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Abstract—Sleep staging is of great importance in the diagnosis
and treatment of sleep disorders. Recently, numerous data-driven
deep learning models have been proposed for automatic sleep
staging. They mainly train the model on a large public labeled
sleep dataset and test it on a smaller one with subjects of interest.
However, they usually assume that the train and test data are
drawn from the same distribution, which may not hold in real-
world scenarios. Unsupervised domain adaption (UDA) has been
recently developed to handle this domain shift problem. However,
previous UDA methods applied for sleep staging have two main
limitations. First, they rely on a totally shared model for the domain
alignment, which may lose the domain-specific information during
feature extraction. Second, they only align the source and target
distributions globally without considering the class information in
the target domain, which hinders the classification performance of
the model while testing. In this work, we propose a novel adversarial
learning framework called ADAST to tackle the domain shift prob-
lem in the unlabeled target domain. First, we develop an unshared
attention mechanism to preserve the domain-specific features in
both domains. Second, we design an iterative self-training strategy
to improve the classification performance on the target domain
via target domain pseudo labels. We also propose dual distinct
classifiers to increase the robustness and quality of the pseudo
labels. The experimental results on six cross-domain scenarios
validate the efficacy of our proposed framework and its advantage
over state-of-the-art UDA methods.

Index Terms—Unsupervised domain adaptation, adversarial
training, self-training, cross-dataset sleep stage classification, EEG
data.
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I. INTRODUCTION

S LEEP stage classification is crucial to identifying sleep
problems and disorders in humans. This task refers to

the classification of one or many different signals including
electroencephalography (EEG), electrocardiogram (ECG), elec-
trooculogram (EOG), and electromyogram (EMG) into one
of five sleep stages, namely, wake (W), rapid eye movement
(REM), non-REM stage 1 (N1), non-REM stage 2 (N2), and
non-REM stage 3 (N3). For EEG recordings, they are usually
split into 30-second segments, where each segment is classified
manually into one of the above stages by specialists [1]. Despite
being mastered by many specialists, the manual annotation
process is tedious and time-consuming, especially with the large
amount of collected EEG data.

In recent years, numerous data-driven deep learning ap-
proaches have been developed, relying on the availability of
a massive amount of labeled data for training. Therefore, many
deep learning methods have been proposed to perform sleep
staging automatically [2]–[5]. These methods implemented dif-
ferent network structures to process EEG data and trained proper
classification models to achieve good performance while testing.
Since these methods were able to achieve decent performance,
it was expected to be a step forward to reduce the reliance on the
manual scoring process. However, many sleep labs were found
to keep relying on manually scoring EEG data [6], [7]. The
main reason is the high variation between the public training
data and the data generated in the sleep labs. These variations
can occur due to several factors, e.g., different measuring lo-
cations on the skull and different sampling rates of measuring
devices. This is well-known as the domain shift problem, i.e.,
the training (source) and testing (target) data have different
distributions. As shown in Fig. 1(a), directly applying the source-
pretrained model (i.e., Direct Transfer) on the target data may
not well-classify the target domain data due to the domain
shift. Consequently, these models suffer significant performance
degradation when trained on public datasets and tested on the
sleep labs data. In addition, it is difficult for these labs to annotate
large enough EEG datasets to re-train the models.

A typical solution for the above issues is to employ transfer
learning approaches [7], [8]. For instance, Phan et al. [7] applied
transfer learning from a large dataset to a different and relatively
smaller one. They first pre-trained the model on a large dataset
and then fine-tuned it on a smaller dataset. Similarly, the authors

