptive process of the
subject-adaption method was much smaller, and set as 1e−4. The
total number of training epochs of intra-subject, inter-subject and
subject-adaptive methods are set to 30, 30 and 100 respectively.
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Table 2
The Average accuracies and f 1 scores of each method in intra-subject and inter-subject classification scenarios. The
symbol ‘±’ denotes the standard deviation.
Models Intra-Subject Inter-subject

Average accuracy(%) f 1 Score(%) Average accuracy(%) f 1 Score(%)

FBCSP 66.94 ± 10.16 63.76 ± 15.86 63.36 ± 9.87 65.97 ± 11.06
ShallowNet 68.49 ± 9.04 64.52 ± 15.60 69.36 ± 8.65 65.28 ± 19.66
DeepNet 57.47 ± 6.61 67.85 ± 5.45 68.48 ± 9.21 71.24 ± 16.00
EEGNet 67.57 ± 9.45 71.43 ± 10.93 70.26 ± 8.38 69.73 ± 16.28
DeepCNN 66.37 ± 11.13 68.80 ± 11.20 70.75 ± 7.85 69.20 ± 12.27
3D(Ours) 70.15 ± 9.70 70.18 ± 10.95 77.07 ± 7.23 75.48 ± 10.96
All the DL models were implemented based on Keras framework
with the TensorFlow backend (Abadi et al., 2016; Chollet, 2018).

The accuracy and f 1-score were used as the metrics to eval-
ate the performance of all the methods used in current study.
1-score was calculated from the confusion matrix and reflected
he comprehensive performance of each model. There was no
andomness for the conventional FBCSP, so we only need to train
he model once. For DL models, the models obtained at the last
raining epoch were taken as the final models to compute the
etrics for test data. In order to avoid excessive randomness

n DL models, intra-subject, inter-subject and subject-adaptive
xperiments were conducted ten times with different model ini-
ializations, and the average results were taken as the final re-
ults reported in this paper. The f 1-score was calculated by the
ollowing formulas:

=
TP

TP + FP
(1)

r =
TP

TP + FN
(2)

f 1 =
2 × p × r
p + r

(3)

where TP, FP and FN represent the number of True-Positive, False-
Positive and False-Negative samples, respectively. Besides, the
paired t-test was used to compute the level of statistical signif-
icance between the proposed model and each baseline model,
respectively.

In the current study, we evaluated the performance of all
the methods with three classification scenarios, i.e., intra-subject,
inter-subject, and subject-adaptive classifications. For the intra-
subject classification which is subject-dependent, the training and
test data were both from a single subject. In current study, the
EEG data were split into training data and test data in chrono-
logical order, namely, the first 80% data for training and the
remaining 20% data for testing.

In practical application, the subject-independent scenario that
performs inter-subject classification with transfer learning tech-
niques could avoid the time-consuming calibration procedures
which were required for intra-subject classification scenario. For
the inter-subject classification, the LOSO approach was used, in
which one subject was regarded as a target subject while other
subjects were treated as the source subjects. The data of the
target subject were used as the test set, and all the remaining
data from other subjects were used as the training set.

For the subject-adaptive classification, a part of data from the
target subject was used to fine-tune the pre-trained model with
a much smaller learning rate (1e−4). In our experiment, the data
of the target subject were divided into two parts in chronological
order under task and resting conditions. We used two-fold cross
validation to evaluate the performance of the methods. Specif-
ically, one part of the data was used as the fine-tuning data
(adaptive data) and another part as test data. This procedure was
repeated twice. The average values of the evaluation metrics of

the two-fold process were used as the final experimental results.

133
Fig. 3. The average accuracies (a) and f 1 scores (b) of five DL models with the
inter-subject and subject-adaptive classification.

