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Abstract— Objective: While the microvasculature anno-
tation within Optical Coherence Tomography Angiography
(OCTA) can be leveraged using deep-learning techniques,
expensive annotation processes are required to create
sufficient training data. One way to avoid the expensive
annotation is to use a type of weak annotation in which
only the center of the vessel is annotated. However, re-
taining the final segmentation quality with roughly anno-
tated data remains a challenge. Methods: Our proposed
methods called OCTAve provide a new way of using weak-
annotation on microvasculature segmentation. Since the
centerline labels are similar to scribble annotations, we
attempted to solve this problem by using the scribble-
based weakly-supervised learning method. Even though
the initial results look promising, we found that the method
could be significantly improved by adding our novel self-
supervised deep supervision method based on Kullback-
Liebler divergence. Results: The study on large public
datasets with different annotation styles (i.e., ROSE, OCTA-
500) demonstrates that our proposed method gives bet-
ter quantitative and qualitative results than the baseline
methods and a naive approach, with a p-value less than
0.001 on dice-coefficients and a lot fewer artifacts visu-
ally seen. Conclusion: The segmentation results are both
qualitatively and quantitatively superior to baseline weakly-
supervised methods when using scribble-based weakly-
supervised learning augmented with self-supervised deep
supervision, with an average drop in segmentation perfor-
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Fig. 1: Alternative vessel segmentation output learned from
the coarse annotation while achieving a limited loss in the
segmentation performance.

mance of less than 10%. Significance: This work gives a
new perspective on how weakly-supervised learning can
be used to reduce the cost of annotating microvasculature,
which can make the annotating process easier and reduce
the amount of work for domain experts.

Index Terms— Optical coherence tomography angiog-
raphy, vessel segmentation, deep neural network, self-
supervised learning, weakly-supervised learning.

I. INTRODUCTION

THE visualization of retinal microvasculatures has been
an important ongoing research problem, as effective
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visualization techniques can help experts reveal details that
are useful for diagnosis and analyzing pathological markers.
Many current researches focus on techniques that can be used
to improve the effectiveness of retinal vessel visualization.
One of the techniques, called Optical Coherence Tomogra-
phy Angiography (OCTA), a non-invasive imaging technique,
has been shown to be helpful in the diagnosis of Diabetic
Retinopathy (DR), providing a good alternative to the invasive
Fluorescein Angiography [1]–[4]. Additionally, in the recent
work, Ma et al. discovered that the fractal dimension obtained
from the 2D en face projection of the microvascular structure
within the parafovea area from the OCTA imaging technique
has the potential to be used as an auxiliary biomarker for
the Alzheimer’s Disease (AD) [5]. However, OCTA technique
is prone to various noises and artifacts, such as shadow and
projection artifacts. Thus, vessel segmentation maps obtained
from the OCTA imaging may result in the false detection
of vascular structures, which can lead to misdiagnosis of the
diseases.

Recent researches attempted to extract the vessel morphol-
ogy from either 2D or 3D OCTA images in order to provide
an accurate representation of the retinal vasculature with both
conventional [6]–[8] and deep learning methods [5], [9]–
[13]. The conventional methods i.e., filters, and thresholding.
These methods require the manual calibration to be perform
due to various capturing devices, and may also fail under
certain conditions. The processed outputs are also susceptible
to noises and artifacts presented in the OCTA images. For the
deep learning methods, the manual calibration is not required
and the resulting model can be generalized when there are
enough data for training. While not requiring the manual
calibration, a large amount of data need to be annotated by
experts in order to perform the fully-supervised training.

Although, there exist many deep learning approaches on
the task of vessel segmentation in OCTA images, to the
best of our knowledge, only the work by Xu et al. [14]
attempted to mitigate the tenuous work in the labeling process
of retinal vasculature in OCTA and Fundus images. The
authors proposed the semi-supervised learning scheme that
only requires some patches of label on the meaningful and
informative area of the images. For this approach, the need
to fully-annotate the vessel for each patches and the need to
determine which part of the image is actually contained the
most useful information is still required.

In an attempt to rectify the expensive annotation process
of the retinal vasculature for the 2D en face OCTA images,
we investigate the possibility of applying the scribble-like
annotation – the approach recently been used on the various
other image segmentation tasks on both medical and non-
medical images [15]–[20] – which can reduce the workload
of experts dramatically since it does not require an expert-
level precision in the annotation process. In particular, we
propose a novel weakly-supervised learning framework for
vessel segmentation tasks on the en face OCTA images,
called OCTAve. OCTAve enabled the usage of the scribble-
like annotation as a supervised label to be used in tandem
with experts’ fully-annotated unpaired ground truths, unrelated
to the training inputs, via the adversarial game between the

Segmentor and Discriminator networks to augment the model
learning [19]. The Segmentor training is constrained by our
novel deep supervision mechanism called Self-Supervised
Deep Supervision (SSDS), which can significantly increases
the model segmentation performance without requiring addi-
tional data (Fig. 1). Our contributions to the field of study can
be listed as follows:
• We propose a method that can rectify the expensive la-

belling cost in 2D en face OCTA images by incorporating
the weakly-supervised learning method which reduces the
need of fully-annotated labels.