2471-285X © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Nanyang Technological University. Downloaded on August 12,2022 at 07:59:25 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-9282-0991
https://orcid.org/0000-0002-2138-4395
https://orcid.org/0000-0002-1719-0328
https://orcid.org/0000-0003-0977-3600
https://orcid.org/0000-0002-8547-6387
https://orcid.org/0000-0002-0762-6562
https://orcid.org/0000-0002-0872-3276
mailto:emad0002@ntu.edu.sg
mailto:asckkwoh@ntu.edu.sg
mailto:ctguan@ntu.edu.sg
mailto:ctguan@ntu.edu.sg
mailto:mohamedr002@e.ntu.edu.sg
mailto:xlli@i2r.a-star.edu.sg
mailto:chen0832@e.ntu.edu.sg
mailto:wumin@i2r.a-star.edu.sg


2 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

Fig. 1. (a) Direct Transfer (DT) fails due to the domain shift, and (b) Domain
Adaptation (DA) solves the domain shift problem.

in [8] studied the channel mismatch problem while transferring
the knowledge from one dataset to another. However, these
transfer learning methods require the availability of labeled
data from the target domain to fine-tune the model. In reality,
the target domain may be completely unlabeled, and it is thus
impractical to fine-tune the models.

Unsupervised Domain Adaptation (UDA) is a special sce-
nario of transfer learning that aims to minimize the mismatch
between the source and target distributions without using any
target domain labels. As shown in Fig. 1(b), UDA aims to
use both the labeled source domain along with the unlabeled
target domain to train the model in a way that allows it to
perform well on both source and target domains. So far, limited
studies have investigated UDA in the context of sleep stage
classification. For instance, Chambon et al. [9] improved the
feature transferability between source and target domains using
optimal transport domain adaptation. In addition, Nasiri et al. [6]
used adversarial training-based domain adaptation to improve
the transferability of features. However, these methods still
suffer from the following limitations. First, they rely on totally
shared models (i.e., same architectures with same weights) to
extract features from both source and target domains. This may
lose the domain-specific features for both source and target
domains, which can be harmful to the classification task on
the target domain. Second, these approaches only align the
global distribution between source and target domains without
considering the mismatch of the fine-grained class distribution
between the domains. As such, target samples belonging to one
class can be misaligned with an incorrect class in the source
domain.

To tackle the aforementioned challenges, we propose
an Adversarial Domain Adaptation framework based on
preserving attention mechanism and iterative Self-Training
strategy (ADAST) for a single channel EEG-based sleep stage
classification. Specifically, we first propose a domain-specific
attention module to preserve both the source-specific and
the target-specific features. This helps to keep the main

characteristics of both domains to improve adversarial learning.
Second, we propose an iterative self-training strategy to
well-classify the fine-grained distribution of the unlabeled target
domain using a target domain pseudo labels supervision. Hence,
we can adapt the classification decision boundaries according
to the target domain classes. Moreover, we design distinct dual
classifiers to improve the robustness of target domain pseudo
labels.

The main contributions of this work are summarized as fol-
lows:
� We propose a novel cross-dataset sleep staging framework

that integrates iterative self-training with adversarial learn-
ing. Therefore, our framework can effectively classify the
fine-grained distribution of the unlabeled target sleep data.

� ADAST utilizes an unshared domain-specific attention
module to preserve the key features in both source and
target domains during adaptation, which improves the ad-
versarial training and boosts the classification performance
on the target domain.

� We design distinct dual classifiers to improve the robust-
ness of the generated pseudo labels in self-training. We also
add a similarity constraint on their weights to push them
from being identical.

� Extensive experiments demonstrate that our ADAST
achieves superior performance for cross-domain sleep
stage classification against state-of-the-art UDA methods.

II. RELATED WORKS

A. Sleep Stage Classification

Automatic sleep staging with single-channel EEG has been
widely studied in the literature. In particular, deep learning-
based methods [2], [4], [5] have shown great advances through
end-to-end feature learning. These methods design different
network structures to extract the features from EEG data and
capture the temporal dependencies.