Table 3
The accuracies(%) of the 3D model using different sizes of the matrices to
represent the EEG data.
The size of 2D-matrix 6 × 7 8 × 7 9 × 9 10 × 11

Intra-subject accuracy(%) 67.96 67.80 70.15 70.68
Inter-subject accuracy(%) 75.12 73.74 77.07 74.26

3. Results and discussion

The experimental results of all methods are summarized in
Table 2. For the FBCSP, the result of intra-subject classification
was better than that of inter-subject classification. This may
attribute to the inter-subject variability of EEG signals (Fahimi
et al., 2019). For all DL models, the classification accuracies ob-
tained with inter-subject strategy were higher than those with
intra-subject strategy. This may be due to larger training set for
DL methods. For the proposed 3D model, it achieved the best
average accuracies of 70.15% and 77.07% in intra-subject and
inter-subject classification, respectively. Except for the result on
the intra-subject classification of EEGNet, the proposed method
achieved higher f 1 scores compared with other methods on both
intra-subject and inter-subject classification. The paired t-test
indicated the proposed model significantly outperformed other
models (p < 0.05). Meanwhile, the standard deviations of differ-
ent subjects on the proposed 3D model were small, especially for
inter-subject classification.

For the subject-adaptive classification, the results are pre-
sented in Fig. 3. We found that DL models with adaptive method
could yield better performance than inter-subject classification.
The average accuracies got an improvement of 7.62%, 2.94%,
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Fig. 4. The average accuracies of each subject with inter-subject (a) and subject-adaptive (b) classification strategies based on the proposed 3D model and other
baseline models.
a
l
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5.64%, 3.3% and 3.58% for ShallowNet, DeepNet, EEGNet and
DeepCNN and the proposed 3D model, respectively. Besides, the
ShallowNet achieved the best results among the four baseline
methods in the adaptive approach, while it was relatively low in
the inter-subject case. Structurally, both ShallowNet and EEGNet
are shallower and have fewer parameters than the other models
(see Table 4 for details). These two models are more likely to
learn the general features of EEG data across different subjects.
Therefore, ShallowNet and EEGNet are more conducive to transfer
learning between different subjects, and have larger improve-
ment with the adaptive approach. On the contrary, the models
with more parameters, such as DeepNet, DeepCNN and the 3D
model, learned more specific characteristics from the training
data of source subjects, which results in the limited adaptive
ability. With limited fine-tuning data from the target subject,
these models showed smaller improvement on the target subject.

To further compare different models, the accuracies of each
ubject under inter-subject classification and subject-adaptive
lassification are depicted in Fig. 4. We found that the pro-
osed model could yield better classification performance on
ost subjects when compared with other methods. Besides, t-
istributed stochastic neighbor embedding (t-SNE) was used to
roject and visualize the learned embedding features (at the
inal fully connected layer of each model). The two-dimensional
mbedding features of different models obtained by t-SNE on
our representative subjects were shown in Fig. 5. Only the inter-
ubject classification was considered. It can be found that the
eparability between attention and non-attention samples was
elatively larger for the proposed 3D model, especially for subject
5, which can lead to better classification performance.
In addition, the confusion matrices of each DL model for inter-

ubject and subject-adaptive classification are outlined in Figs. 6
nd 7. Note that the results shown in the two figures are the
134
average results from ten times classification of each model. The
larger the values on the main diagonal are, the better the clas-
sification performance of the model is. It can be found that the
numbers of misidentified non-attention samples and misclassi-
fied attention samples from the 3D model were least among those
from all the DL models under the strategies of inter-subject and
subject-adaptive classification. These results further verify the
effectiveness of the proposed 3D model.

In order to check the influence of matrix size to represent elec-
trode spatial locations for the EEG data, we further investigated
various sizes of the 2D matrices, i.e., 6×7, 8 × 7, 9 × 9, 10×11
s shown in Fig. 8. The results under different settings were
isted in Table 3. We found that the size of 9 × 9 yielded the
est accuracy in inter-subject classification, and 10 × 11 yielded

the best accuracy in the intra-subject classification. These results
indicate the optimal size of the representation matrix may vary
in different conditions. It should be mentioned that the optimal
size of the representation matrix may be different when EEG data
with different numbers of channels are used.

