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Abstract.

Channel selection in electroencephalogram (EEG)-based brain-computer interface

(BCI) has been extensively studied for over two decades, with the goal to select

optimal subject-specific channels that can enhance the overall decoding efficacy of

BCI. With the emergence of deep learning (DL) based BCI models, there arises a

need for fresh perspectives and novel techniques to conduct channel selection. In this

regard, subject-independent channel selection is relevant, since DL models trained

using cross-subject data offer superior performance, and the impact of inherent inter-

subject variability of EEG characteristics in subject-independent DL training is not

yet fully understood. Here, we propose a novel methodology for implementing subject-

independent channel selection in DL based motor imagery (MI)-BCI, using layer-

wise relevance propagation (LRP) and neural network pruning. Experiments were

conducted using Deep ConvNet and 62-channel MI data from Korea University (KU)

EEG dataset. Using our proposed methodology, we achieved a 61% reduction in

the number of channels without any significant drop (p=0.09) in subject-independent

classification accuracy, due to the selection of highly relevant channels by LRP. LRP

relevance based channel selections provide significantly better accuracies compared to

conventional weight based selections while using less than 40% of the total number of

channels, with differences in accuracies ranging from 5.96% to 1.72%. The performance

of the adapted sparse-LRP model using only 16% of the total number of channels is

similar to that of the adapted baseline model (p=0.13). Furthermore, the accuracy

of the adapted sparse-LRP model using only 35% of the total number of channels

exceeded that of the adapted baseline model by 0.53% (p=0.81). Analyses of channels

chosen by LRP confirm the neurophysiological plausibility of selection, and emphasize

the influence of motor, parietal, and occipital channels in MI-EEG classification.

Keywords: MI-BCI, channel selection, deep learning, explainable AI, layer-wise rele-

vance propagation
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1. Introduction

Brain-computer interface (BCI) systems have become an integral part of today’s society

for healthy and paralyzed users, by offering a means of non-muscular communication

with the environment [1, 2]. Specifically, the motor-imagery (MI)-BCI, which involves

voluntary modulation of the neural electrical activity to communicate movement

intention, has some important clinical applications and is popularly researched [3–

5]. While traditionally, MI-BCI operated using machine learning (ML) algorithms

such as common spatial patterns (CSP) [6] and the filter-bank CSP (FBCSP) [7], the

advantage of learning complex tasks in an end-to-end fashion has recently encouraged

BCI researchers to shift to deep learning (DL) based MI models [8–10] for detecting

user intentions from the brain signal. This much welcomed change also brings about

the need to revisit and address some traditional issues in BCI from the perspective of

deep learning, and with more robust solutions [11].

The recording of MI-based electroencephalography (EEG) signal using non-invasive

cortical electrodes opened up questions on the importance of channel selection, which

has been studied by BCI researchers for over two decades. Current channel selection

literature in MI-BCI highlights methodologies specific to subjects and sessions, and are

meant to remove noisy channels yet maintain or even improve classification performance.

Channel selection, in these studies, is usually performed as an additional step in the

ML pipeline of BCI algorithms. Three are three kinds of channel selection techniques

discussed in literature: (i) filter methods – that use statistical measures such as

correlation coefficients and mutual information to identify optimal channel sets [12–15].

Although these techniques take less computation time, they often lead to suboptimal

performance using selected channels (ii) wrapper methods – that follow an iterative

process to find the optimal channel sets, while evaluating their performance using a

classifier [16, 17]. Thus, they are computationally inefficient and can have varied results

based on the classification algorithm applied, and (iii) hybrid or embedded methods –

which are a combination of filter and wrapper, and hence, enjoy the benefits of both

[18]. Regularization and optimization techniques are applied in the hybrid approach to

fine-tune the classifier performance alongside inducing sparsity of channels [19].

Relatively few studies have explored subject-independent [16, 17, 20] and session-

independent [19, 21] selection of channels. Arvaneh et al. [19] optimized the CSP

algorithm using L1
L2

norm to induce sparsity in CSP coefficients pertaining to noisy

channels. The sparse CSP (SCSP) channel selection was evaluated using data from

a different session, thus illustrating the transferability of channel selection from one

session to another. In a subsequent paper [21], Arvaneh et al. evaluated the robustness

of SCSP (RCSP) across new sessions using stroke data. The channels selected using

RCSP from the first session were found to perform well on subsequent sessions. In [16],

Schröder et al. investigated cross-subject transfer of channel rankings based on recursive

channel elimination (RCE). A small dataset, containing EEG recorded from 8 subjects

using 39 electrodes, were used to derive the findings for this study. In [20], Parashiva et
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al. trained a sparse autoencoder neural network with sparsity regularization to select

channels for both subject-specific and subject-independent cases. Data from selected

channels was then fed to conventional ML based BCI pipeline for classification. They

reported results using EEG data from 10 healthy subjects collected with 31 electrodes.

In another subject-independent study [17], Arpaia et al. progressively selected channels

common to all subjects, using sequential forward selection method. They evaluated their

approach using both 2-class as well as 4-class MI data from BCI competition dataset

IV-2a. Apparently, these subject-independent and session-independent channel selection

studies were conducted using small datasets, by applying ML algorithms and extensive

computations, nevertheless, had not obtained notably high performance. In addition,

none of the above discussed channel selection methods are relevant to DL models in

MI-BCI.

The introduction of DL in BCI has rekindled our interest in channel selection and

how it could be addressed using sophisticated DL based methods, more so in a subject-

independent setup. The deep neural networks are considered as black-box models which

approximate any arbitrary function that cannot be clearly identified from its structure.

Even deep learning experts find it challenging to understand how all the neurons work

together to arrive at the output. It is an added concern when such black-box models fail

to perform if the dataset is even slightly perturbed. This growing concern sparked the

introduction of an avenue of research called the explainable AI (XAI) or trustworthy

AI [22, 23], that has enhanced our understanding of how neural networks think, which

in turn has improved its interpretability and therefore, applicability. In this study, we

exploit the benefits of XAI to solve the problem of channel selection in DL based MI

classifiers. In addition, a robust channel selection procedure is one that is generalizable

towards unseen subjects. A precise evaluation of such a procedure can be done only

with the help of a large enough dataset.

This study is an attempt to address the above-mentioned points through five main

contributions:

(i) We propose a novel relevance based subject-independent channel selection

procedure for MI classifiers based on DL, using layer-wise relevance propagation

(LRP) [24], a popular XAI tool, and neural network pruning.

(ii) We evaluate our proposed method using Deep ConvNet [8], a state-of-the-art MI-

BCI model, and Korea University (KU) dataset [25] that contains MI data collected

from 54 subjects.