Several studies explored convolutional neural networks
(CNN) for feature extraction from EEG data. For example,
Supratak et al. [2] proposed two CNN branches to extract
different frequency features in EEG signals. The same CNN
architecture was also adopted by Mousavi et al. [10]. Li et
al. [11] proposed to adopt CNN in addition to a squeeze and
excitation block to extract the features from multi-epoch EEG
data. Eldele et al. [5] developed a multi-resolution CNN with an
adaptive features recalibration to extract representative features.
Additionally, Qu et al. [12] proposed multiple residual CNN
blocks to learn features mappings. The above methods further
handled the temporal dependencies in EEG epochs. They either
used recurrent neural networks (RNNs), such as Long Short-
Term Memory (LSTM) as in [2], [10], or adopted the multi-head
self-attention approach as in [5], [12].

Different from relying on CNNs, researchers proposed dif-
ferent ways to handle EEG data. For example, Phan et al. [4]
designed an end-to-end hierarchical RNN architecture. It con-
sists of an attention-based recurrent layer to handle the short-
term features within EEG epochs, besides a recurrent layer to
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capture the epoch-wise features. In addition, Phan et al. [13]
used both raw EEG signal and its time-frequency image to
design a joint multi-view learning from both representations.
Also, Jia et al. [14] proposed a graph-based approach for sleep
stage classification, where graph and temporal convolutions
were utilized to extract spatial features and capture the tran-
sition rules, respectively. Finally, Neng et al. [15] handled the
EEG data in three levels: frame, epoch, and sequence levels
to extract a mixture of features that would improve the clas-
sification performance. Despite the success of these methods
in handling complex EEG data, their performance for cross-
domain (e.g., cross-dataset) sleep stage classification is lim-
ited due to the domain shift issue. Therefore, many researches
were directed to adopt transfer learning approaches to handle
this issue.

B. Transfer Learning for Sleep Staging

Some works studied the problem of personalized sleep staging
to improve the classification accuracy for individual subjects
within the same dataset using transfer learning [16], [17]. For a
dataset with two-night recordings for each subject, these works
pretrained the model by excluding the two nights of the test
subject. Next, the first night is applied for fine-tuning the model
and the second night is used for evaluation. However, few
works have been proposed for the cross-dataset scenario, i.e.,
training a model on subjects from one dataset and testing on
different subjects from another dataset. Phan et al. [7] studied
the data-variability issue with the availability of large source
dataset, and different labeled but insufficient target dataset.
They trained their model on the source dataset and fine-tuned
it on the smaller target dataset. With a similar problem set-
ting, Phan et al. [8] proposed to use deep transfer learning
to overcome the problem of channel mismatch between the
two domains.

These methods require large corpus source datasets to in-
crease their generalization ability and a labeled target dataset to
fine-tune their models. Unsupervised domain adaptation (UDA)
approaches were proposed to address these issues by aligning
the features from different domains. These approaches can be
categorized as discrepancy-based approaches and adversarial-
based approaches. The discrepancy-based approaches such as
Maximum Mean Discrepancy (MMD) [18] and CORrelation
ALignment (CORAL) [19], attempt to minimize the distance
metric between the source and target distributions. One the other
hand, adversarial-based approaches mimic the adversarial train-
ing proposed in the generative adversarial network (GAN) [20].
This approach is more popular in previous sleep staging works.
For example, Zhao et al. [21] proposed using adversarial UDA
with a domain discriminator and multiple classifiers fed from the
different feature extractor layers. Nasiri et al. [6] used adversarial
training along with local and global attention mechanisms to
extract the transferable individual information. Yoo et al. [22]
proposed using adversarial domain adaptation with three dis-
criminators; one for global alignment and two for stage and
subject discrimination.

Differently, we enhance the adversarial training process by
preserving the domain-specific features through domain-specific
attention. Besides, we consider the fine-grained domain classes
with the iterative self-training strategy, which deploys the target
pseudo labels to improve the classification performance in the
unseen target domain.

III. METHOD

A. Preliminaries

In this work, we focus on the problem of unsupervised cross-
domain adaptation for EEG-based sleep staging. In this setting,
we have access to a labeled source dataset Xs = {(xi

s, y
i
s)}ns

i=1

of ns labeled samples, and an unlabeled target dataset Xt =
{(xj

t )}nt
j=1 of nt samples. The source and target domains are

sampled from source distribution Ps(Xs) and target distribution
Pt(Xt) respectively, such that these distributions are differ-
ent (i.e., Ps �= Pt). Both domains share the same label space
Y = {1, 2, . . . K}, where K is the number of classes (i.e., sleep
stages). The domain adaptation scenario aims to transfer the
knowledge from a labeled source domain to a domain-shifted
unlabeled target domain. In the context of EEG data, both xi

s

and xi
t ∈ R1×T , where the number of electrodes/channels is 1

since we use single-channel EEG data, and T represents the
number of timesteps in the 30-second EEG epochs.

B. Overview

As shown in Fig. 2, our proposed framework consists of three
main components, namely domain-specific attention, adver-
sarial training, and dual classifier-based iterative self-training.
First, domain-specific attention plays an important role in re-
fining the extracted features so that each domain preserves its
key features. Second, the adversarial training step leverages a
domain discriminator to align the source and target features.
Particularly, the domain discriminator network is trained to
distinguish between the source and target features while the
feature extractor is trained to confuse the domain discriminator
by generating domain invariant features. Finally, the iterative
self-training strategy utilizes the target domain pseudo labels
to adapt the classification decision boundaries according to the
target domain classes. The dual classifiers are incorporated to
improve the quality and robustness of the pseudo labels. Further
details about each component will be provided in the following
subsections.

C. Domain-Specific Attention

Our proposed framework extracts domain invariant features
by using a shared CNN-based feature extractor, i.e., Fs(·) =
Ft(·) = F (·). Unlike the totally unshared architectures that
require an extra pretraining step and are usually harder to
converge, the shared feature extractor allows end-to-end train-
ing, besides being easier to converge. Therefore, most UDA
algorithms adopted this shared design [23]. However, relying
solely on this shared architecture may not be able to preserve
the key features of each domain [24], [25]. The reason is that
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Fig. 2. The overall architecture of the proposed ADAST framework. The shared feature extractor consists of three convolutional blocks, where each block
contains 1D-convolution, batch normalization, non-linear ReLU activation, and MaxPooling. The two classifiers share the same architecture, but we apply a
similarity constraint on their weights to push them from being identical to each other (best viewed in colors, as blocks with similar colors represent shared
components).

Fig. 3. Design of domain-specific attention module.

the high-dimensional features may contain information that
distinguishes source and target domains, and are relevant for
predicting the label [26]. Throughout the training, the model
tries to remove these features to reduce the difference between
source and target distributions and make the features domain-
invariant, but this also affects the classification performance
on each separate domain. As the classification mainly relies
on the available source domain labels, the learned classifier
will be more biased toward the source domain [27]. Hence, we
propose an unshared attention module to learn both domain-
invariant and domain-specific features jointly in our proposed
framework.

For each position in the feature space, the attention module
calculates the weighted sum of the features at all positions with
a little computational cost. Thus, the features at each location
have fine details that are coordinated with fine details in distant
portions of the features. Formally, given an input source sample
xs ∈ R1×T that is passed through the feature extractor to gen-
erate the source features, i.e., F (xs) = (fs1, . . . , fsl) ∈ Rd×l,
where d is the number of CNN channels, and l is the length of the
features. Inspired by [28], we deploy a convolutional attention
mechanism as shown in Fig. 3. The attention operation starts by
obtaining new representation for the features at each position by
using two 1D-convolutions, i.e., H1 and H2. Specifically, given

fsi, fsj ∈ Rd, which are the feature values at the positions i and
j, they are transformed into Zsi = H1(fsi) and Zsj = H2(fsj).
The attention scores are calculated as follows.