Although the above results show that our proposed model
yields promising results on both inter-subject and subject-
adaptive classification scenarios, some limitations should be con-
sidered. For DL models, the total number of parameters, average
training time across subjects and average test time across trials
and subjects are listed in Table 4. The computation complexity of
the proposed 3D model was higher than the baseline methods. In
the future, the pruning algorithms on 3D convolutional networks
can be used to optimize the proposed 3D model (Chen et al.,
2020). Besides, although the proposed model performed better on
most subjects, it failed on subjects 6 and 11. The huge differences
among subjects may attribute to the subject heterogeneity and
the experimental states during EEG recording.
Table 4
The number of parameters, average training time across subjects (minutes) and average test time across trials and subjects(ms) of each DL model
in the inter-subject classification scenario.
Models ShallowNet

(Schirrmeister et al.,
2017)

DeepNet (Schirrmeister
et al., 2017)

EEGNet (Lawhern et al.,
2018)

DeepCNN (Fahimi et al.,
2019)

3D(ours)

Number of parameters 40,000 150,000 2,000 200,000 240,000
Training time 0.64 1.96 1.22 0.68 3.64
Test time 58.33 88.91 69.43 59.55 258.45
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Fig. 5. The t-SNE visualization results of four representative subjects in inter-subject classification with the five models. The red color dots denote the features
obtained with attention samples, and the blue color ones denote the features obtained with the non-attention samples. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. The confusion matrix of each model with inter-subject classification. Numbers on the main diagonal represent the number of correctly identified samples,
while numbers on the sub-diagonal represent the number of misidentified samples. The horizontal axis of each subfigure denotes the predicted tags, and the vertical
axis represents the actual labels.
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Fig. 7. The confusion matrix of each model with and subject-adaptive classification. Numbers on the main diagonal represent the number of correctly identified
amples, while numbers on the sub-diagonal represent the number of misidentified samples. The horizontal axis of each subfigure denotes the predicted tags, and
he vertical axis represents the actual labels.
A

Fig. 8. Two dimensional matrix representation for the electrode spatial locations
ith different sizes of matrices. The sizes of matrices in the subfigures (a), (b),
c) and (d) are 6×7, 8 × 7, 9×9 and 10 × 11, respectively.

The open dataset has EEG and fNIRS recordings, but the fNIRS
ata were not considered in current study. Besides, only the EEG
ata with DSR task in the dataset were used to evaluate the
L models. The generalization of the proposed method should
e investigated on different datasets with various cognitive task
aradigms and recording modalities (Wai et al., 2020). We need
o address these issues in our future study.

Owing to the nonlinearity and nonstationarity of EEG data,
he distributions of EEG data vary across different subjects and
ven across different sessions on the same subject (Zhang et al.,
021). Based on the experimental results, we could find that the
esults of subject-adaptive were better than those of the inter-
ubject, which demonstrates that when some data from the target
136
subject was available, it could help fine-tune and further enhance
the model trained completely with data from other subjects. As
acquiring calibration data is time-consuming and costly, more
effective models need to explore in the future.

4. Conclusion

In current study, a 3D representation was utilized to maintain
the spatial and temporal information for multichannel EEG data
on attention detection task. Based on this representation, a novel
3D convolutional neural network model was proposed to simulta-
neously extract multi-scale features from EEG data with cascade
and parallel 3D convolution operation, which could effectively
detect attentive mental state. Evaluated on a public dataset, the
proposed model yielded better performance compared with the
baseline methods on the intra-subject, inter-subject and subject-
adaptive classification scenarios, respectively. The extensive ex-
periments demonstrated that the proposed model holds the
promise to provide robust performance for BCI-based attention
detection.
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