(iii) We compare the performance of our proposed relevance based channel selection

against weight magnitude based channel selection.

(iv) We validate our channel selection results against those obtained using 20 motor

channels and random selection of channels.

(v) We investigate the impact of our channel selection method on the model adaptation

performance, using a small amount of data from the unseen subject.

The rest of the paper is structured as follows. We begin with related work in
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section 2, and we briefly introduce the Deep ConvNet architecture, discuss our proposed

relevance based channel selection, and sparsification (selection) of channel weights

in Deep ConvNet using neural network pruning in section 3. We also specify the

model training, optimization and adaptation settings, and our paradigm for subject-

independent classification. Following this, we describe the KU dataset and the flow

of our subject-independent channel selection experiments including some additional

analyses in section 4, discuss the results and their analyses in sections 5 and 6, before

concluding in section 7.

2. Related Work

XAI methods are traditionally used to enhance the interpretability and trustworthiness

of a deep neural network, such that one can explain the output of the network better

[26]. However, the application of XAI extends beyond model explainability. As XAI

reveals the importance of each neuron or a set of neurons, deep learning researchers and

architects can exploit this to introduce useful structural changes to the neural network.

This brings about an interesting connection of XAI with neural network pruning.

Particularly, the LRP’s [24] direct link to the network output and the conservative nature

of relevance propagation between layers makes it a suitable criterion for network pruning.

In [27], Yeom et al. experimentally highlighted the effectiveness and robustness of LRP

based relevance as a pruning criterion. They showed that relevance based pruning is both

scalable and efficient, and offers better results in transfer learning scenarios compared

to other criteria.

Neural network pruning has typically been used for compressing deep learning

models for the purpose of efficiency and speed [28–30]. Pruning can involve removal of

weights or/and neurons, and can be performed globally across the network, layer-wise

or in a random manner [31]. The framework for pruning is generally consistent across

research studies, but what differs is the criterion used to select candidates for pruning.

One of the most popularly studied approach is magnitude based weight pruning, where

the magnitude of model weight with respect to an individual or a set of neurons is used

as a criterion for weight removal. Different types of weight-based criteria have been

explored in pruning literature. In the simplest case of unstructured pruning, individual

neuronal weights with low magnitude are identified for removal [32]. A similar approach

for performing magnitude based weight pruning in MI-BCI was introduced in [33].

Although commonly used for network compression, in this study, we implement

pruning as a method for channel selection (or deselection) by using LRP [24] as

a criterion. Our objectives, using the proposed methodology, are two-fold: (i)

to perform subject-independent channel selection for facilitating user comfort and

convenience during data collection, and, (ii) to sparsify DL classifiers for MI for better

generalizability, interpretability, and efficiency. We compare the performance of our

proposed LRP based channel selection method with weight magnitude based channel

selection, which is one of the state-of-the-art criteria used for neural network pruning.
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Figure 1: Deep ConvNet Architecture [8] with highlighted spatial convolution filters.

To the best of our knowledge, this is the first study to investigate channel selection,

in particular subject-independent channel selection, in DL models for MI detection.

Furthermore, this is the first study to apply neural network pruning based on XAI for

performing channel selection in BCI.

3. Methodology

In this section, we provide details of the Deep ConvNet architecture and related training

parameters. We further discuss our proposed channel selection algorithm after outlining

the procedure for LRP based channel relevance estimation and spatial filter sparsification

by network pruning.

3.1. Network Architecture

A convolutional neural network or CNN [34] is a deep learning algorithm that applies

filters to the input, resulting in feature activation maps. A convolution operation is

represented mathematically by equation 1, where, X is the input, F is the filter and

the * sign symbolizes convolution. The filter weights are typically two-dimensional and

expressed as f1×f2. A one-layer CNN generally consists of a convolution layer, followed

by activation and pooling for feature extraction, and a fully connected classification

layer. Equation 2 mathematically defines a one-layer CNN. Here, σ represents the

activation function and W T and B represent the weights and biases of the dense layer.

Z = X ∗ F (1)

Output = Softmax(W T .(σ(X ∗ F )) +B) (2)

To demonstrate our novel subject-independent channel selection in BCI, we use

the Deep ConvNet, a state-of-the-art CNN classifier for MI detection introduced by

Schirrmeister et al. in [8]. The Deep ConvNet includes a temporal convolution and a

spatial convolution, followed by max-pooling, three convolution-max-pooling blocks, and

a fully-connected softmax classification layer as illustrated in Figure 1. Deep ConvNet

uses the exponential linear unit (ELU) [35] as the activation function in every layer.
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Considering that the input EEG is of dimension Nc×Nt, where Nc is the number of

channels and Nt the number of time samples in every channel, the temporal convolution

performs convolution over time and the spatial convolution implements convolution

over all the channels. The 25 spatial convolution filters (highlighted in orange), each of

dimension Nc × 1, consist of weights for every electrode present in the EEG data. This

allows us to deselect certain channels in the data by setting their respective spatial filter

weights to zero.

3.2. Proposed Channel Selection by LRP Relevance Score

Layer-wise relevance propagation or LRP [24] is a popular and widely used XAI

framework that explains a network’s decision by decomposing it into relevance scores

attributed to the intermediate neurons and inputs. LRP works by the principle of

conservation and deep Taylor decomposition (DTD) [36]. LRP highlights the nodes

that contribute to the model’s decision layer by layer. This overcomes the limitation

of other gradient-based methods that focus more on sensitivity analysis of the network

rather than contributions from individual neurons to the model’s output. The relevance

decomposition performed by LRP is expressed mathematically in equation 3, where the

total relevance of node j in layer l which is closer to the input, is equal to the sum of

relevances of all nodes i from the subsequent layer l + 1, that are connected with node

j.

R
(l)
j =

∑
i

R
(l+1)
j←i (3)

The basic LRP attribution rule, usually denoted as LRPz, performs a proportional

decomposition with regard to localized activations, z = xw, that are propagated through

the network during prediction. The definition of LRPz is given in equation 4, where

zji = xjwji and zi =
∑

j zji.

R
(l)
j =

∑
i

zji
zi

R
(l+1)
i (4)

In order to prevent division by zero while applying the basic LRPz rule, a small

stabilizer term, ϵ > 0, was later included in the denominator of equation 4. This

improvised rule is often called as the LRP-epsilon (LRPϵ) rule and is defined as follows.

R
(l)
j =


∑
i

zji
zi + ϵ

R
(l+1)
i zi ≥ 0

∑
i

zji
zi − ϵ

R
(l+1)
i zi < 0

(5)

Several other variations of LRP rule, such as LRPαβ and LRPγ, were also

implemented to cater to the different attribution requirements. However, even the

basic LRP rule has been observed to provide highly interpretable heatmaps for better

understanding of EEG classifiers [37]. In this study, we apply the LRPϵ rule to perform

the subject-independent channel selection in DL based MI-BCI. We used the Pytorch



Relevance based Channel Selection in MI-BCI 7

framework [38] for Deep ConvNet implementation and the Captum XAI library [39] for

computing LRP relevance scores.

The computational efficiency, theoretical affirmation, popularity, and trustworthi-

ness make LRP a promising tool for estimating EEG channel relevance scores using

MI classifiers based on DL. The fact that LRP backpropagates the network output

to identify the contributions of EEG input from specific channels, offers us an oppor-

tunity to obtain channel-wise relevance scores that could be exploited for performing

channel selection. We implemented the following steps using the Captum’s application

programming interface (API) for LRP [39].

The first step in calculating the channel-wise relevance scores is to define an instance

of the LRP criterion for the pre-trained subject-independent model by applying the

chosen rules to the underlying layers. In the next step, the multi-subject training trials

are sent individually to the “attribute” function of the LRP criterion. The attributions

are obtained class-wise by indicating the target class of the input trial to the attribute

function. This is to ensure that the output attributions are relevant to the prediction

of that particular class. The attribute function performs backward propagation of the

output score sequentially through all layers of the model and returns the corresponding

relevance scores for each neuron in the underlying layers. The relevance estimation is

defined by the rules chosen for each layer, which in our case is LRPϵ. The ϵ term was set

to 1e-9, which is the default value in Captum’s API for LRP. The output attributions are

of the same dimension as that of the EEG input trial (Nc, Nt), hence they were averaged

across time samples to get a single score for each channel in the input. These relevance

scores were class-wise averaged across all trials, and further normalized between 0 and 1,

for each training subject. The final set of scores were obtained by averaging the scores

across all subjects. The resulting class-wise average channel relevance scores were saved

and used for channel selection.

3.3. Spatial Filter Sparsification by Neural Network Pruning

Neural network pruning [40][41], which involves systematic removal or sparsification

of weights from a pre-trained model, is popularly applied by deep learning architects

for better memory efficiency and faster application of the model during testing time.

Such sparse models are also more structurally interpretable and prevent overfitting

of parameters. In this study, we proposed a novel application of pruning to perform

channel selection, or rather channel deselection, by sparsifying the Deep ConvNet of

those channel weights whose LRP relevances are low.

The Deep ConvNet implements spatial convolution using kernel weights whose

dimensions match the number of channels present in the input EEG data. The channel

relevance scores estimated using LRP could be used to select and retain the weights

of highly relevant channels in the spatial convolution filters, and prune the weights of

less relevant ones, thus performing channel selection. In doing so, only the channels

with non-zero weights contribute to the prediction. Network pruning is followed by
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re-training for a few epochs, as is usually done, in order to adapt the remaining weights

to the changes caused by pruning and to regain the performance of the model. We used

the pruning methods offered by Pytorch utilities [38] to implement the spatial filter

sparsification in Deep ConvNet.

3.4. Channel Selection and Model Sparsification using LRP Relevance Score

In our proposed method, we select channels based on LRP computed channel relevance

scores. The number of top relevant channels (topN) selected will remain the same for

all pre-trained models and is pre-determined. The procedure for implementing this

channel selection method is described below in three steps. For better understanding,

the method is also outlined as a pseudocode in Algorithm 1. The algorithm makes

reference to a separate function that calculates the channel-wise relevance scores using

the LRPϵ rule.

Step 1: For every target/test subject stest, the corresponding EEG test data xtest,

training data xtrain, and pre-trained subject-independent model mstest , are loaded.

Algorithm 1: Channel Selection and Model Sparsification using LRP

Relevance Score
Input: EEG data X∗, subjects S, pre-trained models m, LRP rule r, number

of top channels to select topn

Output: Sparse models and accuracies

1 foreach test subject stest ∈ S do

2 Train subjects strain = S - stest;

3 load test data xtest = Xstest;

4 load training data xtrain = Xstrain;

5 load pre-trained subject-independent model mstest;

6 sorted channels based on relevance scores

Csort =← CHANREL(xtrain,mstest , r);

7 selected channels Csel = Csort[topn] ;

8 m′stest = mstest;

9 sparsify m′stest, retain Csel and prune weights of remaining channels in

spatial conv filter;

10 finetune m′stest using xtrain;

11 acc← m′stest(xtest);

12 save m′stest and acc ;

13 end

14
* X = RN×C×T , where N = No. of trials, C = No. of channels, T = No. of

time samples

Step 2: The channel-wise relevance scores are computed using xtrain, by following

the steps described in 3.2. As averaging across two classes neutralizes the channel
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1 Function CHANREL(xref ,m, r) :

2 Ac0 = [];

3 Ac1 = [];

4 foreach training subject sref ∈ xref do

5 load training subject data, xsref ;

6 Create an instance of LRP criterion cr, using pre-trained model m and

the chosen LRP rules r for each layer;

7 Calculate the attributions Attr using cr, xsref and the target class;

8 foreach target class c ∈ c0, c1 do

9 Time averaged attributions

(N × C × 1)Atimeavg(c) ← mean(Attrc, dimension = −1);
10 Average attributions

(C × 1)Aavg(c) ← mean(Atimeavg(c), dimension = 0);

11 Normalized mean attributions

(C × 1)Anorm(c) ← normalize(Aavg(c));

12 Ac+←Anorm(c);

13 end

14 end

15 (C × 1)Relc0 ← mean(Ac0);

16 (C × 1)Relc1 ← mean(Ac1);

17 foreach channel ch ∈ C do

18 Relch ← max(Relc0−ch, Relc1−ch);

19 end

20 return sort((C × 1)Rel);

21 end

22

relevances, we selected the larger out of the two scores (of two classes) as the relevance

score for each channel. The channel-wise relevances are sorted, and the channels are

rated from 1 to n, where n is the total number of channels. The topN channels, based

on rating, are selected and evaluated on xtest.

Step 3: The topN channels are retained and the weights of remaining channels

are pruned from the spatial convolution kernels of the pre-trained model. The resulting

sparse model, m′stest , is re-trained using xtrain. The evaluation on xtest is done after

re-training. This procedure is repeated for different values of N , where N is varied

from 2-60 in steps of 2. The resulting sparse models for different values of N , and their

corresponding accuracies, are recorded for further analysis.

We would like to note here that the channel selection is not performed based on

the results obtained using xtest. We repeat the evaluations for different values of N for

the purpose of analysis.
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3.5. Channel Selection and Model Sparsification using Magnitude of Weight

For comparison with our proposed method summarized in the previous section, we also

selected channels based on the magnitude of weights of respective channels in the spatial

convolution filters of the pre-trained model.

Step 1: Remains the same as in section 3.4

Step 2: The channel-wise magnitude of weights are calculated by averaging the

respective channel weights across all spatial convolution kernels in the pre-trained model.

The channels are sorted by their mean weights and rated from 1 to n, where n is the total

number of channels. The topN channels, based on rating, are selected and evaluated

using the test set.

Step 3: Remains the same as in section 3.4

3.6. Model Training and Adaptation

The Deep ConvNet was trained using Adam optimizer [42] and negative log-likelihood

loss function to update the model weights. We also performed Batch Normalization [43]

and Dropout [44] for each convolution-max-pooling block. Model training was performed

in 200 epochs, and the epoch with the lowest training loss was selected for evaluation

and further analysis. Re-training after spatial filter sparsification was performed for 5

epochs before final evaluation of the sparse model using test data.

In addition, to account for the inter-subject variabilities in the subject-independent

scenario, we adapted the pre-trained subject-independent models using some data from

the corresponding target subject. This was performed both before and after model

sparsification, and the respective performances of adapted models were compared.

3.7. Subject-independent Classification

The subject-independent MI classification models were trained using the leave-one-

subject-out cross-validation (LOSO-CV) paradigm. For every test/target subject, the

training data consists of all trials from the remaining subjects. The classification

performance is measured by the average accuracy across all subjects. Further details

regarding the data division will be discussed in section 4.1.

4. Experiments

In this section, we describe the KU MI-EEG dataset and provide details on the data

division used in our experiments. We also introduce the additional analyses performed

for validating our experimental results. The entire flow of our channel selection

experiments is visualized as a block diagram in Figure 2. The computations for this work

were performed using multiple GPU and CPU resource clusters available from the School

of Computer Science and Engineering at NTU and from the National Supercomputing

Centre, Singapore.
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Figure 2: The flow of our channel selection experiments using subject-independent (SI)

deep learning (DL) models for MI.

4.1. Dataset and Data Division

Our channel selection experiments were conducted using two-class (left and right hand)

MI data from the Korea University EEG dataset [25], that contains data collected from

54 healthy people (aged 24-35). For every subject, EEG data were obtained from two

sessions, collected using 62 Ag/AgCl electrodes at 1000 Hz sampling frequency. The

data consists of 200 MI trials from each session, of which 100 trials belong to each class.

Each session was divided into an offline phase (phase 1), to collect data for constructing

the classifier, and an online test phase (phase 2) with visual feedback. At the beginning

of each trial, a fixation mark was displayed at the center of a screen in order to prepare

the subject for the trial. Subsequently, a visual cue consisting of a left or a right arrow

was shown for 4s, during which the subject performed the respective MI task. The

screen remained blank for about 6s after every trial. We used 0-4s post-cue data and

downsampled it by four for our experiments.

For every target subject, the 100 trials from phase 2 of session 2 was used as the

test set in all our channel selection experiments. This test data is not used during

model training and estimation of channel relevances for channel selection. The subject-

independent MI model, for every target subject, is pre-trained using 400 trials each from

the remaining 53 subjects. No validation data was used during training. For model

adaptation experiments, the adaptation set for every target subject included session 1

data for training and phase 1 of session 2 data for validation, following the settings used

in [45].
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Table 1: Average subject-independent accuracies (leave-one-subject-out) of Deep

ConvNet using all 62 channels and 20 motor channels. The 20 motor channel accuracy

was obtained by pruning the 62-channel subject-independent model.

Full – 62 channels Motor – 20 channels

Mean LOSO-CV Accuracy ± SD 84.82±12.07 81.72±12.61∗∗

∗∗ (p<0.001) indicates that the accuracy using 20 motor channels is significantly lower than the accuracy achieved
using all 62 channels.

4.2. Analyses using Motor Channels and Randomly Selected Channels

In order to validate the performance of our method and highlight its significance, we

conducted additional experiments by selecting fixed and random channel sets. A fixed

set of 20 motor channels that are typically used for MI prediction [10, 25] were chosen.

These channels are FC-5/3/1/2/4/6, C-5/3/1/z/2/4/6, and CP-5/3/1/z/2/4/6. We

simply sparsified the spatial convolution filter weights of the pre-trained 62-channel

subject-independent models such that only the 20 motor channels are retained, and

measured the classification accuracies after re-training. Furthermore, to invalidate the

randomness of our results using the proposed method, we compared the performance

of topN channels selected based on LRP relevance with that of randomly selected N

(randomN) channels, where N is varied from 2-60 in steps of 2. The average LOSO-CV

classification accuracies of the 20 motor channel set and the different randomN sets

were recorded for analysis. In order to prevent selection bias, for each N we repeated

classification using randomN for 10 times using 10 different random channel sets, and

averaged the accuracies to obtain the mean subject-independent accuracy of randomN.

4.3. Model Adaptation

As part of the subject-independent channel selection experiments, we included an

additional analysis of comparing the performances of the adapted baseline versus

adapted sparse models. For this purpose, we adapted the original and the sparse models

using a small part of the target subject’s data, which is not included in the test set and

training set, and evaluated the performances of the adapted models on the test set.

5. Results

The results include average LOSO-CV accuracies of Deep ConvNet before and after

applying relevance based channel selection. In addition, performance comparisons

between relevance based selections, weight magnitude based selections, motor channels

and random selections are included. Furthermore, visual illustrations of top selected

channels and average channel-wise relevances are provided. Subject-wise classification

accuracies are analyzed as well. Finally, yet importantly, we report the performance

differences between the adapted baseline model and the adapted sparse models.
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5.1. Channel Selection Results using Deep ConvNet

The baseline for our study is the LOSO-CV accuracy of Deep ConvNet using 62-channel

data from KU dataset. Following the training settings outlined in section 3.6, we

obtained an average accuracy of 84.82% across 54 subjects. This is similar to the

LOSO-CV result reported in literature [45] using the same dataset.

In our proposed method, we used the LRP estimated channel-wise relevance scores

to select the topN channels. The classification accuracies of sparse models, in which the

topN channels were selected and the remaining pruned from their respective spatial filter

weights, were estimated. For a given N, the number of selected channels remains the

same for all target subject models, however, the channels that get selected may vary.

The average accuracies obtained using our proposed method are available in column

2 of Table 2. Those accuracies that are not significantly different from the baseline

LOSO-CV accuracy are highlighted in bold, and are achieved using N = 24, 32-40, 48,

and 52-60. We observe that the accuracies are above 80% for all N > 10. N = 24 is

the minimum number of channels required to acquire a performance not significantly

different (p=0.09) from the baseline.

To compare the results of our proposed channel selection method with that of

a closely related state-of-the-art technique, we used the channel-wise mean weights

to select the topN channels, and the performances of resulting sparse models were

computed. The results obtained using weight magnitude based channel selection are

available in column 3 of Table 2. None of the accuracies were similar to baseline, with p-

values less than 0.05 for all values of N. We observe that the accuracies are above 80% for

all N ≥ 16, with the exception of N = 18. Those accuracies that are significantly lower

than that of the corresponding topN selection by LRP relevance scores, are indicated

with * (p < 0.05) and ** (p < 0.001). Results show that weight magnitude based channel

selection achieves relatively lower performance, compared to relevance based selection,

while using fewer channels where N = 6 up to 24, and thereafter for N = 32, 34, 36,

and 44.

5.2. Results using 20 Motor Channels

BCI researchers typically use 20 channels from the motor region to enhance the MI

classification performance [10, 25]. The average LOSO-CV accuracy acquired using the

20 motor channels is 81.72%, against the baseline 62-channel accuracy of 84.82%, as

presented in Table 1. The performance of motor channels is significantly lower than the

baseline, with p < 0.001.

5.3. Performances of topN Channels Selected by Relevance and Weight versus

Randomly Selected Channels

The performance comparison between randomN and topN is tabulated in Table 2 and

visualized in Figure 3. The topN channels selected by LRP relevances are indicated in
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Table 2: Average subject-independent accuracy (in %) of Deep ConvNet using relevance

based vs weight based vs random channel selection.

No of channels

(N)

Accuracy of topN-LRP

(%)

Accuracy of topN-

weight (%)

Accuracy of randomN

(%)

6 77.94±12.91 71.98±12.03∗∗ 73.22±10.35∗∗

8 78.41±12.92 74.98±11.30∗ 74.64±10.71∗∗

10 79.93±13.63 77.11±11.57∗ 75.99±11.03∗∗

12 81.52±12.25 78.07±12.30∗ 76.92±11.42∗∗

14 82.48±12.22 79.00±12.13∗∗ 78.67±11.59∗∗

16 82.57±12.08 80.43±11.44∗ 79.46±11.44∗∗

18 81.83±12.29 79.94±12.51∗ 80.08±11.55∗

20 83.19±11.60 80.82±11.98∗ 81.03±11.74∗∗

22 82.94±12.17 81.22±11.85∗ 80.81±11.66∗

24 83.59±12.15 80.67±12.20∗ 81.35±11.53∗

26 83.26±12.50 81.67±12.06 80.96±11.96∗∗

28 82.85±12.76 81.98±11.97 81.59±11.45

30 82.93±13.13 82.80±12.13 82.02±11.56

32 83.94±12.62 82.57±11.69∗ 82.19±11.64∗

34 84.06±12.83 82.41±11.60∗ 82.89±11.87∗

36 83.93±13.07 82.39±12.25∗ 83.14±11.78

38 83.83±12.49 82.32±12.11 83.29±11.64

40 83.80±12.97 82.83±12.43 83.56±11.82

42 83.13±12.97 83.02±12.20 83.25±12.02

44 83.67±13.23 82.56±12.07∗ 83.62±11.91

46 83.20±13.58 83.00±12.78 83.58±11.61

48 83.85±13.33 83.74±12.08 83.62±11.57

50 83.63±13.11 83.13±12.65 83.58±11.87

52 83.98±12.75 83.06±13.29 83.75±11.84

54 84.11±12.81 83.06±12.81 83.97±11.64

56 84.33±12.22 83.65±12.56 83.91±11.66

58 84.17±12.67 83.63±12.56 84.00±11.84

60 84.00±12.61 83.57±12.84 83.94±11.94

The ∗ (p<0.05), and ∗∗ (p<0.001) indicate that the accuracies are significantly lower than the accuracy of corresponding topN selected
based on LRP relevance. Results that are not significantly different from baseline accuracy using all 62 channels (84.82%), are highlighted
in bold.

this section as topN-LRP and the topN channels selected by weight are indicated as

topN-weight, for clarity and convenience.

The performances of topN-LRP are significantly higher than the corresponding

performances of topN-weight and randomN channels up until N = 24. Beyond this

point, randomN channels continue to obtain significantly lower accuracies for N = 26,

32, and 34, and topN-weight for N = 32, 34, 36, and 44. In addition, topN-LRP

achieves a subject-independent accuracy not significantly different from the 62-channel

baseline by using only 24 channels (p=0.09), compared to topN-weight, which never

reached a similar performance, and randomN, which requires 58 channels to attain a
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Figure 3: Comparison of average subject-independent classification accuracies of Deep

ConvNet, using top channels selected by relevance and weight, randomly selected

channels, 20 motor channels and all 62 channels. Those accuracies that are not

significantly different from the baseline accuracy (full62) are indicated using ⋆.

similar level of performance. The performances of all three types of selections saturate

beyond 40 channels, nevertheless, we notice sustained fluctuations in the performance

of topN-weight.

The performance of topN-LRP clearly stands out in comparison with topN-weight

and randomN for implementing subject-independent channel selection in DL models

such that, good performance can be achieved for an unknown target subject even with

fewer channels. This is evident by observing the results of topN-LRP for N = 6 − 24.

Even for as few as 6 channels selected using LRP relevance, we secured an average

LOSO-CV accuracy of 77.94% and with just 10 channels the accuracy reaches close to

80%. After reaching an accuracy level that is not significantly different from baseline at

N = 24, the topN-LRP maintains this performance level across several channel subsets

such as N = 32 − 40, 48, and thereafter from 52-60. However, the performance of

topN-LRP never exceeded the baseline performance for any value of N .

In Figure 3, we have also indicated the performance using 20 motor channels, which

is close to the performance of random20 and top20-weight, and is 1.47% lower than the

accuracy of top20-LRP. Although the performance of top20-LRP is not significantly

different from that of 20 motor channels, the p-value is close to significance level with

p=0.056. These results indicate the need for following an interpretable channel selection

protocol, more so in subject-independent scenarios, as simply using motor channels

may not necessarily lead to an optimal performance for all datasets. Closely related to

this discussion are our results using the top24-LRP, and we note here that there were

electrodes in these sets coming from parietal and occipital areas, as they were identified
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Figure 4: Channel-wise mean LRP relevances across 54 subject-independent models for

two-class MI. LRP relevances are class-wise averaged, where “L” indicates left-hand MI,

and “R” indicates right-hand MI.

to be relevant for two-class MI classification of KU data. This further justifies the need

for relevance based selection of channels in comparison with fixed selection of motor

channels for all datasets.

5.4. Channel-wise LRP Relevances

Figure 4 visualizes the channel-wise mean LRP relevances across 54 subject-independent

models for two-class MI classification using KU dataset.

In Figure 4, the negatively relevant channels are emphasized in blue, while the

positively relevant ones are highlighted in red. The two-class topomaps of channel

relevances illustrate event related desynchronization and synchronization (ERD/S) like

pattern typically observed during MI, clearly demonstrating the neurophysiological

plausibility of the estimated channel relevances. For the left-hand MI, we notice strong

positive contributions coming from the right side motor channels such as C2, C4, CP2,

and CP4, and negative contributions from C1, C3, CP1, and CP3. We observe a

vice versa behaviour for the right-hand MI class. In addition, some of the parietal

and occipital channels are also observed to be relevant for MI prediction using KU

EEG data. The clear localization of highly relevant channels from the motor region

is an indicator of consistency and low variability of channel relevances across different

subject-independent models.

5.5. The top24 Channels

For a deeper understanding regarding the neurophysiological plausibility and variability

of the selected channels while using LRP relevances versus channel weights, we plotted
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Figure 5: Top 24 channels selected based on LRP relevance score versus magnitude of

weights, for exemplary subjects. Channels selected based on relevance are indicated

in red, and those selected based on weight are indicated in green. The corresponding

accuracies using selected channels are mentioned above each topoplot. In part a, the

channel selection for example subjects where top24-LRP outperformed top24-weight

is illustrated. In part b, the topomap visualizes the number of occurrences of every

channel amongst the top24-LRP selected for 54 target subjects. Channels from motor

and parieto-occipital areas are predominantly selected across all subjects.

the top24 channels that were selected in both cases for each of the 54 subject-

independent models as individual topomaps. Figure 5a displays these plots for

exemplary subjects, for whom top24-LRP outperformed top24-weight. The top24

channels are chosen here for exemplification since N = 24 is the minimum number

of channels required for our proposed method to achieve subject-independent accuracy

not significantly different from the baseline 62-channel LOSO-CV accuracy. The 24-

channel accuracy for weight based selection is 80.67% and for relevance based selection

is 83.59%. Please see Appendix A, for the complete set of top24-LRP and top24-weight

topoplots for all 54 subjects.

From Figure 5a, we note that top24-LRP contains channels from the motor as well

as parietal and occipital areas. In addition, the two frontal channels F9 and F10 have

been selected. This pattern of selection in top24-LRP is consistent across most target

subjects (please see Appendix A). The selection of electrodes from the occipital region,

which is dedicated to vision, could be due to the fact that KU MI-EEG data partly

consists of trials that used visual feedback. It is also possible that the subjects visually

imagined the movement (visual imagery) rather than performing a mental rehearsal

of the movement (kinesthetic imagery) [46, 47]. The top24 channels overlap with the

electrodes marked as highly relevant in Figure 4. The common set of channels from

the top24-LRP across 54 subject-independent models are C1, C3, C2, C4, CP1, CP3,

CP4, CP2, and PO4. Except PO4, the remaining channels in this list are part of the

motor channel set. However, the channels selected by weight show variability across

different models, potentially caused by the subject-independent training of the network
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Figure 6: Subject-wise LOSO-CV classification accuracies of Deep ConvNet, using all

62 channels versus top24 channels selected by LRP relevance and magnitude of weight.

that impact the model weights. Selected channels are observed to be coming from

different areas of the cortex, including the motor region. Only two channels, P4 and

PO4, were common among the top24-weight across all 54 models. Interestingly, PO4 is

also present in the common set identified for relevance based selection.

Figure 5b marks the number of occurrences of each channel, amongst the top24

selected for all target subjects based on LRP relevance scores. The topomap clearly

demonstrates the predominance of motor, parietal and occipital channels, along with

the two frontal channels F9 and F10.

5.6. Subject-wise Classification Accuracies using top24 Channels

In Figure 6, we plot the LOSO-CV classification accuracies individually for all 54

subjects using baseline models, as well as sparse models in which top24 channels

were selected based on LRP relevances (top24-LRP) and magnitude of weights (top24-

weight). The subjects are sorted by baseline accuracies to gain some insights regarding

the performance differences between different subject groups.

The accuracies achieved using top24-LRP are indicated in green. For most subjects,

the performance is similar or even better compared to that of the baseline model. Out of

54, 18 subjects illustrate an improvement in performance and 9 subjects show no change

in performance with reference to the baseline. Specifically, for subjects 17, 24, 27, and

50, the accuracies are enhanced by 5% or higher. For subject 50, the performance

actually improved from close to chance-level to 60%. Out of the remaining subjects, 17

suffered a performance decline of less than 5% and 10 showed a decline of greater than or

equal to 5%. In particular, the accuracies of subjects 26, 30 and 49 deteriorated by 18%,
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15% and 17%, respectively. We highlight here that the minimum number of channels

required for subjects 26, 30, and 49 to achieve an optimal accuracy are 50, 14 and 44,

respectively, for which the accuracies obtained are 82%, 95% and 97%, respectively. It

seems that subjects 26 and 49 require data from more channels for better classification

performance, and vice versa for subject 30.

On the contrary, the subject-independent classification accuracies acquired using

top24-weight are lower than the baseline for most subjects. Out of 54, 11 subjects

illustrate an improvement in performance and 5 subjects show no change in performance

with respect to the baseline. Specifically, for subjects 30 and 50, the accuracies

are enhanced by 5% or higher. It is interesting to note that the performance of

subject 50 improved significantly using both top24-LRP and top24-weight, indicating

the importance of channel selection. Out of the remaining subjects, 14 suffered a

performance decline of less than 5% and 24 showed a decline which is 5% or greater. In

particular, the accuracies of subjects 9, 14, 21, 26, 29, 46, and 46 declined by 10% or

more.

5.7. Model Adaptation Results

The main objective of the adaptation experiments was to compare the performances of

adapted 62-channel and 20 motor channel models versus adapted sparse models, that

were sparsified by channel selection using LRP relevances (sparse-LRP) and weights

(sparse-weight). For this comparison, we used sparse models created by channel

selections ranging from N = 6 − 30. This channel selection range was considered in

order to better understand the impact of channel selection (with fewer channels) on

adaptation performance. The adaptation results for the aforementioned representative

models obtained from channel selection, can be found in Tables 4 and 5. The average

subject-independent accuracy using 20 motor channels is similar with and without

adaptation, as reported in Table 3.

From Table 4, we notice that the adaptation results indicate significant performance

improvements in sparse-LRP models for N = 6, 10, 16-24, 28 and 30. From N = 10

onwards, the sparse-LRP models achieved adaptation accuracies comparable with that

of the baseline. These results are highlighted in bold in Table 4. Sparse-LRP with

N = 24 has the highest average subject-independent accuracy of 83.59%, however,

sparse-LRP with N = 22 achieved the highest adaptation accuracy of 86.33% amongst

all sparse models. Sparse-LRP with N = 18 gained the highest accuracy improvement

of 3.43% post adaptation, compared to other sparse-LRP models.

Table 5 contains the adaptation results of sparse-weight models. Interestingly,

all sparse-weight models have gained significant performance improvements from

adaptation except N = 12, whose adaptation accuracy is also significantly lower than

that of the corresponding sparse-LRP model. The adaptation accuracies of sparse-

weight models with N = 6, 10, 12, 16, and 22 are significantly lower than that of the

corresponding sparse-LRP models.
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Table 3: Adaptation Results for Baseline and 20 Motor Channel Models.

Full – 62 channels Motor – 20 channels

Pre-training Accuracy±SD 84.82±12.07 81.72±12.61
Adaptation Accuracy±SD 85.80±11.88 81.63±13.50

Table 4: Adaptation Results for Sparse-LRP Models.

N=6 N=8 N=10 N=12 N=14 N=16 N=18 N=20 N=22 N=24 N=26 N=28 N=30

Pre-training Accuracy±SD 77.94±12.91 78.41±12.92 79.93±13.63 81.52±12.25 82.48±12.22 82.57±12.08 81.83±12.29 83.19±11.60 82.94±12.17 83.59±12.15 83.26±12.50 82.85±12.76 82.93±13.13

Adaptation Accuracy±SD 80.17±11.89* 79.91±13.16 82.28±12.29* 83.33±11.92 84.28±11.27 85.35±11.26* 85.26±11.47* 85.83±10.82* 86.33±10.64* 85.74±11.50* 85.11±12.50 85.59±11.83* 85.96±11.26*

Table 5: Adaptation Results for Sparse-weight Models.

N=6 N=8 N=10 N=12 N=14 N=16 N=18 N=20 N=22 N=24 N=26 N=28 N=30

Pre-training Accuracy±SD 71.98±12.03 74.98±11.30 77.11±11.57 78.07±12.30 79.00±12.13 80.43±11.44 79.94±12.51 80.82±11.98 81.22±11.85 80.67±12.20 81.67±12.06 81.98±11.97 82.80

Adaptation Accuracy±SD 76.17±12.95**† 77.98±11.93* 79.98±11.95*† 80.32±12.13† 82.33±11.36** 82.74±12.21*† 84.39±11.75** 84.39±11.49** 84.78±11.15**† 84.59±11.58** 84.28±11.93* 85.30±11.91* 85.43±11.91*

The †(p<0.05) indicates that the post adaptation accuracy is significantly lower than the post-adaptation accuracy of the corresponding sparse-LRP model. The * (p<0.05), and **(p<0.001) indicate that the
post adaptation accuracy is significantly higher than the pre-adaptation accuracy of the corresponding sparse model. Adaptation results that are not significantly different from the adaptation result of the

baseline 62-channel model, have been highlighted in bold in Tables 4 5.
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The sparse-weight models have obtained adaptation accuracies not significantly

different from that of the baseline model starting from N = 14 onwards. Similar to

sparse-LRP, maximum accuracy gain from adaptation was achieved by sparse-weight

model using 18 channels.

6. Discussion

We further discuss the significant findings from this study and highlight the novel aspects

and relative advantages of our proposed XAI with pruning based subject-independent

channel selection method.

Our first set of experiments using the proposed method illustrated that channel

selection performed using the LRP relevance scores can significantly reduce the number

of channels required to achieve an optimal performance comparable with baseline, as

reported in Figure 3 and Table 2. Our results obtained using KU dataset show that more

than 60% of the total number of channels can be ignored (N = 24) with no significant

impact on performance. In addition, the subject-independent classification accuracy

suffers less than 1% drop by using only 54% of the channels and just about 3% drop by

using only 19% of the total channels. It is also worth noting that the accuracy of these

19% channels selected by LRP relevance, which amounts to 12 out of the 62 channels in

KU dataset, is similar to the accuracy obtained using the conventionally used 20 motor

channels.

From our second set of experiments, we observed that the magnitude of weight

criterion based channel selection could not achieve a subject-independent performance

similar to the baseline. This method also needs at least 26% of the channels, in

comparison with just 16% for our proposed method, to acquire an accuracy greater

than 80%. Overall, the performance of weight magnitude based channel selection is not

in par with LRP relevance based channel selection, as is evident from the significantly

lower accuracies secured by this method when less than 40% of the total number of

channels are selected. This is observable in Figure 3.

Next, by using the relevance maps in Figure 4, we illustrated the neurophysiological

plausibility of the channel-wise relevance scores. This further ascertains the advantage

of applying an XAI method for channel selection and the resulting interpretability.

In addition, by analyzing the top24 channels selected by LRP relevance and

magnitude of weight, as illustrated in Figure 5, we identified and highlighted the

consistency in selected channels in case of using LRP relevances and the variability of

selection while using magnitude of weights, across all the subject-independent models.

We also observe that most channels, selected using LRP relevances, are from the motor,

parietal and occipital areas of the cortex, and the channels selected using weights are

distributed all over without any clear indication of localization. It should be noted here

that as per literature, only the sensorimotor channels are usually expected to contain

information related to MI [10, 25]. The nine common channels amongst the top24-LRP

selected across 54 subject-independent models come from the central, central parietal
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and parieto-occipital regions, for LRP relevance based selection. On the other hand, the

two common channels in weight based selection come from parietal and parieto-occipital

region, but not the motor region which is involved during ERD/S related to MI [48]. It

is to be noted that channel PO4 is present in both common sets.

Visualizing the subject-wise LOSO-CV classification accuracies using the top24

channels selected by the two methods (Figure 6), we observe that LRP relevance based

selection illustrates a performance on par with the baseline for most subjects, while

weight based selection leads to significant drop in accuracies for several subjects. This

is especially evident in subjects with baseline accuracies ranging from 80% to 95%,

for whom we notice large accuracy differences between top24-LRP versus top24-weight

in Figure 5. This is an interesting finding that requires further investigations. It is

possible that those subjects with higher baseline accuracies, above 95%, produce clearer

MI related activations and a cleaner EEG with less noise, thus are able to perform

well even with fewer channels selected based on weights. However, it is unclear as

to how weights based channel selection works well for certain subjects whose baseline

accuracies are less than 80%, in comparison with those with baseline performance in

the range of 80-95%. We note that certain subjects did not benefit from the proposed

relevance based channel selection method, possibly due to large distinction in their EEG

features compared to other subjects. Nevertheless, for the remaining subjects we see

clear indications of good performance using top24 channels selected by LRP relevance,

that are either on par or sometimes even exceeding the baseline.

Next, with the help of Figure 3, we were able to highlight clearly the performance

advantages of our proposed LRP relevance based channel selection in comparison with

weight magnitude based selection, random selection, and fixed selection of 20 motor

channels. By using our proposed method, we are able to achieve an average subject-

independent accuracy that is as good as the baseline (p=0.09) by using only 38% of the

total channel count. In addition, this performance was maintained across several other

channel subsets while increasing the number of channels. Furthermore, our proposed

method illustrates clear dominance over both weight based selection and random

selection, for the same number of channels. This is apparent from the significantly

higher accuracies obtained using LRP relevance based selection for smaller number of

channels, in comparison with the other two methods. Interestingly, while weight based

selection shows variability in performance as the number of channels are increased,

random selection demonstrates a relatively smoother improvement in performance with

increase in channel count. All three types of channel selection methods are found to

saturate in performance beyond 64% of the total number of channels. Accuracy of

fixed set of motor channels, although greater than that of random selection and weight

based selection, does not indicate a clear superiority over relevance based selection of

20 channels.

Last but not the least, our model adaptation experiments showcased the robust

performance of adapted sparse subject-independent models created by channel selection,

in comparison with the baseline 62-channel and 20 motor channel subject-independent
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models. These results are reported in Tables 3, 4 and 5. The pre- and post-adaptation

accuracies of sparse-LRP models are higher than the corresponding accuracies of sparse-

weight models. The performance of the adapted sparse-LRP model using only 16% of

the total number of channels is similar to that of the adapted baseline model (p=0.13).

The accuracy of the adapted sparse-LRP model using only 35% of the total number of

channels is 0.53% higher (p=0.81) than that of the adapted baseline model using all

channels. The adapted sparse-weight models exhibited good performance, as well. All

adaptation accuracies obtained using sparse-weight models were significantly better than

their corresponding pre-adaptation performances. However, the sparse-weight models

required at least 22% of total channels to acquire a similar adaptation accuracy as that of

the baseline. In addition, the adaptation accuracies of sparse-weight models, for certain

values of N, were significantly lower compared to the corresponding performances of

sparse-LRP models, as reported in Table 5. We identified that sparse models using 29%

of the total channels, selected either by LRP or weight, were robust to adaptation and

gained maximum improvement in accuracy. Although the adapted sparse-LRP models

have secured higher performances in comparison with the adapted sparse-weight models,

it should be noted that the former begin with a higher accuracy before adaptation in

first place. In addition, the sparse-weight models achieved significantly higher post-

adaptation accuracies with respect to their corresponding pre-adaptation accuracies, for

all channel subsets from N = 6− 30, while the sparse-LRP models did not consistently

show a significant improvement. Further investigations are required to better understand

the differences between sparse-LRP and sparse-weight models with respect to robustness

towards adaptation. Overall, the model adaptation results highlight the usefulness

of having sparse models that are more robust to adaptation and also illustrate the

dominance of sparse models obtained using our proposed novel subject-independent

channel selection method that combines XAI based relevance with neural network

pruning.

Altogether, the results indicate that by using the channel-wise relevances computed

by LRP, one can select a channel subset that would offer comparable performance

for an unknown subject. Our proposed channel selection approach also allows us to

control the selected number of channels for subject-independent classification. Using

our proposed method with Deep ConvNet and KU dataset, we achieved a subject-

independent accuracy as good as 62-channel baseline by using only 38% of the channels

(p=0.09).

Limitations and Future Work: Our proposed channel selection method has

demonstrated good performance while being highly interpretable. Nevertheless, our

method has its own limitations. Although our proposed method selects channels in

a subject-independent manner, the selected channels actually vary between different

target subjects based on the training data used for estimating the relevances. For the

channel selection to be truly subject-independent, we believe that identifying a common

subset that can work optimally across all subjects is crucial.

We have applied the basic LRP-epsilon rule for estimating the channel-wise
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relevance scores in this study. Future investigations may include comparisons with

other LRP rules, different XAI metrics or even custom rules to define the calculation

of the relevance scores for a more robust selection of channels. We have conducted this

subject-independent channel selection study using a single EEG dataset that contains

MI data from 54 subjects. Evaluations of the proposed method using multiple datasets

is a potential future work, and will help to gather more generalizable insights regarding

channel selection by relevance. In addition, our channel selection method needs to be

validated using other DL based BCI models. Real-time evaluations of our proposed

method will be performed in future.

7. Conclusion

In summary, the aim of this study was to propose and evaluate a novel methodology for

subject-independent channel selection in DL based MI-BCI. We applied sophisticated

techniques from deep learning for the purpose of channel selection, such as LRP and

neural network pruning. In addition, we evaluated the performances of adapted models

before and after channel selection.

Our main results from the channel selection experiments using Deep ConvNet and

KU dataset are: (i) by selecting just about 38% of the total number of channels using our

proposed method, an average subject-independent accuracy which is not significantly

different from the baseline (p=0.09) can be achieved, with a minor drop of 1.23% (ii)

by selecting as few as 12 out of the 62 channels using the channel-wise LRP relevances,

a subject-independent classification accuracy that is similar to the 20 motor channel

accuracy, and which is only 3.3% lower than the baseline can be obtained (iii) channels

selected using LRP relevance indicate the influence of motor, parietal and occipital

regions in MI classification (iv) the channel-wise average LRP relevances illustrate

an ERD/S like pattern, signifying high neurophysiological plausibility in relevance

estimation and thereby channel selection for MI-BCI (v) the subject-wise classification

performances using the top 38% channels selected by our proposed method, are on par

with the baseline accuracies for most subjects (vi) in comparison with weight based and

random channel selections, LRP relevance based selections provide with significantly

better accuracies especially for fewer channels (vii) the performance of the adapted

sparse-LRP model using only 16% of the total number of channels is similar to that

of the adapted baseline model (p=0.13), and the accuracy of the adapted sparse-

LRP model using only 35% of the total number of channels exceeded that of the

adapted baseline model by 0.53% (p=0.81). Through our results, we establish the

significance of combining XAI based relevance with pruning to perform selection of

highly relevant channels for subject-independent MI classification. Through this study,

we signify the importance of channel selection for user comfort and convenience during

data recording, for removal of noisy and redundant channels, and for realizing sparse

subject-independent deep learning models that are robust, interpretable, and efficient.
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Appendix A. Top 24 channels selected by relevance versus weight
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Figure A1: Top 24 channels selected based on LRP relevances, for 54 subject-independent models. Selected channels are highlighted

in red.
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Figure A2: Top 24 channels selected based on magnitude of weight, for 54 subject-independent models. Selected channels are

highlighted in red.