Vji =
exp(Z�

siZsj)∑l
k=1 exp(Z�

skZsj)
. (1)

Here, the attention score Vji indicates the extent to which
jth position attends to the ith position in the feature map. The
output of the attention layer is Os = (os1, . . . ,osj , . . .osl) ∈
Rd×l, where

osj =
l∑

i=1

Vjifsi. (2)

We denote the attention process in (1) and 2 as A(·), such that
Os = As(F (xs)). The same process applies to the target domain
data flow to train At.

D. Adversarial Training

Given the learned source and target representations that pre-
serve the domain-specific features, adversarial training is em-
ployed to align the source and target domains. Inspired by the
generative adversarial network (GAN) [20], we aim to solve
a minimax objective between the feature extractor and domain
discriminator. Specifically, the domain discriminator is trained to
classify between the source and target features, while the feature
extractor tries to generate indistinguishable representations for
both source and target domains. By doing so, the classifier
trained on the source domain can generalize well on the target
domain. However, with the minimax objective, the discrimi-
nator can saturate quickly, resulting in a gradient vanishing
problem [29]. To address this issue, we train our model using
a standard GAN loss with inverted labels [20]. Formally, the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Nanyang Technological University. Downloaded on August 12,2022 at 07:59:25 UTC from IEEE Xplore.  Restrictions apply. 



ELDELE et al.: ADAST: ATTENTIVE CROSS-DOMAIN EEG-BASED SLEEP STAGING FRAMEWORK WITH ITERATIVE SELF-TRAINING 5

domain discriminator,D, classifies the input features to be either
from the source or target domain. Thus, D can be optimized
using a standard cross-entropy loss with the labels indicating
the domain of the data point. The objective of this operation LD

can be defined as:

min
D

LD = − Exs∼Ps
[logD(As(F (xs)))]

− Ext∼Pt
[log(1−D(At(F (xt))))], (3)

where LD is used to optimize the domain discriminator sep-
arately so that it discriminates the source and target features.
On the other hand, the feature extractor and the domain-specific
attention are trained to confuse the discriminator by mapping
the target features to be similar to the source ones. The objective
function can be described as:

min
F,As,At

Ladv = − Exs∼Ps
[log(1−D(As(F (xs))))]

− Ext∼Pt
[logD(At(F (xt)))]. (4)

Notably, only Ladv, which optimizes the feature extractor and
the domain-specific attentions, is added to the overall objective
function to ensure that the model is able to generate domain-
invariant features.

E. Dual Classifier Based Iterative Self-Training

With adversarial training, the distributions of source and
target domains become globally aligned. However, the global
alignment does not guarantee a good classification performance
on the target domain, because of the difference in classification
boundaries among source and target domains. Therefore, we
propose a novel iterative self-training strategy to adjust the
classification boundaries to fit the target domain and improve
its classification performance.

Self-training converts the target domain predictions into
pseudo labels and uses them to minimize the cross-entropy
loss [30]. Given high-quality pseudo labels, they are treated
as supervisory signals to adapt the decision boundaries of the
classifier according to target domain classes. However, due to the
domain shift, finding high-quality target domain pseudo labels
can be a challenging problem, and the generated ones might be
noisy and inefficient, especially at the beginning of the training.
Nevertheless, we aim to first minimize the number of incorrect
pseudo labels and second minimize the negative impact of these
incorrect ones on the performance. To do so, we follow two main
strategies.

First, we repeat the training of the model for r iterations,
where the pseudo labels generated in the previous iteration are
used in the next one. Since the model will be very uncertain
about the pseudo labels in the first iteration, we ignore the target
classification loss at this iteration. However, in the following
iterations, we take it into consideration since the model becomes
more confident about the pseudo labels after being trained to
minimize the domain shift between source and target domains.
Second, we use dual classifiers C1 and C2 setup, which has two
main benefits. First, it helps the model to avoid the variance
in the training data. Second, the average prediction vector of

the two classifiers decreases the probability of low-confident
predictions.

Notably, we design the two classifiers such that they share
the same architecture, i.e., a single fully connected layer. This
helps limiting the total number of parameters in the model and
avoid pruning to overfitting. Consequently, we need to ensure
that their predictions are diversified and they do not converge to
become the one classifier throughout training. Thus, we add a
regularization term |θᵀC1

θC2
| on the weights of the two classifiers

as inspired by [31], where θC1
, θC2

represent the weights of C1

and C2 respectively. This regularization term ensures the diver-
sity of the two classifiers and helps them to produce different yet
correct predictions. The final prediction vector is the averaged
vector of the predictions of both classifiers.

Formally, in each iteration, we first calculate the average
probabilitypt of the two classifiers, and the corresponding target
pseudo labels ŷt as follows.

pt =
1

2
[C1(At(F (xt)) + C2(At(F (xt))] , (5)

ŷt = argmax(pt). (6)

The target classification loss Lt
cls based on the above pseudo

labels is defined as follows.

min
F,At,C1,C2

Lt
cls = −Ext∼Pt

K∑

k=1

1[ŷt=k] logp
k
t , (7)

where 1 is the indicator function, which is set to be 1 when the
condition is met, and set to 0 otherwise. The target classification
loss Lt

cls optimizes the feature extractor F , the target domain-
specific attention At as well as the dual classifiers C1 and C2.

Similarly, the source classification loss Ls
cls, which depends

on the source labels ys, is formalized as follows.

ps =
1

2
[C1(As(F (xs)) + C2(As(F (xs))], (8)

min
F,As,C1,C2

Ls
cls = −E(xs,ys)∼Ps

K∑

k=1

1[ys=k] logp
k
s , (9)

where the source classification loss Ls
cls optimizes the feature

extractor F , the source domain-specific attention As as well as
the dual classifiers C1 and C2.

To sum up, we integrate the adversarial loss with the source
and target classification losses and the regularization of the dual
classifiers in one objective loss function as follows.

Loverall = Ladv + Ls
cls + λ1Lt

cls + λ2|θᵀC1
θC2

|. (10)

Since the adversarial training and the source classification are
two essential modules, we set their weights to one and tune
the values of the two hyperparameters λ1 and λ2 to control
their contributions. In overall, the three losses are integrated to
guide the feature extractor to generate domain-invariant features,
while allowing the domain-specific attentions to preserve the key
features for each domain. Additionally, the dual classifiers are
diversified using the regularization term. More details about the
training can be found in Algorithm 1.
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IV. EXPERIMENTS

A. Datasets

We evaluate the proposed framework on three challenging
datasets, namely Sleep-EDF1 (EDF for short), SHHS-1 (S1) and
SHHS-22 (S2). These three datasets represent distinct domains
due to their differences in sampling rates and EEG channels.

1) Sleep-EDF (EDF): EDF dataset was first published in
2013 with the polysomnography (PSG) readings of 20 healthy
subjects (10 males and 10 females). It contains data from two
studies: Sleep Cassette (SC* files) and Sleep Telemetry (ST*
files). The Sleep Cassette study (1987-1991) addresses the age
effects on sleep, while the Sleep Telemetry study (1994) ad-
dressed the temazepam effects on sleep. Each PSG recording
consists of two EEG channels namely Fpz-Cz and Pz-Oz, with a
sampling rate of 100 Hz. We adopted the EEG recordings from
Fpz-Cz channel following previous studies [2], [4], [5].

2) SHHS-1 (S1): SHHS [32], [33] is a multi-center cohort
study conducted to assess the cardiovascular and other con-
sequences of sleep-disordered breathing. It tests the effect of
some diseases such as stroke and hypertension on sleep-related
breathing. The data of S1 was recorded for a total of 6,441 men
and women aged 40 years and older in their first visit, which
was by the end of 1995 and lasted for two years.

3) SHHS-2 (S2): The data of S2 represents the polysomno-
gram recordings of the second visit of 3,295 of the participants
in S1. The outcome data was used to adjust the parent cohort.

Each PSG file in both S1 and S2 datasets contains data from
two EEG channels namely C4-A1 and C3-A2, where we only
adopt C4-A1 channel recordings for both datasets. We selected
subjects from S1 and S2 datasets such that 1) they contain
different patients, 2) subjects from S2 dataset have a sampling
rate of 250 Hz, and 3) the subjects have Apnea Hypopnea
Index (AHI) < 1 to eliminate the bias to sleep disorders and

1https://physionet.org/physiobank/database/sleep-edfx/
2https://sleepdata.org/datasets/shhs

TABLE I
A BRIEF DESCRIPTION ABOUT THE DATASETS

ensure a consistent clinical status of subjects [34]. Notably, we
down-sampled the data from S1 and S2 datasets such that the
sequence length is the same as the EDF dataset, i.e., 30 seconds×
100 Hz (T = 3, 000).

We preprocessed the three datasets by 1) merging stages N3
and N4 into one stage (N3) according to AASM standard, and
2) including only 30 minutes of wake stage periods before and
after the sleep [2]. Table I shows a brief summary of the above
three datasets before down-sampling describing the number of
subjects (#Subjects) in each cross-domain, the selected EEG
channel, the sampling rate, and the number of training (#Train),
validation (#Val), and testing (#Test) samples in each domain.

B. Feature Extractor

To extract the features from the EEG signals, we first pre-
process the EEG signals to be split into 30-second segments
(i.e., epochs). Each epoch is then passed through our feature
extractor network to extract the features. We followed the design
of the feature extractor proposed in [35] which consists of three
blocks, such that each block consists of a 1D-convolution layer,
a batch normalization layer, a non-linear ReLU activation and
a MaxPooling layer, as shown in Fig. 2. The 1D-convolution
layer in the first block has 32 filters, with a kernel size of 25
and a stride of 6. The 1D-convolution layer in the second and
third layers have 64 and 128 filters respectively and both have
a kernel size of 8 and a stride of 1. The features extracted from
these three blocks are then sent to the self-attention mechanism.

C. Experimental Settings

To evaluate the performance of our model and baseline mod-
els, we employed the classification accuracy (ACC) and the
macro-averaged F1-score (MF1). These two metrics are defined
as follows:

ACC =

∑K
i=1 TPi

M
, (11)

MF1 =
1

K

K∑

i=1

2× Precisioni ×Recalli
Precisioni +Recalli

, (12)

where Precisioni =
TPi

TPi+FPi
, and Recalli =

TPi

TPi+FNi
.

TPi, FPi, TNi, and FNi denote the True Positives, False Pos-
itives, True Negatives, and False Negatives for the i-th class
respectively, M is the total number of samples and K is the
number of classes. All the experiments were repeated 5 times
with different random seeds for model initialization, and then
we reported the average performance (i.e., ACC and MF1) with
standard deviation.
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We performed subject-wise splits for the data from the three
domains, i.e., we split them into 60%, 20%, and 20% for training,
validation and testing, respectively, such that the data from one
subject were assigned to either of the 3 splits. We used the
training part of source and target domains while training our
model. We used the validation part and test part of the target
domain for validation and testing. Following [31], [36], we
used the validation split of the target domain to select the best
hyperparameters in our model. We tuned the parameters λ1, λ2

in the range {0.00001, 0.0001, 0.001, 0.01, 0.1, 1}, and set their
values as λ1 = 0.01 and λ2 = 0.001. For iterative self-training,
we set the maximum iterations r to 2, as the performance of the
model was found to converge. We used Adam optimizer with
a learning rate of 1e-3 that is decayed by 0.1 after 10 epochs,
weight decay of 3e-4, β1 = 0.5, β2 = 0.99, and a batch size of
128. We trained the model for a predetermined number of epochs
(15 epochs in our case) per iteration. All the experiments were
performed with PyTorch 1.7 on a NVIDIA GeForce RTX 2080 Ti
GPU. The source code and supplementary material are available
at https://github.com/emadeldeen24/ADAST.

D. Baselines

To assess our proposed ADAST model, we compared it
against various baselines. We first included the Direct Transfer
(DT) results of three sleep staging methods. These methods
are DeepSleepNet [2]; SleepEEGNet [10]; and AttnSleep [5]
(refer to Section II-A for their details). In addition, we adopted
seven state-of-the-art discrepancy- and adversarial-based do-
main adaptation (DA) baselines. In particular, Deep CORAL,
MDDA and DSAN are discrepancy-based methods, while
DANN, ADDA, CDAN, and DIRT-T are adversarial-based
methods. These baselines are summarized as follows.
� Deep CORAL [37]: it extends CORAL [19] to learn a

nonlinear transformation that aligns the correlations of
layer activations in deep neural networks.

� MDDA [38]: it applies MMD and CORAL on multiple
classification layers to minimize the discrepancy between
the source and target domains.

� DSAN [39]: it incorporates a local MMD loss to align the
same-class sub-domain distributions.

� DANN [40]: it jointly trains feature extractor and domain
classifier by negating the gradient from the domain classi-
fier with a gradient reversal layer (GRL).

� ADDA [29]: it performs a similar operation as DANN but
by inverting the labels instead of using GRL.

� CDAN [41]: it minimizes the cross-covariance between
feature representations and classifier predictions.

� DIRT-T [36]: it combines virtual adversarial domain adap-
tation with a teacher model to refine the decision boundary
of the target domain.

Notably, we included the results of the Source-Only exper-
iment, which refers to the DT results of our backbone net-
work. In addition, we used our backbone feature extractor for
all the seven DA baselines to ensure a fair comparison. We
tuned the hyperparameters of the baselines to achieve their best
performance.

E. Experimental Results

Table II shows the comparison results among various meth-
ods. Overall, the direct transfer usually achieves lower perfor-
mance than domain adaptation. The results of DT experiments
on [2], [5], [10] indicate that the domain shift problem causes
a big performance drop and should be addressed separately.
Therefore, it becomes important to use domain adaptation to
address the domain shift problem for cross-dataset sleep stage
classification, which is supported by the results of the other seven
DA baselines.

It should be highlighted that the performance increase in the
seven DA baselines should be compared to our Source-Only DT
results, as they share the same backbone network. We noticed
that the three methods considering the class-conditional distri-
bution, i.e., CDAN, DIRT-T, and DSAN, outperform the ones
globally aligning the source and target domains, i.e., DANN,
Deep CORAL, ADDA, and MDDA. This indicates that con-
sidering class distribution, especially in the case of imbalanced
sleep data, is important to achieve better classification perfor-
mance on the target domain. Our proposed ADAST achieves
superior performance over all the baselines in terms of both
mean accuracy and F1-score in four out of six cross-domain
scenarios for two reasons. First, our ADAST, similar to CDAN,
DIRT-T, and DSAN, also considers the class-conditional dis-
tribution. In particular, ADAST explores the target domain
classes using the proposed iterative self-training strategy with
dual classifiers. Second, ADAST preserves domain-specific fea-
tures using the unshared attention module, which improves the
performance.

As shown in Table II, the performance of our model is less
than most baselines in the scenario S1→EDF. Note that we
used the same value of λ1 (i.e., 0.01) for all the six scenarios,
which might not be fair for some scenarios. We found that
the quality of the pseudo labels is not good in this scenario
S1→EDF, and thus we should use a smaller λ1 to reduce the
contribution of the target classification loss. By tuning λ1 from
0.01 to 10−6, the mean accuracy and MF1 of our ADAST in the
scenario S1→EDF would increase from 75.94% and 63.33% to
78.50% and 64.73%, respectively. Please refer to Fig. S.1c in
the supplementary material for more details.

We also observed interesting results while investigating dif-
ferent cross-dataset scenarios. