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Abstract—Pain is an integrative phenomenon coupled
with dynamic interactions between sensory and contextual
processes in the brain, often associated with detectable
neurophysiological changes. Recent advances in brain ac-
tivity recording tools and machine learning technologies
have intrigued research and development of neurocomput-
ing techniques for objective and neurophysiology-based
pain detection. This paper proposes a pain detection
framework based on Electroencephalogram (EEG) and
deep convolutional neural networks (CNN). The feasibil-
ity of CNN is investigated for distinguishing induced pain
state from resting state in the recruitment of 10 chronic
back pain patients. The experimental study recorded EEG
signals in two phases: 1. movement stimulation (MS),
where induces back pain by executing predefined move-
ment tasks; 2. video stimulation (VS), where induces
back pain perception by watching a set of video clips. A
multi-layer CNN classifies the EEG segments during the
resting state and the pain state. The novel approach offers
high and robust performance and hence is significant in
building a powerful pain detection algorithm. The area
under the receiver operating characteristic curve (AUC)
of our approach is 0.83±0.09 and 0.81±0.15, in MS and VS,
respectively, higher than the state-of-the-art approaches.
The sub-brain-areas are also analyzed, to examine distinct
brain topographies relevant for pain detection. The results
indicate that MS-induced pain tends to evoke a general-
ized brain area, while the evoked area is relatively partial
under VS-induced pain. This work may provide a new
solution for researchers and clinical practitioners on pain
detection.

Index Terms—Pain Detection, Chronic Pain, EEG,
CNN

I. Introduction
Pain, a vital phenomenon that depends on the dynamic

integration of sensory and contextual processes, is one of the
top causes of disability, and if untreated, it can lead to un-
desirable personal and sociological outcomes, such as depres-
sion, work absenteeism, and presenteeism, and unnecessary
costs to families and caregivers [1], [2]. The International
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Association for the Study of Pain (2020) has defined pain as
an “unpleasant sensory and emotional experience associated
with, or resembling that associated with, actual or potential
tissue damage” [3], and compels people to seek healthcare [4].
Despite the tremendous growth in medical diagnosis and
treatment technologies, there is still an urgent need for
accurate chronic pain detection or pain management [5].
Recent advances in brain imaging technologies have led to
neurocomputational models that use neurological signals to
classify pain states. These models make use of the alterations
in structure and functionalities of the chronic pain patient’s
brain. Models based on Electroencephalogram (EEG) data
in the literature associate specific neuronal activities in the
motor cortex with different pain states [6], [7]. Compared
to fMRI, which is also widely used for functional recording,
the electroencephalography (EEG) to predict brain function
abnormalities and extract a brain-based marker of chronic
pain is particularly appealing as the system is non-invasive,
cost-effective, broadly available, and potentially mobile [8].
Besides, EEG is deemed more sensitive for registering the
complex interplay of different brain functional processes oc-
curring in timespans of milliseconds, such as pain. Hence,
the goal of the current study is to detect pain states in
chronic pain patients based on neural signatures extracted
from EEG signals. This work is motivated by constructing
an objective generalizable computer-aided machine learning
model to achieve reliable pain detection accuracy. Results in
this work might not only be helpful for the diagnosis and
classification of chronic pain in a less expensive and more
comfortable manner, but might also represent a target for
novel therapeutic strategies such as neurofeedback [9], or non-
invasive brain stimulation techniques [10].

It is reported that in chronic pain, the adaptive integration
of sensory and contextual processes is severely disturbed [1].
This disturbed integration is associated with significant struc-
tural and functional changes of the brain [11], [12], which can
be tracked effectively using EEG [13]–[15]. Only a few EEG
studies have attempted to address the observable chronic
pain-related cortical activity adequately. Yet, their results
are not fully consistent [7]. An increase of theta and gamma
oscillations in chronic pain patients is one of the abnormalities
reported [16], whereas reductions in alpha and beta power
have been presented [13]. However, these abnormal theta
oscillations were not observed in other studies [15]. Although
previous studies have taken a few preliminary steps towards
inventing an efficient brain-based marker of chronic pain [17],
[18], there are very limited attempts for objective EEG-
based pain detection classifying induced pain EEG vs resting-
state EEG [19], [20]. Such data would be helpful to prevent,
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diagnose, and treat painful conditions [21], [22]. However,
evidence from EEG studies remains weak.

Machine learning has been fundamental for the success
of neuroimaging techniques associated with pain [5]. It can
better interpret the complexity of pain by revealing pat-
terns in clinical and experimental data, by obtaining usable
information that is essential to acquire new knowledge. In
pain-related classification problems, machine learning makes
use of pain-related data to create a mapping of features
and to learn a signature of pain (or class). In the past few
decades, Convolutional Neural Network (CNN) has shown its
great potential in multiple fields such as computer vision and
speech recognition [23]. This method is suitably scaled for
large datasets, as a hierarchical structure in natural signals
can be exploited. As such, CNN appears especially suitable
for analyzing the long-term, high dimensional, high non-
stationary signals, like EEG. Several studies have explored
the application of CNN for EEG analysis within the healthy
population in the areas of sensory processing, cognitive-
emotional processing, speech, motor planning/execution, and
have achieved great performance [24]–[27].

CNN may have proven its huge potential on the afore-
mentioned EEG classification problems. However, there is
very limited work of using CNN for EEG-based chronic pain
detection; a challenging but vital task in pain diagnosis and
treatment for current and future purposes. Motivated by
this fact, a multi-layered framework using CNN is proposed
in this study for EEG-based chronic back pain detection.
The proposed system studies pain data of 10 chronic back
pain patients and achieves better Area under the Receiver
Operating Characteristic Curve (AUC) in pain detection
than the state-of-the-art methods. The experimental results
indicate that the proposed study is establishing a guideline for
using CNN in EEG-based pain detection with high accuracy.
To the best of our knowledge, this is the first attempt to
use deep CNN to construct an objective EEG-based pain
detection for chronic pain.

II. Experimental Setup

The experiment was conducted at Tan Tock Seng Hospital
(TTSH), Singapore, with ethics approval from the National
Healthcare Group Domain Specific Review Board (NHG
DSRB 2016/00516). A total of 10 (6 lower-back pain pa-
tients and 4 back pain patients) volunteer participants were
recruited. The experiment involved these subjects performing
two distinctive sets of carefully-designed tasks: Movement
Stimulation (MS) tasks and Video Stimulation (VS) tasks.
The IDs of the subjects hereinafter referred to as sub01,
sub02, sub03, etc. The study will examine the sensitivity of
the EEG-based method described above in detecting signifi-
cant differences in brain signals in patients with chronic pain.
Participants were recruited via the pain management clinic;
inter-hospital department study recruitment invites in TTSH
and via the pain management clinic website. A total of 2 visits
to the study site (pain management clinic, TTSH) over two
consecutive weeks were required, each taking approximately
1 hour 15 minutes. The first session involved a doctor’s office
visit for a screening assessment prior to study participation.
Participants then participate in two different sets of non-

invasive experimental conditions one after another, i.e., MS
and VS.

The Photograph Series of Daily Activities (PHODA) [28]
specifically retrieves a patient’s associations between certain
movements and expectations of harm and (re)injury, and it
taps therefore into the threat value of daily activities. The
original version of this tool was developed consisting of photos
of 8 possible movements (lifting, bending, turning, reach-
ing, falling, intermittent load, unexpected movement, long-
lasting load instance, or sit with limited dynamics), which
were derived from basic movements (extending, inflecting,
rotating, lateral inflecting, compression and traction) and 2
manners of moving (static and dynamic). These 8 movements
were then set against 4 areas of daily occupations (activities
of daily living, housekeeping, work and sport, and leisure
time) and converted into recognizable and frequent activities
instead of their biomechanics. The resulting list of move-
ments and activities was tested, corrected, and supplemented
by several experts in the area of low back pain (human
movement scientists, physical therapists, and psychologists).
This resulted in the 98 item PHODA, which has a shortened
version of a selection of 40 items. Test-retest reliability and
construct validity support PHODA’s value as an instrument
to determine the threat value of activities in chronic low back
pain patients.

This study created videos of 15 out of the 40 activities
identified in the PHODA- selection of the 15 activities based
on movements that patients will engage in on a daily basis
in the local Singapore context. The VS is a kind of virtual
stimulation. In order to simulate the daily scenes, we also
designed the physical movement stimulation, i.e., MS.

The MS set consisted of a series of 15 physical movements
simulating different daily tasks. Examples of the tasks are
lifting and placing a loaded box, transferring dumbbells be-
tween two boxes, walking/jogging on a treadmill, and pushing
a trolley, as shown in Fig. 1a. The time structure of an
MS task is illustrated in Fig. 2a. An MS task began with
30 seconds resting (in stand-still position) period for the
acquisition of resting-state EEG. The MS task then played
back an instruction video clip of 30 seconds about the physical
activity the subject needs to perform. The subject then
performed such a task for a number of repetitions depending
on the health condition. The numbers of repetitions for the
10 participants were 4,4,3,1,1,3,4,3,4, and 2, both in MS and
VS.

The VS set consisted of watching a collection of 15 video
footages of professional actors acting scenes of daily activities
known to induce lower back and lower limb pain in chronic
pain patients [28], as shown in Fig. 1b. The time structure of a
VS task is illustrated in Fig. 2b. It also began with 30 seconds
resting (in a seated position) period for the acquisition of
resting-state EEG. The subject then watched the pain video
clip.

Note that the “Movement” duration in Fig. 2a and the
“Video” duration in Fig. 2b are for illustration purposes. The
actual duration depends on the complexity of the motion,
and the possible pain episode that may arise during the
stimulation.

When the subject experienced a significantly elevated level
of pain induced by the tasks above, the following mechanism
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(a) Movement Tasks in MS

(b) Videos of Daily Activities in VS

Fig. 1: Tasks in MS and Videos in VS. (a) depicts
movement tasks employed in MS phase whereas (b) shows
the videos watched by the patient, to induce pain episodes.
In MS, the patient executes a series of 15 movement tasks
(i.e., lifting a box up-and-down, move dumbbells between two
boxes, jogging on a running machine, etc) one by one. In VS,
the patient sits still and watches a series of 15 short videos
relates to pain scenes in daily activities one by one.

Fixation Video Movement

0 30 60 90 120 150 180 210 t(s)

(a) Movement Stimulation (MS)

Fixation Video

0 30 60 90 t(s)

(b) Video Stimulation (VS)

Fig. 2: Timing protocol of the two paradigms. (a)
Movement Stimulation (MS) and (b) Video Stimulation (VS).
In Movement Stimulation (MS): At the beginning of a trial
(t = 0 s), a fixation hint appears on the black screen. The
patient needs to stand still for 30 seconds (greed bar). Then, a
30s instruction video clip (yellow bar) plays back to illustrate
the movement to perform. A hint appears on the screen at the
end of the video and gives the order to execute a movement
task (red bar). In Video Stimulation (VS): At the beginning
of a trial (t = 0 s), a fixation hint appears on the black screen
(green bar). The patient needs to sit still for 30 seconds. Then,
the patient needs to watch a VS video clip that may induce
pain (yellow bar). A 2s short break is set between trials in
each stimulation.

was used to record the particular event. The subject immedi-
ately reported the onset of the pain to the physiotherapist
who then registered this event using the data collection
hardware and software, and at the same time instructed the
patient to remain still for 20 seconds – this allowed recording
of motion-artifact-free EEG during the period of induced
pain. The series of tasks would be suspended until the induced
pain was naturally relieved.

A special compact sensing device was developed by the
Institute for Infocomm Research (I2R) team to capture the
dynamics of electrophysiological signals during pain-inducing
tasks. The device was integrated into a backpack with
power and data connection to a computer via an extended
USB cable. The subject could comfortably wear the sensor
backpack while performing all the physical movements. The
device used a Neuroscan NuAmps bio-potential amplifier to
simultaneously measure 32 monopolar EEG potentials (i.e. 32
channels) and electrocardiogram (ECG) and Galvanic Skin
Response (GSR). The ground electrode was at AFz, while
the (A1+A2)/2 was used as the reference channel. A1/2
was attached to the left/right mastoid. ECG and GSR were
not considered in this particular report. The EEG channels
followed the 10-20 system: Fp1, Fp2, F3, Fz, F4, F7, F8,
FT7, FT8, T7, T8, TP7, TP8, FC3, FCz, FC4, C3, Cz, C4,
CP3, CPz, CP4, P3, Pz, P4, P7, P8, PO1, PO2, O1, Oz and
O2. All the EEG channels were measured using Neuroscan’s
gel-based Quik-Cap electrode system. A band-pass filter
([0.5Hz, 100Hz]) and a 50Hz notch filter were enabled in the
amplifier to eliminate/reduce unwanted noises/interferences
out of the range of interesting EEG rhythms. The EEGs were
continuously recorded throughout MS and VS.

III. Methodology
In order to classify EEG features associated with the

rest and pain states of each patient, a multi-layered neural
network architecture is proposed here. Fig. 3 indicates the
flowchart of EEG-based pain detection using CNN. First,
data of N subjects are recorded using a multi-channel EEG
amplifier. Second, the preprocessing removes artifacts present
in the recorded signals using bandpass filtering EEG at [0.5,
100] Hz and using Independent Component Analysis (ICA).
Third, the corrected EEG output of the preprocessing module
is then segmented by a 5 seconds sliding window with 4
seconds overlapping. Then, the segmented EEG is classified
using “Leave-one-subject-out Cross-Validation (LOSOCV)”,
where N − 1 subjects’ data is used for constructing the
CNN model whereas the remaining one subject’s data is used
as a test set. Each subject is selected as the test set once
representing a LOSOCV. The network shown is a symbolic
demonstration of the network used. Details of the network
structure are given in Section III-E. The Final output stage
predicts the label of the segmented EEG as either i.e., “Pain”,
or “Non-pain”. Details of each module and functionalities are
explained in the sequel.

A. Data acquisition
EEGs were acquired from all patients as per the timing

protocol mentioned in Section II. In the MS phase, patients
stood in front of the PC while recording EEG whereas, in
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Fig. 3: Flowchart of the proposed method for EEG-based pain detection. The raw data recorded from the patient’s
brain is classified as “Pain” or “Non-pain” states using the proposed multi-layer CNN architecture in LOSOCV paradigm.
Data of N subjects are imported. In block “Preprocessing”, the raw EEG was firstly bandpass filtered at [0.5, 100]Hz. Then,
ICA is used to remove artifacts. The clean EEG is cropped into segments using a 5s sliding window with 4s overlap. Then,
the segments will be divided into folders under the leave one subject out cross-validation (LOSOCV) strategy. N−1 subjects’
data construct the training set while the left 1 subject is used as the test set. Each subject is selected as the test set once
representing a LOSOCV. Deep CNN is utilized to distinguish the segments. For space sake, the network is just a symbolic
demonstration here. Details of the network structure are given in Section III-E. Each EEG segment is predicted into a certain
class, i.e., “Pain”, or “Non-pain”.

VS phase, patients sat on a comfortable chair watching the
pain-inducing videos. However, the recorded EEG signals
may contain artifacts arising from movements of muscle and
eye, which were then removed using the subsequent steps
for preprocessing. In this work, pain detection is formulated
into a binary classification problem: classifying “Pain” and
“Non-pain” EEG from multi-channel scalp EEG recordings.
“Pain” EEG is defined as pain episodes marked by the
therapist in MS whereas physical experience is marked by the
patient itself in VS. “Non-pain” EEG is defined as the EEG
recordings in the fixation stage. To avoid certain artifacts that
may be generated by movement, the patient was instructed
to stand still for 30 seconds during fixation, and 20 seconds
when a pain episode occurs in MS. In VS, the patient had to
sit still entirely.

B. Preprocessing
The raw EEG was bandpass filtered at frequency band

[0.5, 100]Hz to remove very high-frequency components and
to perform DC-removal. ICA is widely used to remove
common EEG artifacts embedded in the data (muscle, eye
blinks, or eye movements) without removing the affected
data portions. To explore the high intelligence of CNN in
pain detection, the manual intervention in preprocessing

was minimized to keep the originality of the data by do-
ing only bandpass filtering and ICA. The ICA component
rejection followed the ICA artifact removal instruction of
EEGLAB (https://eeglab.org/tutorials/06 RejectArtifacts/
RunICA.html). Fig. 4 demonstrates an EEG before (blue
lines) and after (red lines) an eye blink component removal.
The EEG segment (blue lines) contains two eye blinks at
seconds 0.6 and 3.5 and is clean (red lines) after the eye blink
component is removed.

C. Segmentation
In the proposed pain assessment approach, it is worth con-

sidering the fact that the duration and severity of pain vary
among different patients. In order to ensure the credibility of
“Pain” among patients, only the 10 seconds after every pain
marker was used as a “Pain” episode for each subject in both
phases. Hence for classification purposes, the long-term EEG
was separated into 5 seconds length segments with 4 seconds
overlapping. Fig. 5 demonstrates the “Pain” and “Non-pain”
segmentations in MS and VS. In MS and VS, the fixation is
treated as “Non-pain”, while 10 seconds after a pain marker
is treated as the “Pain”. In Fig. 5, in each rest state (fixation)
and pain state, a sliding window will split the long-term EEG
into 5s segments.

https://eeglab.org/tutorials/06_RejectArtifacts/RunICA.html
https://eeglab.org/tutorials/06_RejectArtifacts/RunICA.html
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Fig. 4: Example for artifact removal. The EEG segment
(blue lines) contains two eye blinks at seconds 0.6 and 3.5
and is clean (red lines) after the eye blink ICA component is
removed.

Given a multi-channel EEG dataset X of patient i ∈
{1, 2, ..., N}, where N is the number of patients. Each dataset
is divided into segments as described above. Concretely,
we are given dataset Di = (X1, y1), (X2, y2), ..., (XNi , yNi),
where Ni denotes the total number of segments for patient
i. The jth EEG segment Xj ∈ RC.T , 1 ≤ j ≤ Ni contains C
channels and T time points per segment, where C = 32 and
T = 5 ∗ 250 = 1250, in this study. The class label of segment
j is denoted by yj ∈ {0, 1}, where 0 represents “Non-pain”
whereas 1 represents “Pain”.

The number of pain episodes varies across patients. Table I
lists a summary of the pain occurrence and segments of 10 pa-

TABLE I: Pain Occurrence and Number of Segments of Each
Patient

Occurrence Number of Segments Balanced
ID MS VS MS VS MS VS
sub01 4 18 29 130 78 332
sub02 6 NaN* 44 - 116 -
sub03 2 2 16 6 78 26
sub04 2 2 14 12 52 44
sub05 22 16 139 126 337 222
sub06 30 49 187 387 531 756
sub07 4 5 28 30 28 30
sub08 31 41 194 251 474 599
sub09 41 NaN* 275 - 509 -
sub10 17 6 126 36 299 143
* NaN means no pain is detected during the stimulation.

tients involved in this study. Pain occurrence is marked either
by the patient or therapist depending on the pain stimulation
phase and the number of occurrences for each subject is
listed in Table I. While considering the pain markers, multiple
pain markers with intermittent gaps of less than 10 seconds
will be considered as a single occurrence. The third column
“Number of Segments” is after splitting each single-trial EEG
into 5 seconds segments. The final column “Balanced” is
the number of segments after oversampling. Oversampling
is performed to avoid the possible trouble caused by data
imbalance (due to the unbalanced number of “Pain” or “Non-
pain” EEG segments) [29]. If the number of “Non-pain” and
“Pain” segments are M and L respectively with M >> L for
a particular subject, the sample size L is raised by randomly
repeating “pain” copies to expand the sample size to M .

D. Leave-one-subject-out Cross-Validation (LOSOCV)
In order to study the performance of the proposed ap-

proach, especially the stability of the algorithm across
different subjects, a leave-one-subject-out cross-validation
(LOSOCV) [30] was adopted. Each time, only one patient’s
dataset Di was used as the test set while all others’ data
Di∗ as the training set, where i ∪ i∗ = {1, 2, · · · , N}, and
N is the number of patients. Mixing one patient’s data in

Pain  Marker

Fixation MovementVideo

Pain State

Rest State

segment segment

(a) MS

Pain  Marker

Fixation Video

Pain State

Rest State

segment segment

(b) VS

Fig. 5: EEG segmentation in MS and VS. In MS and VS, the two blue lines range the fixation stage, while the two
orange lines range the pain stimulation stage. In each stimulation, when a pain is marked (red line), the 10s after the “Pain
Marker” is extracted as a Pain State segment (yellow block). In the fixation stage, a 5s sliding window is used to extract the
Rest State segment (green block). In MS, pain occurs during the movement. In VS, pain occurs during the video play.
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both training and test sets would give the algorithm prior
knowledge and cause fake high-performance metrics. Hence,
LOSOCV is a fair evaluation scheme to truly reveal the
robustness of the classifier. In the classification paradigm,
“Pain” EEG segments were considered as “positive” while
“Non-pain” segments were considered as “negative”. Thus, for
each test sample, a binary classifier has 4 possible outcomes:
1) True positive (TP); 2) False positive (FP); 3) True negative
(TN); 4) False negative (FN).

In practice, for pain detection, due to uncertain factors,
e.g., individual difference, recording environment, it is chal-
lenging to keep the sample balance for different subjects.
In order to avoid the fake high accuracy which might be
produced by sample unbalance, the receiver operating charac-
teristic (ROC) curve was employed to evaluate the algorithm
performance in this study. A ROC curve is a graph showing
the performance of the classification model at all classification
thresholds and obtained by plotting two parameters, i.e.,
True Positive Rate (TPR), False Positive Rate (FPR). True
Positive Rate (TPR) and False Positive Rate (FPR) are
defined as: TPR = TP

TP+FN , and FPR = FP
FP+TN .

A ROC curve plots TPR versus FPR at different classifica-
tion thresholds. Lowering the classification threshold classifies
more items as positive, thus increasing both FPs and TPs.
With ROC, we can use the Area under the ROC Curve
(AUC) as the performance metric. AUC measures the entire
two-dimensional area underneath the entire ROC curve from
(0, 0) to (1, 1). In general, the higher the AUC, the better
the classification model. In this study, AUC was employed as
the performance metric to evaluate the algorithm’s ability to
distinguish “Non-pain” and “Pain” EEGs.

In general, an AUC of 0.5 suggests no discrimination (i.e.,
ability to distinguish positive and negative samples), 0.7 to
0.8 is considered acceptable, 0.8 to 0.9 is considered excellent,
and more than 0.9 is considered outstanding [31].

E. Convolutional Neural Network
In this study, the proposed pain detector was made of

CNN. The multi-layers CNN model structure is illustrated
in Fig. 6. The network is in reference to previous researches
to use CNN in EEG decoding, including, DeepConvNet,
ShallowConvNet [26], and EEGNet [25].

The input to the CNN structure is the bandpass filtered 32-
channel scalp EEG. A CNN predictor was trained to assign
the input segment Xj a class label, i.e., f(Xj ; θ) ∈ RC.T →
RP , where θ is the parameter set of CNN, C = 32 is the
number of channels, T = 250 × 5 = 1250 is the time points,
and P ∈ {0, 1} is the possible output label. The model con-
tains 5 convolutional layers, a batch normalization layer, and
a 2D max-pooling layer. The first two convolutional layers
correspond to the temporal filtering and spatial filtering of
the EEG segment. In the first layer, each filter performs a
convolution over time, while in the second layer, each filter
performs spatial filtering with weights for all possible pairs of
electrodes with filters of the preceding temporal convolution.
After each max-pooling layer, a 30% dropout is used to
avoid over-fitting. As the model is designed for a binary
classification problem, the last dense layer is set with sigmoid
activation function S(z) = 1/(1 + e−z), where z is the dense
output of the last dropout layer (L17). Then the entire CNN
classifier is trained to assign high probabilities to the correct
labels by minimizing the sum of the per-example losses:
θ∗ = argmin

θ
ΣLj=1loss(yj , f(Xj ; θ)), where L is the number

of segments in the training set, and loss is the loss function
which is binary cross-entropy in this work. The binary cross-
entropy (BCE) is for input Xj is defined as:

BCE(Xj) =

2∑
i=1

(yilog(f(Xj ; θ)) + (1− yi)log(1− f(Xj ; θ)))

2
where yi is the true label.
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Fig. 6: Network structure. The input is multi-channel EEG segment with a dimension 32(channel) ×
1250(sampling point, 5 × 250). L1 is a temporal filter that contains 25 filters with a 1 × 10 kernel. L2 is a spatial filter
that contains 25 filters with a 32×1 kernel. In L5, L8, L12, and L16, the pool size is (1, 3) and the stride is (1, 3). L7 contains
50 filters with 1 × 10 kernels. L10 contains 100 filters with a 1 × 10 kernel. L14 contains 200 filters with a 1 × 10 kernel.
L18 is a dense layer with sigmoid activation whose output is the predicted class, i.e., “Pain” or “Non-pain”. A grid search of
optimizer and activation function (L4, L11, L15) is utilized to investigate the optimal hyper-parameter settings.
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A grid search of optimizers and activation functions is
employed in this work to create the CNN model which implies
that selection of hyper-parameters selection is done exhaus-
tively. Considered options of optimizers include, “SGD”,
“RMSprop”, and “Adam” whereas options of activations
include, “elu”, “relu”, and “tanh”. Only the optimal pa-
rameter set is retained to build up the pain detector. The
details of optimizer and activation functions can be found
at work [23], https://keras.io/api/optimizers/ and https:
//keras.io/api/layers/activations/. To construct the model,
Python3.7 and Keras2.2.4 (https://keras.io/) are employed
in this work.

IV. Results and Discussion
Our motivation is to investigate the performance of CNN

for the benefit of EEG-based pain detection, which has high
potential in clinical research and solutions. As indicated in the
previous sections, the scalp EEG was employed as the input of
a multi-layer CNN pain detector. The following subsections
will demonstrate the classification results of pain detection
based on CNN and compare our approach with respect to
the state-of-the-art, in both MS and VS phases. In addition,
the 32 channels will also be divided into several scalp areas to
explore the significance of brain areas while detecting pain.

A. Pain Detection in MS
While classifying the “Pain” and “Non-pain” segments

in the MS phase of all 10 patients, a consistent AUC over
0.70 was obtained across all patients. The average AUC
is 0.83 which is very promising. Because we use leave-one-
subject-out cross-validation, the robustness of our approach
to overcoming individual differences is proven. To specifically
illustrate the performance metric, we visualize the individual
and averaged ROC curves together in Fig. 7. The transparent
lines represent the ROC curve of each patient. The bold
blue line is the average ROC curve across the ten subject-
specific ROC curves. The confidence intervals with ±1 std
are represented by the grey area. The model providing the
highest AUC for each patient in a grid search of optimizer
and activation function is illustrated here and later in VS.
“SGD” is the employed optimizer and “elu” is the activation
function, after grid search in MS.

As seen in Fig. 7, ROC curves of all patients show a
consistent pattern that the AUC of each patient (transparent
lines) is much higher than the chance level (red dashed line).
The highest AUC is 0.97 for sub03. The lowest AUC is 0.70
for sub04 which is still much higher than the chance level
(red dashed line). Also, it can be seen that six in ten patients
achieve AUCs above 0.80.

It is worth mentioning that there are two options of AUC
averaging in cross-validation, one is to calculate one ROC
and one AUC per fold, then generate a numerical average
AUC, the other is to integrate the probabilities of all folders
to make one ROC and one merged AUC. In this work, we
recommend the first way and make the analysis accordingly
for two reasons. First, option 1 provides the AUC variance,
which is very significant in cross-validation, with a visual
impression of the uncertainty of the test result on each sub-
ject. Second, a well-calibrated probability estimation across
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Fig. 7: ROC of LOSOCV (MS)

subjects is hard to guarantee, may lead to an unintended
problem by sorting probabilities of different subjects together.
However, considering the analyzing preference, we still report
the merged AUC here for reference. In MV, the merged AUC
is 0.70.
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B. Pain Detection in VS
In VS phase, individual and averaged ROC curves are

illustrated in Fig. 8. The transparent lines represent the ROC
curve of each patient and the bold blue line is the average
ROC curve across 10 patients. The confidence intervals with
±1 std indicate the grey area. The average AUC of our
approach achieved on VS was very close to that on MS.
However, the individual AUC on VS differed from that on

https://keras.io/api/optimizers/
https://keras.io/api/layers/activations/
https://keras.io/api/layers/activations/


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2022.3147673, IEEE
Transactions on Neural Systems and Rehabilitation Engineering 8

MS. The highest AUC is at 1.00 for sub03. The lowest AUC
is 0.59 for sub06, slightly higher than the chance level. The
difference can be seen by comparing the patterns in Figs. 7
and 8. In VS, the algorithm produced low AUC on two
patients (sub06: 0.59, sub07: 0.66), while in MS, the AUCs of
sub06 and sub07 are both above 0.80. In contrast, the AUCs
of sub03, sub04, sub05, and sub10 on VS are higher than that
on MS, especially for sub04 and sub10 (15% higher). However,
the average AUC (0.81) in VS was very close to that on MS,
proving the stability of the proposed method in pain detection
under VS. It is worth noting that there might be two reasons
for the subject-specific AUCs under both stimulations. First,
the individual difference can create significant classification
bias across patients, either in MS or VS. Secondly, the pain
EEG pattern may switch under different stimulations. Such
a difference can be explained more in a further discussion in
Section IV-D, which focuses on distinct brain areas affecting
pain detection. Similar to MV, we also give the merged AUC
in VS here, which was 0.63.

C. Comparison with State-of-the-art
Although the proposed method achieved good pain detec-

tion results, it is worth investigating whether it is significantly
better than existing methods. Since there is very limited work
available in the literature for machine-learning-based chronic
pain detection based on EEG, the proposed method was
compared with three recently published machine-learning-
based approaches inducing thermal pain [6], [20], and cold
presser pain [32]. In Gaurav et al. [6], SVM was used to
automatically classify EEG data into low- and high-pain
classes. Theta and gamma power in the medial prefrontal
area and lower beta power in the contralateral sensorimotor
area served as features for classification. In Vishal et al. [20],
a random forest model was trained to predict pain scores
using time-frequency wavelet representations of independent
components obtained from electroencephalography (EEG)
data, and the relative importance of each frequency band
to pain quantification is assessed. In Tahereh et al. [32],
SVM was used for pain EEG classification under the feature

space which contains band power, fractal dimension, Shannon
entropy, approximate entropy, and spectral entropy. In addi-
tion, the proposed method is compared with the latest deep-
learning-based EEG analysis tools, including, DeepConvNet,
ShallowConvNet [26], and EEGNet [25]. For random forest
in Vishal et al. [20], “gini” was selected as the criterion,
while grid search was used for the optimization of the number
of trees, maximum depth, and minimum samples split, in
set, [50, 100, 150, 200], [1, 3, 5, 7, 9, 11], and [20, 40, 60, 80]. For
SVM in Gaurav et al. [6] and Tahereh et al. [32], the best
settings were obtained from grid search of gamma and c,
in set [10−2, 10−1, 100, 101, 102]. For DeepConvNet, Shallow-
ConvNet, and EEGNet, the same grid search of optimizers
and activation functions as in Section III-E employed.

The comparison of AUC values for different methods on
MS and VS are listed in Tables II and III, respectively.

Our approach outperformed the other methods by deliv-
ering significantly higher average AUCs than the existing
methods, in both stimulations. In MS phase EEG classifica-
tion, compared with our approach, AUC offered by Gaurav
et al. [6] was slightly better for sub10, while Vishal et
al. [20] achieved higher AUC for sub02, sub03, sub04, and
sub07. However, the proposed CNN model achieved much
better overall performance on average. For Gaurav et al.
[6], the AUCs of 6 (sub01, sub04, sub05, sub06, sub07,
and sub09) in 10 patients were lower than 0.70, indicating
very limited discrimination ability for pain detection. The
model of Vishal et al. [20] was slightly better than that
of Gaurav et al. [6] on average AUC, but still generated
AUCs lower than 0.70 in 4 subjects, namely sub01, sub05,
sub06, and sub10. An interesting finding is, it is much more
difficult to detect the pain EEG for some subjects than
the others, especially on sub01, sub05, and sub06 by the
existing approaches. Though Gaurav et al. [6] and Vishal et
al. [20] have their pros and cons across subjects, they showed
very limited classification capabilities in dealing with sub01,
sub05, and sub06. In comparison, our approach obtained
much higher AUCs on these three and gained at least 0.14
improvement on average. In addition, our approach did not

TABLE II: Method Comparison (MS)
MS This Work Gaurav et al. [6] Vishal et al. [20] Tahereh et al. [32] EEGNet [25] DeepConvNet [26] ShallowConvNet [26]
sub01 0.91 0.07 0.64 0.96 0.93 0.94 0.94
sub02 0.90 0.86 0.92 0.50 0.91 0.91 0.85
sub03 0.97 0.71 1.00 0.81 0.89 1.00 0.93
sub04 0.70 0.51 0.74 0.53 0.90 0.70 0.70
sub05 0.74 0.54 0.52 0.72 0.54 0.56 0.68
sub06 0.79 0.65 0.46 0.72 0.55 0.70 0.71
sub07 0.86 0.51 1.00 0.88 0.88 0.98 0.79
sub08 0.85 0.79 0.77 0.81 0.53 0.82 0.66
sub09 0.82 0.60 0.76 0.80 0.76 0.78 0.69
sub10 0.74 0.77 0.51 0.88 0.76 0.75 0.71
Average 0.83 ± 0.09 0.60 ± 0.22 0.73 ± 0.20 0.76 ± 0.15 0.76 ± 0.16 0.81 ± 0.14 0.76 ± 0.10

TABLE III: Method Comparison (VS)
VS This Work Gaurav et al. [6] Vishal et al. [20] Tahereh et al. [32] EEGNet [25] DeepConvNet [26] ShallowConvNet [26]
sub01 0.76 0.67 0.73 0.74 0.56 0.68 0.74
sub03 1.00 0.49 0.22 0.96 0.77 0.63 0.92
sub04 0.98 0.97 1.00 0.98 0.93 0.94 0.99
sub05 0.77 0.81 0.92 0.80 0.56 0.60 0.76
sub06 0.59 0.47 0.52 0.50 0.51 0.56 0.59
sub07 0.66 0.51 0.47 0.50 0.58 0.57 0.55
sub08 0.83 0.44 0.73 0.50 0.64 0.67 0.62
sub10 0.90 0.55 0.72 0.85 0.85 0.75 0.76
Average 0.81 ± 0.15 0.62 ± 0.19 0.66 ± 0.25 0.73 ± 0.21 0.67 ± 0.12 0.76 ± 0.10 0.74 ± 0.15
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create significant bias among subjects. In other words, the
AUCs of the patients were all higher than 0.70. Six out
of ten patients were even higher than 0.80, considering the
promising discrimination capability of the proposed method.
Furthermore, our approach achieved a much higher average
AUC and a much lower standard deviation than the other two
methods, proving better algorithm robustness across subjects
in MS. When compared with the three state-of-the-art deep-
learning-based methods, our approach still achieved much
better performance. Among the three methods, DeepConvNet
obtained the best classification result, which was also the
closest to this work but is still two percentage points lower.
At the same time, its std is 5 percentage points higher than
that of the proposed method.

In VS, compared with the proposed approach, the method-
ology reported in Gaurav et al. [6] achieved higher AUC
in sub05 whereas Vishal et al. [20] achieved higher AUC on
sub04 and sub05. However, across 10 subjects, the average
AUC was less than that in the proposed method. For Gaurav
et al. [6], the AUCs of 6 (sub01, sub03, sub06, sub07, sub08,
and sub09) out of 8 patients were lower than 0.70, indicating
unacceptable accuracy in pain detection. Besides, for sub03,
sub06, and sub08, the AUCs were even lower than the chance
level. AUC offered by Vishal et al. [20] was slightly better
than Gaurav et al. [6] for sub01, sub06, sub08, and sub10,
but offered lower AUCs than 0.70 for 3 subjects: sub03, sub06,
and sub07. The AUCs offered by Vishal et al. [20] for sub03
and sub07 were even lower than the chance level. Like in
MS, it is much more challenging to detect the pain EEG
accurately for some subjects than the others, especially on
sub03, sub06, and sub07. Existing methods did not perform
well in the classification of pain states in sub03, sub06, and
sub07. In comparison, our approach obtained much higher
AUCs on sub03, sub06, and sub07. On sub06 and sub07, the
AUCs were at least 0.07 higher. On sub03, either Gaurav et
al. [6] or Vishal et al. [20] gave AUCs lower than the chance
level, while the proposed algorithm offered 100% classification
accuracy. Though AUCs of sub06 and sub07 by the proposed
method were still lower than 0.70, the average AUC was
relatively much higher than the other two methods. Moreover,
our approach achieved a much lower standard deviation than
the other two methods, proving better algorithm robustness
across subjects in VS. It is worth noting that the pain EEG
detection in VS is more difficult than that in MS, which
can be peered from several aspects. First, for our approach
and Gaurav et al. [6], the ratio of subjects that achieve
AUCs lower than 0.70 in VS is significantly higher than
that in MS. The AUCs of all the patients were higher than
0.70 in MS, while 2 in 8 subjects were lower than 0.70
in VS when using our approach. This ratio increased to
6/10 in MS and 6/8 in VS when using Gaurav et al. [6].
Second, using either our approach or Vishal et al. [20], the
average AUC decreased, especially for Vishal et al. [20], which
drops to 0.66, worse than the lower boundary of acceptable

AUC, 0.70. When compared with the three state-of-the-
art deep-learning-based methods, our approach achieved at
least 5 percentage points higher at AUC. In the state-of-
the-art methods based on CNN, DeepConvNet obtained the
best classification result. However, in all the 8 subjects, the
prediction results of DeepConvNet were lower than that of
our method. Similar comparison results also exist for EEGNet
and ShallowConvNet.

Although the proposed method obtains the highest AUC
among all methods, the computational cost is another im-
portant indicator that needs to be considered. Table IV
lists the computational time of all the methods. For the
fairness of comparison, training times are end-to-end, that
is, including the loading and preprocessing of the data. The
methods based on SVM and random forest were substantially
faster to train than the CNN-based methods. It is worth
mentioning that these times are only meant to give a rough
estimate of the training times as there were differences in
the computing environment, especially between CNN-based
classifiers and traditional machine-learning classifiers. Most
importantly, Gaurav et al. [6], Vishal et al. [20], and Tahereh
et al. [32] were trained on CPU, while our method, EEG-
Net [25], DeepConvNet [26], and ShallowConvNet [26] were
trained on GPUs.

In general, the proposed method produced much better
pain detection performance than the other methods, ob-
taining the highest value of AUCs in both MS and VS,
proving its good stability to handle pain detection under
different stimulations. Compared with the methods based on
traditional classifiers, e.g., SVM, random forest, the CNN-
based approach can reduce the manual intervention, making
the classification model relatively easier to be implemented.
Besides, the proposed method can extract the temporal (L1)
and spatial (L2) information from the raw signal much more
efficiently.

D. Significance of Brain Areas
Unlike other sensations associated with specific areas in

the brain, such as vision, touch, and hearing, it is hard to find
studies reporting specific cortical area activations dedicated
to pain with different kinds of stimulations. Hence, it will be
beneficial for pain research to explore brain areas significantly
involved in pain generation in both types of stimulation. Here,
a brief discussion on the detection in different brain areas
under MS and VS is presented. The 32 channels are divided
into 6 areas as follows:

• Frontal (F): Fp1, Fp2, F3,Fz,F4, F7, F8, FC3, FCz, FC4
• Central Parietal (C): C3, Cz, C4, CP3, CPz, CP4, P3,

PZ, P4, P7,P8
• Occipital (O): PO1, PO2, O2, Oz, O2
• Temporal (T): FT7, FT8, T7, T8, TP7, TP8
• Motor (M): F3,Fz,F4, F7, F8, FC3, FCz, FC4
• Motor Occipital (MO): F3,Fz,F4, F7, F8, FC3, FCz,

FC4, PO1, PO2, O2, Oz, O2

TABLE IV: Training Times
This Work Gaurav et al. [6] Vishal et al. [20] Tahereh et al. [32] EEGNet [25] DeepConvNet [26] ShallowConvNet [26]

MS 138,288 81,565 49,834 10,373 148,255 122,684 80,647
VS 93,259 69,796 39,166 7,060 100,522 82,906 71,923
* Training times are given in seconds.
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(a) All (b) Frontal (F) (c) Central Parietal (C) (d) Occipital (O)

(e) Temporal (T) (f) Motor (M) (g) Motor + Occipital (MO)

Fig. 9: EEG Electrodes of Brain Areas

The 6 areas are named as Frontal (F), Central-Parietal
(C), Occipital (O), Temporal (T), Motor (M), and Motor-
Occipital (MO), including the channels. Fig. 9 shows the lo-
cations of electrodes in each area. The CNN model providing
the highest AUC in a grid search of optimizers and activation
functions (as in Section IV-A and Section IV-B) is used here
to investigate brain areas for both MS and VS phases. The
sequel explains the significance of different brain areas in
EEG-based pain detection under MS and VS separately in
line with the previous subsections.

Table V provides the AUC values in pain detection for each
brain area for the MS phase. Comparing different areas, the
main finding in MS is that the average AUCs obtained in dif-
ferent areas are very close. The highest AUC, 0.84, was in the
motor + occipital (MO), while the lowest AUC, 0.80, was in
the temporal (T). This indicated that all the brain areas are
evoked when pain occurs in actual movement. Under the MS,
any independent brain area is sufficient to guarantee a reliable
detection AUC using the proposed approach. Besides, area
“MO” outperformed “All” in 6 of the 10 patients. The average
AUC of “MO” was the highest among the brain areas. The
motor cortex is the control and execution center of voluntary
movements. While the occipital lobe is the visual processing
center of the brain containing most of the anatomical area of
the visual cortex. So, it makes sense that using the MO area
can achieve even better pain detection results than involving
all the channels. Nevertheless, the selection of a sub-brain
area can efficiently reduce the computational cost, especially
in the CNN model.

Though the average AUCs of different brain areas were
very close in a single subject, the AUCs vary among different
subjects. When the detection was based on the whole brain,
the AUCs of all the subjects were higher than 0.70. In
comparison, the AUCs of certain subjects were lower than
the lower boundary of acceptable AUC (0.70) in several brain

TABLE V: Brain Areas Significance (MS)
All F C O T M MO

sub01 0.91 0.94 0.81 0.98 0.85 0.94 0.99
sub02 0.90 0.97 0.98 0.91 0.89 0.94 0.94
sub03 0.97 0.97 0.92 0.85 0.98 0.88 0.94
sub04 0.70 0.82 0.90 0.73 0.83 0.73 0.71
sub05 0.74 0.70 0.67 0.77 0.65 0.72 0.77
sub06 0.79 0.63 0.67 0.72 0.65 0.65 0.75
sub07 0.86 0.98 0.83 0.88 0.91 0.99 0.99
sub08 0.85 0.84 0.87 0.74 0.83 0.79 0.75
sub09 0.82 0.75 0.70 0.85 0.70 0.69 0.82
sub10 0.74 0.73 0.73 0.87 0.69 0.74 0.75
Average 0.83 0.83 0.81 0.83 0.80 0.81 0.84
* All: 32 channels; F: frontal; C: central; O: occipital; T: temporal;

M: motor; MO: motor + occipital

areas, such as frontal of sub06, central of sub05 and sub06,
etc. This phenomenon proves that the algorithm robustness
varies in different brain areas across subjects. In addition,
while comparing areas O and M, it is found that O per-
formed well on all subjects, but sub06 and sub09 generate
AUCs lower than 0.70 in M. This indicates that a relatively
stronger activation is evoked in area O than that in area M.
The algorithm can capture enhanced EEG pattern for pain
detection by combining areas O and M.

The results of pain detection under different brain areas in
VS are listed in Table VI. It is observed that AUCs obtained
across 10 subjects over the different scalp areas are much more
scattered than that in MS. On average, the highest AUC was
0.82 in occipital (O), whereas the lowest AUC was only 0.71
in temporal (T). This indicates that, compared with MS, VS
activates a partial activation for pain EEG in a relatively
smaller area than MS. It may be because of the fact that
MS evokes pain EEG over relatively larger brain areas than
that in VS. MS assigns multiple lobes for task execution, such
as the occipital lobe for visual processing and motor cortex
for the control and execution of voluntary movements. In
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contrast, VS is most likely to directly stimulate the occipital
area when the patient concentrates on the video played in the
front. Besides, the average AUC of “O” is slightly better than
“All”, which is also the highest among all the areas in VS.
As we explained previously, the occipital lobe is the visual
processing center of the brain, so it is not surprising that
area “O” achieves even higher AUC than that obtained using
all the channels. Meanwhile, the area “O” only occupied 5
EEG channels, significantly reducing the computational cost.

TABLE VI: Brain Areas Significance (VS)
All F C O T M MO

sub01 0.76 0.63 0.62 0.88 0.75 0.71 0.79
sub03 1.00 0.84 0.96 0.96 0.86 0.81 1.00
sub04 0.98 0.98 1.00 0.97 0.98 1.00 0.99
sub05 0.77 0.77 0.71 0.76 0.66 0.74 0.79
sub06 0.59 0.55 0.60 0.55 0.58 0.57 0.56
sub07 0.66 0.62 0.66 0.79 0.49 0.58 0.64
sub08 0.83 0.71 0.73 0.77 0.77 0.76 0.81
sub10 0.90 0.68 0.83 0.87 0.57 0.74 0.80
Average 0.81 0.72 0.76 0.82 0.71 0.74 0.80
* All: 32 channels; F: frontal; C: central; O: occipital; T: temporal;

M: motor; MO: motor + occipital

The advantage of area “O” was reflected in its highest
average AUC and in the better performance on each subject.
While using all the 32 channels, the AUCs of 2 (sub06 and
sub07) out of 8 subjects were lower than 0.70. This number
was dropped to 1 (only sub06) in area O. Furthermore,
compared with “O” and “All”, area “O” had a significant
AUC improvement at 0.12 and 0.13, on sub01 and sub07,
respectively.

If the conditions are insufficient for brain area selection
in pain detection, e.g., limited channels, unknown evoking
areas, the safest way for EEG-based pain detection is to
employ all EEG channels. However, if the stimulation and the
activation area(s) are evident, a subset of channels covering
specific brain areas should be considered for achieving better
detection accuracy at a lower computational cost. Results
in this work may provide a new solution and insights for
researchers and clinical practitioners for pain detection.

V. Conclusion
Identifying neurological markers that predict individual

predisposition to pain is critical in developing chronic pain
treatments and resolving the knowledge of how pain signals
are analyzed in the brain. Recent advances in neuroimaging
techniques and machine learning algorithms have significantly
enhanced ongoing research on pain detection. Our study
investigated the detection of pain using EEG in chronic
back pain patients employing deep CNN architecture. The
pain was induced among patients under two distinct modes,
namely, movement stimulation (MS) and video stimulation
(VS). Meanwhile, the associated EEG oscillations were con-
tinuously recorded. Using the proposed multi-layer network
model, robust performance for classifying EEG “Pain” and
“Non-pain” EEG segments was achieved, with AUCs higher
than 0.80. In addition, the brain areas evoked under MS
and VS were analyzed. In MS, motor and occipital lobes
contributed to the highest AUC values in detection. In con-
trast, the occipital lobe contributed to the highest AUC in
VS. Further research will be needed to validate further the

current results with data obtained from a bigger and wider
sample of patients with chronic pain. Applying novel EEG
paradigms and methodologies will allow us to better under-
stand the mechanisms underlying chronic pain, especially the
knowledge of brain activities in this field.

Acknowledgement
The computational work for this project was partially per-

formed on resources of the National Supercomputing Centre,
Singapore.

References
[1] M. Ploner, C. Sorg, and J. Gross, “Brain rhythms of pain,” Trends

in Cognitive Sciences, vol. 21, no. 2, pp. 100 – 110, 2017.
[2] M. M. van der Miesen, M. A. Lindquist, and T. D. Wager,

“Neuroimaging-based biomarkers for pain: state of the field and
current directions,” Pain Reports, vol. 4, no. 4, p. e751, Jul 2019.

[3] “Pain Terms: The International Association for the Study
of Pain (IASP),” https://www.iasp-pain.org/Education/Content.
aspx?ItemNumber=1698#Pain, 2020.

[4] D. J. Gaskin and P. Richard, “The economic costs of pain in the
united states,” The Journal of Pain, vol. 13, no. 8, pp. 715–724,
2012.

[5] K. D. Davis, H. Flor, H. T. Greely, G. D. Iannetti, S. Mackey,
M. Ploner, A. Pustilnik, I. Tracey, R.-D. Treede, and T. D. Wager,
“Brain imaging tests for chronic pain: medical, legal and ethical
issues and recommendations,” Nature Reviews Neurology, vol. 13,
pp. 624–638, 2017.

[6] G. Misra, W. en Wang, D. B. Archer, A. Roy, and S. A. Coombes,
“Automated classification of pain perception using high-density
electroencephalography data,” Journal of Neurophysiology, vol.
117, no. 2, pp. 786–795, Feb 2017.

[7] E. S. d. S. Pinheiro, F. C. d. Queirós, P. Montoya, C. L. Santos,
M. A. d. Nascimento, C. H. Ito, M. Silva, D. B. Nunes Santos,
S. Benevides, J. G. V. Miranda, K. N. Sá, and A. F. Baptista,
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[10] R. Polańıa, M. A. Nitsche, and C. C. Ruff, “Studying and modi-
fying brain function with non-invasive brain stimulation,” Nature
Neuroscience, vol. 21, pp. 174–187, Jan 2018.

[11] M. N. Baliki and A. Apkarian, “Nociception, pain, negative moods,
and behavior selection,” Neuron, vol. 87, no. 3, pp. 474–491, 2015.

[12] R. JP, M. ES, M. A, and P. M, “Frontostriatal gating of tinnitus
and chronic pain,” Trends in Cognitive Sciences, vol. 19, no. 10, pp.
567–578, Oct 2015.

[13] D. V. M, W.-S. O, J. M, V. den Broeke E, A. M, V. G. H, and
V. R. C, “Altered resting state EEG in chronic pancreatitis patients:
toward a marker for chronic pain,” Journal of Pain Research, vol.
2013, no. 6, pp. 815–824, Nov 2013.

[14] M. P. Jensen, K. J. Gertz, A. E. Kupper, A. L. Braden, J. D. Howe,
S. Hakimian, and L. H. Sherlin, “Steps toward developing an EEG
biofeedback treatment for chronic pain,” Applied Psychophysiology
and Biofeedback, vol. 2013, no. 38, pp. 101–108, Jun 2013.

[15] M. P. Jensen, L. H. Sherlin, K. J. Gertz, A. L. Braden, A. E.
Kupper, A. Gianas, J. D. Howe, and S. Hakimian, “Brain EEG
activity correlates of chronic pain in persons with spinal cord injury:
clinical implications,” Spinal Cord, vol. 2013, no. 51, pp. 55–58, Jul
2012.

[16] S. Vanneste, J.-J. Song, and D. D. Ridder, “Thalamocortical dys-
rhythmia detected by machine learning,” Nature Communications,
vol. 9, no. 1103, Mar 2018.

[17] A. Mansour, A. T. Baria, P. Tetreault, E. Vachon-Presseau, P.-C.
Chang, L. Huang, A. V. Apkarian, and M. N. Baliki, “Global dis-
ruption of degree rank order: a hallmark of chronic pain,” Scientific
Research, vol. 6, no. 34854, Oct 2016.

https://www.iasp-pain.org/Education/Content.aspx?ItemNumber=1698#Pain
https://www.iasp-pain.org/Education/Content.aspx?ItemNumber=1698#Pain


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2022.3147673, IEEE
Transactions on Neural Systems and Rehabilitation Engineering 12

[18] A. Mouraux and G. D. Iannetti, “The search for pain biomarkers
in the human brain,” Brain, vol. 141, no. 12, pp. 3290–3307, Dec
2018.

[19] E. Schulz, A. Zherdin, L. Tiemann, C. Plant, and M. Ploner,
“Decoding an individual’s sensitivity to pain from the multivariate
analysis of EEG data,” Cerebral Cortex, vol. 22, no. 5, pp. 1118–
1123, Jul 2011.

[20] V. Vijayakumar, M. Case, S. Shirinpour, and B. He, “Quantifying
and characterizing tonic thermal pain across subjects from EEG
data using random forest models,” IEEE Transactions on Biomed-
ical Engineering, vol. 64, no. 12, pp. 2988–2996, Sep 2017.

[21] D. Borsook, S. Sava, and L. Becerra, “The pain imaging revolution:
advancing pain into the 21st century,” Neuroscientist, vol. 16, no. 2,
pp. 171–185, Apr 2010.

[22] T. I, “Can neuroimaging studies identify pain endophenotypes in
humans?” Nature Reviews Neurology, vol. 7, no. 3, pp. 173–181,
Mar 2011.

[23] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, pp. 436–444, May 2015.

[24] W.-Y. Hsu, “Fuzzy hopfield neural network clustering for single-
trial motor imagery EEG classification,” Expert Systems with Ap-
plications, vol. 39, no. 1, pp. 1055 – 1061, Jan 2012.

[25] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon,
C. P. Hung, and B. J. Lance, “EEGNet: a compact convolutional
neural network for EEG-based brain–computer interfaces,” Journal
of Neural Engineering, vol. 15, no. 5, Jul 2018.

[26] R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer,
M. Glasstetter, K. Eggensperger, M. Tangermann, F. Hutter,
W. Burgard, and T. Ball, “Deep learning with convolutional neu-
ral networks for EEG decoding and visualization,” Human Brain
Mapping, vol. 38, no. 11, pp. 5391–5420, Nov 2017.

[27] D. Sussillo, S. D. Stavisky, J. C. Kao, S. I. Ryu, and K. V.
Shenoy, “Making brain-machine interfaces robust to future neural
variability,” Nature Communications, vol. 7, p. 13749, Dec 2016.

[28] M. Leeuw, M. E. Goossens, G. J. van Breukelen, K. Boersma,
and J. W. Vlaeyen, “Measuring perceived harmfulness of physical
activities in patients with chronic low back pain: The photograph
series of daily activities—short electronic version,” The Journal of
Pain, vol. 8, no. 11, pp. 840–849, 2007.

[29] H. Dong, A. Supratak, W. Pan, C. Wu, P. M. Matthews, and
Y. Guo, “Mixed neural network approach for temporal sleep stage
classification,” IEEE Transactions on Neural Systems and Rehabil-
itation Engineering, vol. 26, no. 2, pp. 324–333, 2018.

[30] C. Jiang, Y. Li, Y. Tang, and C. Guan, “Enhancing EEG-based clas-
sification of depression patients using spatial information,” IEEE
Transactions on Neural Systems and Rehabilitation Engineering,
vol. 29, pp. 566–575, 2021.

[31] J. N. Mandrekar, “Receiver operating characteristic curve in diag-
nostic test assessment,” Journal of Thoracic Oncology, vol. 5, no. 9,
pp. 1315 – 1316, Sep 2010.

[32] T. Nezam, R. Boostani, V. Abootalebi, and K. Rastegar, “A novel
classification strategy to distinguish five levels of pain using the
EEG signal features,” IEEE Transactions on Affective Computing,
vol. 12, no. 1, pp. 131–140, 2021.