• We propose a novel training mechanism called Self-
Supervised Deep Supervision used in the training of
weakly-supervised model along with the adversarial deep
supervision mechanism. The results in Table I and II
shows that our method significantly increased segmenta-
tion performance in both the weakly-supervised and the
fully-supervised settings.

• To the best of our knowledge, our work is the first in the
field of retinal vessel analysis which applies the weakly-
supervised learning together with the adversarial and self-
supervised training on the deep neural nets.

II. RELATED WORKS

In this section, we provide brief reviews of prior work on
segmentation tasks using OCTA images and its projection
and the prior work on the applications of several weakly
supervised learning algorithms in medical imaging. In order
to show the progress made in the tasks explored with OCTA
image data, and the possible application of existing weakly-
supervised learning technique to rectify our aforementioned
problem introduced in the previous section.

A. Segmentation Tasks in OCTA
Numerous works investigated the vessel segmentation tasks

and the area segmentation tasks such as foveal avascular zone
segmentation [11], [12], [21], [22], by using deep neural
networks on en face OCTA images due to their performance
being significantly higher and more robust than that of hand-
crafted filters [4]. L. Mou et al. addressed the problem of
curvilinear structure segmentation by proposing CS2-Net [13],
which incorporates a Channel and Spatial Attention Module
into a UNet-like autoencoder, resulted in the superior accuracy
compared to the commonly used medical image segmentation
algorithms such as U-net [23], Unet++ [24], UNet3+ [25]
Attention UNet [26], R2U-net [27] and CE-net [9]. Li et al.
published the OCTA-500 dataset, which included pixel-level
labeling for large retinal vessel and foveal avascular zone
segmentation by proposed the novel 3D to 2D segmentation
model IPNv2, which takes 3D volumetric OCTA as an input
and generated a 2D segmentation map [12].

In the recent study, Ma et al. published the ROSE dataset
which contains en face OCTA images with fully annotated
vessel labels obtained from multiple vasculature layers: super-
ficial vascular complex (SVC), deep vascular complex (DVC),
and inner retina vascular plexus (SVC+DVC), as well as
their proposed state-of-the-art architecture, OCTA-Net [5], a
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novel coarse-to-fine network that employs detailed pixel-level
annotation from a consensus of several experts and vessel
centerline annotation to train a dual U-Net-like architecture
with shared weights on the encoder stack in an attempt to aid
the model learning the vascular structure in a joint-learning
manner.

However, in these studies on the segmentation tasks, none
had considered a way to mitigate the work that needs to
be done by the experts in the labeling process despite the
laborious work of the pixel-level annotation.

B. Application of Weakly-supervise Learning in Medical
Imaging

Weakly-supervised learning has been in a focus of research
in the deep learning field, with the goal of reducing the
workload for the expert labeling while concurrently achieving
an outstanding performance.

Jia et al. proposed a weakly-supervised method for can-
cerous zone segmentation from histopathology images with
the image-level annotation and constrained learning, which
outperformed state-of-the-art architectures on a large-scale
dataset illustrates the reducing amount of annotation work
required [28]. Fries et al. tackled the task of classification
of the aortic valve malformations from cardiac MRI images
by using weakly supervision to generate noisy MRI labels
and illustrated higher scores in all metrics compares to fully-
supervised model on manual-labelled data [29]. Xing et al.
approached the task of central serous chorioretinopathy (CSC)
segmentation by two-stages learning architectures for weakly-
supervision with image-level-only annotation, which greatly
reduced the amount of labeling task [30].

Vepa et al. proposed an automated cerebral vascular seg-
mentation by using active contour as a weak annotation gen-
erator. Their results illustrated slight lower scores but signifi-
cantly reducing annotation time comparing to manual labeling
for weak label [31]. Gondal et al. achieved high accuracy, low
false positives with high sensitivity in detecting lesion region
in retinal images by using lesion-level and image-level anno-
tation for weakly-supervised boundary localization, achieving
commensurate or even better performance than fully-supervise
method [32]. Liu et al. used scribble annotation enhanced
with uncertainty-aware self-ensembling and transformation-
consistent approaches for weakly-supervised COVID19 infec-
tious area segmentation task from CT images; the result on
several data sets presents higher efficiency than other weakly-
supervised method while obtaining similar performance to
fully-supervised method [20].

The above weakly-supervised medical imaging approaches
all show the performance improvement and manual labelling
workload decrement. Thus, it is worthwhile to investigate
the use of weakly supervised learning for medical image-
related tasks, primarily to reduce the laborious work required
of the human experts and to increase data availability. In
this paper, we found that the scribble-like ground truth can
be used to mitigate the previously described issues with the
weakly-supervised technique for 2D en face OCTA vessel
segmentation.

Fig. 2: Example of the training data used to train the Segmen-
tor (x, ys) and the Discriminator (yu) from OCTA-500 6M.

III. METHODS

Our proposed method is illustrated in Fig. 3. The net-
work architecture adopts the work of Valvano et al [19] and
significantly augmented by our novel self-supervised deep
supervision mechanism as presented in the Section III-B.

The approach assumes the existence of a freely accessible,
expert-labeled dataset. The dataset may be indirectly-related to
our dataset. For example, images may be retrieved from the
different devices, but the underlying ground truth is similar to
our target dataset; we called this dataset an unpaired dataset.
Examples of the data are shown in Fig. 2. To utilize the
available expert-made annotations to help in the training of
weakly labeled datasets, the concept of domain transfers using
a generative adversarial network (GAN) [33] is deployed. The
Segmentor network attempts to fool the Discriminator network
which attempts to judge the difference between the expert-
made segmentation map of the unpaired dataset and the model-
predicted segmentation map of the targeted dataset. The goal is
to make the Segmentor learn about the shape prior from the un-
pair expert-annotated ground truth. Thus, the adversarial game
played between the Segmentor and the Discriminator enabling
the Segmentor to produce a segmentation map resembling to
the expert-annotated ground truth.

Let us denote Σ and ∆ as the Segmentor and the Dis-
criminator network respectively. We assign x, ys and yu as
an input, a scribble-like ground truth, and a unpair fully-
annotated ground truth respectively, where ŷ, âi|di=0 and c are
a predicted segmentation map, a set of attention maps and
the discriminator output. The functional of each part can be
described into equations as follow:

Σ(x) = ŷ, âi|di=0 (1)

∆(âi|di=0) = c; c ∈ R (2)

The network is trained to fool the Discriminator at multiple
resolutions, by exploiting the stack of decoder layers. The
adversarial game is played at the discriminative outputs from
each decoder layer. Then, the outputs are fed to the adver-
sarial attention gates as in Fig. 4 before passing through the
discriminators. The adversarial game optimization at multi-
scale outputs of the UNet are named as adversarial deep
supervision.

In the above equations, âi|di = {â0, â1, ..., âd} is a set of
attention map outputs from the adversarial attention gates,
where d is the depth of the segmentor’s attention gates.
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Fig. 3: The proposed architecture overview of OCTAve. It consists of 3 parts, the UNet-like Segmentor (Left), Adversarial
Attention Gates and the Discriminator (Center), and the Self-Supervised Deep Supervision Mechanism (Right). Each part has
different learning objectives but has a common goal of vessel extraction.

Fig. 4: Adversarial Attention Gate architecture, a part of
adversarial deep supervision mechanism [19].

Wpce = 1(ys)[−
c∑

i=1

wiysi log(ŷi)] (3)

VΣ =
1

2
Ex∼X [(∆(Σ(x))− 1)2]

V∆ =
1

2
Ex∼X [(∆(Σ(x)) + 1)2]

+
1

2
Ey∼Y [(∆(yu − 1)2]

(4)

For the supervised loss, masked version of weighted partial
cross entropy introduced in [19] denoted in Equation 3 are
used for weakly-supervised learning. The weighted term wi

is the ratio between the number of annotated pixels of class i
over the number of annotated pixels of every classes, including
the background. The least-square GAN losses for both the
Segmentor and the Discriminator are denoted in Equation 4.
LS-GAN loss is used for an adversarial game optimization
due to its effectiveness in the style adaptation tasks, which is
suitable for our training purpose; ie., the Segmentor adapts to
the expert annotation style in its prediction. On the other hand,

the Segmentor loss LΣ and the Discriminator loss L∆ can be
denoted as follows:

LΣ = α0Wpce(ŷ, ys) + α1VΣ(ŷ, âi|di=0)

L∆ = α2V∆(âi, F
âi

d (yu))
(5)

In Equation 5, α0 is a dynamic weight used to balance
the optimization between weakly-supervised learning and ad-
versarial game optimization. Note that, in our approach, We
will modify this term to achieve the faster training and more
stability in the large parameter model. This will be discussed
later in the Section III-A. Lastly, α1 and α2 are the fixed
weights that are regulated the adversarial loss optimization of
both the Segmentor and the Discriminator, which have been
empirically set to 0.1 according to the setting as in the original
work.

A. Balancing Mechanism of Multi-objective Learning
It is well-known that maintaining the training stability of

the adversarial neural network is a difficult task, and it is even
more difficult for multi-objective learning like our architecture.
To achieve the stability, by avoiding the over-optimization on
the only one of the objectives, an adaptive strategy is a must.
Herein, in this section, we will discuss about the original
dynamic weight term and our proposed modification.

From LΣ in the Equation 5, α0 = ||VΣ||
||Wpce|| is a dynamic

weight term, defined by the ratio between adversarial loss
and supervised loss with an intention to keep the optimization
balance between weakly-supervised objective and adversarial
game. However, while this method allows stable training, the
model training process takes a long time to reach the optimal
point.

In this work, the preliminary study on the trade-off of the
training stability for the faster descent were conducted and
observed. We introduce an alternative reciprocal version of
the dynamic weight term as in Equation 6.

α0 = Clamp(
||Wpce||
||VΣ||

),max = C) (6)
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Fig. 5: Our proposed self-supervised deep supervision work-
ing mechanism for any N-depth UNet-like architecture with
discriminative output on the decoder layer. σ, F y

u , µw denote
softmax function, upscaling function and weighted average
function respectively.

In Equation 6, C is a constant that prevents the model from
overly attending to weakly-supervised learning optimization
during the early training stage. We have empirically set the
value to 0.1 based on the observation from the behavior during
the model training. To show the effectiveness of our proposed
modification, Section V-A shows the experimental results.

B. Self-supervised Deep Supervision

As one of the main contribution of our study, we propose
a novel mechanism for deeply supervise training on a UNet
[23] like architecture called Self-Supervised Deep Supervi-
sion (Fig. 5). This mechanism deeply supervises the model
during the training based on the pixel-wise confidence of the
segmentation map. Based on the observation by Zhao et al.
[34], a well-performed UNet model with discriminative output
at each of the decoder layers tended to have high consistency
of Dice’s coefficient between the discriminative output from
each decoder layer. In our case, the attention maps from
the adversarial attention gates are also discriminative output
from the decoders. This led us to the idea of increasing the
consistency between decoder layers’ discriminative outputs as
one of the optimization objectives.

In other words, the decoder layer can be thought of as a
probability density estimator function that is parameterized by
its own weight θ.

Decoderi(x; θi) ≡ PDE(x; θi) (7)

From the previous statement, we can argue that each decoder
layer should be mapped to the approximately same distribution
in order to produce highly consistent and higher precision
segmentation maps.

PDE(x; θd) ∼ PDE(x; θi); 0 ≤ i < d (8)

In our case, using Dice’s coefficient as a measurement metric
is not an option due to the usage of weak annotation, and in
some cases, we may not have labels for some of the images.
Instead, we incorporate the Kullback-Leibler Divergence [35]
to improve the consistency between attention maps from each
layer. We can say that our objective is to minimize the

divergence of confidence between attention maps of each layer.
The objective function can be denoted as follows:

minimize
d∑

i=0

DKL(ŷ||Decoderi) (9)

Thus, we call the application of the deep supervision based
on KL divergence loss function as Inter-layer Divergence Loss
(ILD) as follows:

LILD(ŷ, âi|di=0) = ŷ[log(ŷ)− log(µw(âi|di=0))] (10)

In the above equation, ŷ is the predicate output from the
Segmentor which we use as a posterior, and âi|di=0 is a set
of the attention map outputs from the adversarial attention
gates.

µw(âi)|di=0 =
1

d

d∑
i=0

wiF
y
u (âi) (11)

Instead of pairwise calculation between posterior and each
of the attention maps, weighted average confidence from the
set of attention maps specified in Equation 11 are used for
the implementation of this work, to reduce the computational
cost from the pairwise calculation of the divergence between
each layer. The weight wi is scaled alongside with the spatial
resolution of the corresponding decoder layer’s output, such
that:

w0 = S0
f

wi = max(w0 − 0.1

i∑
1

Si
f , wl)

(12)

Where Si
f is a sum of spatial downscaling factor at layer i,

and wl is a lower bound value defined by:

wl = min({x = S0
f − 0.1

i∑
1

Si
f |1 ≤ i ≤ d, x > 0)} (13)

In our experiment, OCTAve’s backbones, both UResNeSt
and UNet, downscale the resolution by half at each layer,
thus w0 = 1 and wi = max(1 − 0.2i, 0.2). F y

u is the
differentiable upscaling function used to upscale the lower
resolution attention maps to match the posterior resolution.

Thus, we can rewrite the segmentor loss function with LILD

as an additional optimization objective as follows:

LΣ = α0Wpce(ŷ, ys) + α1VΣ(ŷ) + κLILD(ŷ, âi|di=0) (14)

κ =
||LILD||

||Wpce||+ ||VΣ||
(15)

Equation 15 is an additional dynamic weight introduced
to keep the balance of optimization between self-supervised
learning and others.
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Fig. 6: Segmentation map of the sample from test set of the OCTA-500 3M and 6M on each methods in Section IV-A.2.
The segmentation map were ordered accordingly, from left to right: expert-annotated ground truth, segmentation map from the
inference of the 2D en face angiogram through OCTAveU-ResNeSt50, U-ResNeSt50, OCTAveUNet, UNet.

IV. EXPERIMENTS & RESULTS

Our study consists of two main experiments to show the
effectiveness of the proposed method on the task of vessel ex-
traction of 2D en face OCTA images. The weakly-supervised
training experiment in the Section IV-A was conducted as
our main contribution to this study. Then, to show the useful
application on other than weakly-supervised learning of our
proposed method, the fully-supervised training experiment
were conducted as presented in the Section IV-B.

A. Experiment I: Weakly-supervised Segmentation
1) Datasets and Data Preparation: In this experiment, we

used the OCTA-500 dataset [11], a public multi-modality
dataset with a total of 500 subjects. The dataset provides two
types of field of view (FOV), a 3 × 3 cm2 FOV dubbed
as OCTA-3M containing 200 subjects and a 6x6 cm2 FOV
dubbed as OCTA-6M containing 300 subjects. Each type of
FOV contains three types of 2D en face OCTA projection
with different depths, as follows: FULL(B4), ILM-OPL(B5),
and OPL-BM(B6) projection. Text labels for diseases label are
also provided for non-normal samples.

For this experiment, the training and the evaluation of
each projection and FOV were performed separately. In the
preparation of the dataset, a 70:30 stratified random train-
test split based on the disease label with a random state seed
of 50, followed by the 5-fold stratified cross validation on
the train dataset were performed on each group. Additionally,
an augmentation of the training set was done by randomly
rotating the input image and its corresponding label within
the range of -10 to 10 degrees. In order to simulate the unpair
dataset, we randomly selected half of the training set to be
used as an unpair dataset.

Since the original OCTA-500 does not provide expert-
made scribble annotations, we generated them synthetically

Fig. 7: Experiment I data preparation and evaluation. Σi

denote the best validation score Segmentor model for fold i.
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Modality Projection Scribble %
Method

OCTA-Net U-ResNeSt50 UNet OCTA-Net

OCTA-NetUB U-ResNeSt50AAG OCTAveU-ResNeSt50 UNetAAG OCTAveUNet OCTA-NetLB

3M

FULL
100% 87.83 76.94 78.48* 72.99 76.94* 42.06
75% 75.72 76.07* 73.26 74.66*
50% 74.84 75.44 71.23 72.43*
10% 70.66* 67.16 69.16* 66.45

ILM-OPL
100% 91.32 81.42 82.35* 77.20 82.34* 53.13
75% 81.38 80.89 80.97 81.08
50% 80.31 80.67 80.18 80.52
10% 77.37* 75.41 78.94* 77.87

OPL-BM
100% 82.62 71.07 73.86* 68.07 72.36* 26.05
75% 72.88* 71.95 68.86 70.52*
50% 70.20 70.52 67.14 67.68
10% 67.58* 65.26 64.71 64.97

6M

FULL
100% 84.62 74.33 77.17* 72.71 75.26* 38.33
75% 73.82 76.45* 69.49 74.72*
50% 73.24 73.93* 69.29 70.68*
10 % 71.03* 70.48 70.02* 68.79

ILM-OPL
100% 88.87 79.48 81.43* 78.76 81.06* 46.23
75% 79.19 78.23 78.61 80.96*
50% 78.83 79.15 78.61 80.57*
10% 78.63* 77.62 77.97 78.46*

OPL-BM
100% 78.84 68.56 72.16* 65.06 69.39* 35.59
75% 70.15 71.85* 66.63 69.48*
50% 67.35 67.55 64.31 66.46*
10% 64.68* 63.34 63.77* 62.98

TABLE I: Vessel segmentation performance (Dice’s Coefficient) of the 100%, 75%, 50% and 10% scribble availability variation
compared across the upper bound, lower bound and methods. Bold text denotes the method with the best numerical value
within the same architecture, and * denotes that the method is statistically significant (p < 0.001).

to be used as weakly-supervised ground truths by performing
the skeletonization of pixel-level annotations provided by the
dataset using Zhang’s algorithm [36] implemented in Python’s
scikit-image library [37].

Additionally, to explore the robustness and possible draw-
backs of our method where the model relied on adversarial
knowledge for an unsupervised sample and the enforcement
of self consistency correction, which may cause the error to
propagate during the training, the experimentation was varied
by the scribble label available for use in the training set
as in [19] as follows: 100%, 75%, 50% and 10% scribble
availability. Where x% availability indicates that (100− x)%
of scribble labels (ys) of the samples (x) in the training dataset,
randomly selected, are excluded from the training step. The
samples without scribble labels are subjected to unsupervised
learning, where Wpce term in both Equation 14 and 15 are
removed from the calculation.

2) Benchmarking Methods: The validation of efficacy of au-
tomated segmentation methods was performed by comparing
our proposed method against the current fully-supervised state-
of-the-art method, OCTA-Net [5] in both weakly-supervised
version as a lower bound baseline and fully-supervised version

as a soft upper bound, and the current state-of-the-art scribble-
base weakly supervise method from [19]. We considered the
following:

• OCTA-NetUB [5]: OCTA-Net, the current state-of-the-art
fully-supervised automated vessel segmentation method
on 2D en face OCTA images. Their method is a two-
stage coarse-to-fine network. The coarse stage network
is essentially a UNet [23] with the imagenet-pretrain
ResNeSt50 [38] as a backbone for the encoder layers
and two decoder branches.

• OCTA-NetLB: We considered the scenario where one
tried to apply the scribble weakly-supervised learning
objective to OCTA-Net. In this case, Wpce (Equation 3)
loss was used for the fair comparison with our methods.

• UNetAAG: UNet with the adversarial attention gate and
the Discriminator network from [19]. The configuration
of the architecture and the hyperparameters are the same
as the original work, except for the dynamic weight α0,
which was changed into an alternate version as proposed
in the Equation 6.

• OCTAveUNet: Based on UNetAAG, self-supervised deep
supervision mechanism was incorporated into the training
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Fig. 8: Performance comparison between the “lightweight”
OCTAveUNet against the “heavyweight” UResNeSt50.
Demonstrating the significant competitive advantage of our
proposed method in the enhancement of the low parameter
network to outperform the large parameter network. * denotes
the statistically significance of p < 0.001.

of the Segmentor network to enhance the segmentation
performance and improves the consistency of attention
maps between decoder layers.

• U-ResNeSt50AAG and OCTAveU-ResNeSt50: To show the
effectiveness of our proposed method on the complex
architecture with a high number of parameters, the vanila
UNet encoder that was used in both the UNetAAG and
the UNetAAG-SSDS, which had a far fewer number of
weight parameters, was replaced with ResNest50, a large,
complex architecture used in the coarse stage network of
the OCTA-Net.

3) Model Training and Evaluation Methods: The model and
the experimentation were implemented using the PyTorch
Lightning framework [39]. The global random state seed was
set to 50, and the deterministic training option was enabled
to maximize the reproducibility. The training epochs were
set to 1,000 epochs, along with the checkpointing with the
best Dice’s coefficient score on a validation dataset to be
used as a criterion for every benchmarking method. As for
the optimizer, we use the Adam optimizer [40] with the
learning rate and weight decay parameters were set to 0.001
and 0.0001, respectively, and the cyclic learning rate scheduler
were used with the oscillation between 0.0001 and 0.00001.
Except for OCTA-netUB, we used the same configuration as
specified in [5], e.g. polynomial learning rate scheduler with
a power factor of 0.9.

The segmentation performance was reported using Dice’s
coefficient score, the regularly used evaluation metric in image
segmentation tasks. The statistical significance of the reported
results was tested using non-parametric Friedman repeated
measure, followed by the pairwise t-test to calculate statistical
significant value with Bonferroni p-value correction. p <
0.001 is considered to be statistical significant.

4) Performance Analysis: The superiority of our proposed
methods was verified by comparing the segmentation perfor-

mance on the deep neural network architecture incorporated
with our proposed self-supervised deep supervision mecha-
nism against the one without it, as reported quantitatively in
Table I and qualitatively in Fig. 6.

From the experiment, the major difference in the segmen-
tation performance occurs at the application of our methods
and the variation of the scribble availability. We summarize
the discussions as follows:

• Impact of the self-supervise deep supervision mech-
anism. As the mechanism is the main contribution of
this study, the comparison of our proposed method was
conducted on both the lightweight vanilla UNet and
the heavyweight ResNeSt50-backboned UNet to show
the effectiveness of the application. In this part, we
only consider the 100% scribble availability variation to
exclude any exposure to unsupervised learning from the
analysis.
Based on the results shown in Table I, both UNet and U-
ResNeSt50 architectures, the segmentation performance
between the one with our proposed method and the one
without was drastically different, as the statistical analysis
performed with a significant value of 0.001 showed. With
the improvement seen on the architectures incorporated
with our proposed method on every group of projection
level and FOV, we can argue that our method has a highly
beneficial impact on the segmentation performance of the
weakly-supervised learning setting of 2D en face OCTA
vessel segmentation. Moreover, Fig. 8 shows the effect of
SSDS augmentation on a low parameter model, boosting
the model learning ability to achieve higher or equal
performance compared to the large parameter model.
This observation suggests a useful application when the
computational resource is limited and worth exploring
further in future work.
Consequently, the experiment shows the possible applica-
tion of the weakly-supervised learning method using the
scribble-like label annotation proposed in [19] to achieve
a limited reduction in the segmentation performance of
curvilinear structure despite the usage of coarse labels
and significantly augmented by our proposed deep super-
vision method. Additionally, our method has the potential
to be applied for other segmentation tasks, such as the
foveal avascular zone as shown in Appendix I or other
different organs, with improved segmentation quality.

• Robustness of the mechanism over the exposure
to unsupervised learning. To investigate the possible
drawback of our proposed method in the exposure to
unsupervised learning when the label is missing, ex-
periments on the 75%, 50% and the 10% variations of
scribble availability were considered. As shown in Table
I and visualized in Fig. 9, in majority of cases, experi-
mentation results on the 50% variation have shown that
our method’s difference in the segmentation performance
was mostly statistically insignificant. While the results of
the 10% variation show that our method suffered from
error propagation and achieved lower segmentation per-
formance. As a result, the experiments revealed that our
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Fig. 9: Segmentation performance comparison between
OCTAveU-ResNeSt50 and baseline U-ResNeSt50 on OCTA-500
6M-FULL test set.

method’s robustness can withstood as high as 50% of the
label being missing before being gradually outperformed
by the unaugmented method.

B. Experiment II: Self-supervised Deep Supervision on
Fully-supervised Learning

1) Datasets and Data Preparation: In this experiment,
ROSE [5] dataset, a public dataset with a total of 229
OCTA images consisted of 2 modalities, ROSE-1 and ROSE-2.
ROSE-1 consisted of normal control and Alzheimer’s disease
patients. ROSE-2 consisted of various kinds of macular de-
generative disease patients. However, the disease label unable
to be provided by the original author due to ethical concerns.
The train and test datasets were explicitly provided, thus the
experiment was evaluated on the exact same test dataset as the
original work.

2) Benchmarking Methods: To validate the effectiveness of
the self-supervised deep supervision mechanism on the fully-
supervision task, the coarse stage network of OCTA-Net were
augmented by attaching adversarial attention gate into each
decoder layer of both branches of the network, combined
with the Discriminator network. The fine stage of the network
were left as is. This variation of model modification is called
OCTA-NetAAG-SSDS. The comparison was made against the
original OCTA-Net results and other segmentation methods
[9], [23], [41]–[47] as reported in the original work.

3) Model Training and Evaluation Methods: The experimen-
tation settings in the original work were replicated to perform
a direct comparison against the reported score in the original
work. The number of training epochs was fixed to 200 for
both the coarse and the fine stage of the network with a batch
size of 2. The Adam optimizer with learning rate and weight
decay parameters were set to 0.0005 and 0.0001, respectively,
incorporated with a polynomial learning rate scheduler with
the power factor of 0.9.

4) Performance Analysis: To demonstrate that our method’s
benefits are not exclusively limited to the weakly-supervised

Methods
ROSE-1 ROSE-2

SVC SVC+DVC DVC SVC

IPAC [41] 57.51 52.23 9.11 55.90
COSFIRE [42] 75.17 66.71 24.50 61.42
COOF [43] 66.06 56.85 10.03 61.12
UNet [23] 71.16 70.12 66.05 65.64
ResU-Net [44] 74.61 73.09 65.67 67.25
CE-Net [9] 75.11 73.00 57.83 70.66
DUNet [45] 75.05 74.03 58.50 69.35
CS-Net [46] 76.08 74.88 58.84 70.10
Three-Stage [47] 76.63 75.24 66.22 70.24
OCTA-Net [5] 76.97 75.76 70.74 70.77
OCTAveOCTA-Net (Our method) 78.03 81.42 62.55 71.18

TABLE II: Vessel segmentation performance (Dice’s Coeffi-
cient) in the fully-supervised learning setting on ROSE-1 and
ROSE-2 datasets.

learning scenario, we perform a performance comparison of
OCTA-Net against its SSDS augmented version and other
fully-supervised segmentation methods reported in [5]. The
results in Table II show the superiority of the augmented
model in the majority of the cases. However, the exception
were found on ROSE-1 DVC, where our method achieved
a much lower segmentation performance compared to Ma et
al. OCTA-Net. We speculated that the reason being the expert
annotation of DVC level microvascular is limited to the area
around FAZ, causing our method which relies on confidence
level of the predicted segmentation map to underfit the vessel
that extends further from the area.

V. DISCUSSION

A. Effect of the Dynamic Weight Term Alteration on the
Model Training

For the discussion about the effectiveness of the reciprocal
α0 over the unmodified version, we showed the segmenta-
tion performance of each method: Valvano et al. unmodified
method, Reciprocal α0, and Reciprocal α0 with Inter-layer
divergence loss (our method). As stated in the Section III-A,
we traded the training stability for the faster model training,
which the reciprocal version can achieve a higher segmentation
performance in the early training stage as seen in the Fig. 10
before destabilizing, albeit regained the stability in the late
stage. However, to our anticipation, the early boost in the
performance was continued by the use of a self-supervised
deep supervision mechanism through inter-layer divergence
loss, which can lead to the significant performance increase
and the faster training compared to the previous two.

B. Error Propagation Drawback from the Self-supervised
Learning

Our proposed method is a delicate system where weakly-
supervised, adversarial, and self-supervised learning work in
an ensemble and must be performed in harmony without
disrupting the balance. Otherwise, the model might get stuck
in the bad local optima. This led us to propose Equation 15 –
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Fig. 10: Dice’s coefficient on validation set over the training
epoch of the different α0 modifications on OCTA-500 3M
FULL dataset, demonstrating the transition in the segmenta-
tion performance in the early stage of model training.

a dynamic weight term that keeps all optimization objectives
in balance.

While our method is superior to the original scribble-base
state-of-the-art method for most cases, as observed in the
results of 100%, 75% and 50% scribble availability variation
in Table I. The experiments performed on the extreme edge
case, where only 10% of the training samples with labels
were available, revealed the possible drawback of our proposed
method, where self-supervision failed and disrupted the overall
performance of the model training. Hence, the amount of data
annotation available needs to be taken into consideration for
the application of our method to other tasks to avoid the
performance drop due to the error propagation in the early
stage.

VI. CONCLUSION

In this work, we present a novel scribble-base weakly-
supervised framework called OCTAve that utilizes both ad-
versarial deep supervision and novel self-supervised deep su-
pervision. It outperforms the current state-of-the-art scribble-
based weakly supervised and state-of-the-art fully supervised
methods on the 2D en face OCTA vessel segmentation task
on the public datasets (i.e., OCTA-500 and ROSE). OCTAve
is carefully designed to make three learning objectives work
together in harmony, which results in a robust framework that
can retain its performance advantage over the baseline even
if 50% of the label is missing from the training dataset. We
conducted the experiment and evaluation of the segmentation
performance for the weakly-supervised learning method on
the OCTA-500 dataset with statistical analysis, revealing our
method performance advantage that can make the lightweight
vanila UNet achieve the same segmentation performance as
the heavyweight ResNeSt50-backbone UNet. In addition, the
method also increases the performance of the heavyweight
one. Additionally, we conducted a replica of a fully-supervised

experiment on ROSE dataset to investigate the application of
our proposed method in a fully supervised setting, resulting
in our method’s superiority in the segmentation performance,
thus indicating the impact and usefulness of our proposed
method on the overall area of 2D en face OCTA vessel
segmentation in both low and high data availability scenarios.
Thus, in addition to being able to assist expert annotators
in real-world applications, our work will serve as a baseline
for weakly-supervised segmentation with weak-annotation for
future work and inspire more research into this area.

APPENDIX I
FOVEAL AVASCULAR ZONE SEGMENTATION

In order to show that the proposed method’s ability can
be extended further from the vessel segmentation task, an
additional experiment was conducted on Foveal Avascular
Zone (FAZ) segmentation task on OCTA images using the
OCTA-500 dataset, specifically ILM-OPL projection, where
graders perform annotation. In this experiment, we conducted
two separate tests. The first was performed on the same group
of data in [12] to allow us to conduct a fair comparison
within the fully-supervised learning constraint. However, [12]
did not stratify the dataset based on the disease label in
the data preparation process – which could have caused the
measured performance to be inaccurate. Thus, the second test
was performed using the same protocol as in Section IV-A to
re-evaluate the best method’s performance, with an additional
weakly-supervised learning to investigate its potential on FAZ
segmentation task.

A. FAZ Scribble-like Label Synthesis

Unlike the vessel, a curvilinear structure, where skeletoniza-
tion of the expert label can be used to synthesize a scribble-like
label, we establish the FAZ scribble label synthesize protocol
as shown in the Figure 11’s diagram.

B. Experiments and Result Discussion

In the first experiment, we compare the result of OCTAve
trained with fully-supervised label with Dice’s Loss as a loss
function, dubbed OCTAveFully, against the results of OCTA-
500 3D to 2D SOTA segmentation network IPNv2 and IPNv2+
[12] and other commonly used methods [23], [25], [26], [45],
[48], [49] as reported in the original work. The result in
Table III shows OCTAveFully superior segmentation perfor-
mance in both OCTA-3M and OCTA-6M for 2D to 2D (ILM-
OPL) segmentation methods with lower variance. Additionally,
OCTAveFully outperformed 3D to 2D segmentation networks
in OCTA-3M despite the obvious disadvantage in the input
information.

However, as we pointed out previously that the settings in
the first experiment’s result might be inaccurate due to the
test dataset not contained the same proportion of subjects
with macular disease, which might contained pathological
artifacts that affect the methods’ segmentation performance,
as in the training set. This led us to re-evaluate the OCTAve’s
segmentation performance in this experiment using the same
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Fig. 11: FAZ scribble synthesis procedure diagram. Left
image: Yellow and purple denote the expert’s FAZ and back-
ground label, respectively. Right image: Red and green denote
FAZ and background scribble label. Purple denotes expert’s
FAZ label.

Methods
Dice’s Coefficient (Mean± S.D.)

OCTA-3M OCTA-6M

2D to 2D
Fast-FCN [48] 95.55 ±6.39 86.01 ±15.62

DeepLabV3+ [50] 96.60 ±3.19 87.20 ±14.94

Attention U-Net [26] 97.11 ±2.03 88.97 ±14.02

UNet [23] 96.81 ±2.96 88.10 ±17.56

UNet++ [24] 97.10 ±2.10 87.79 ±18.00

UNet3+ [25] 97.45 ±1.72 88.15 ±16.68

OCTAveFully (Our Method) 98.09 ±1.32 89.15 ±11.84

3D to 2D
IPN [11] 95.05 ±4.79 88.02 ±9.91

IPNv2 [12] 97.30 ±2.33 90.68 ±8.87

IPNv2+ [12] 97.55 ±2.38 90.84 ±8.93

TABLE III: Segmentation performance of fully-supervised
FAZ segmentation task on OCTA-500 dataset using the same
train-val-test dataset as in [12].

data preparation protocol displayed in Figure 7. Moreover,
we also explore the potential of weakly-supervised learning
on FAZ segmentation task. The result in Table IV displays
a reduction in performance for OCTAveFully, reflecting the
inaccuracies in the previous settings with a slight deviation.
The result also shows that the weakly-supervised learning can
achieve a limited reduction in performance compared to the
fully-supervised learning; however, it should be noted that the
weakly-supervised segmentation performance depends on how
‘coarse’ the label provided for the model to learn is, and more
study should be done to investigate FAZ coarse label in the
future works.

Modality
Dice’s Coefficient (Mean± S.D.)

OCTAve OCTAveFully

OCTA-3M 91.19 ±0.34 96.81 ±0.63

OCTA-6M 81.39 ±0.52 89.23 ±0.84

TABLE IV: Segmentation performance of fully-supervised
and weakly-supervised FAZ segmentation task on OCTA-500
dataset using train-val-test dataset construction scheme and
cross-validation as in Section IV-A.
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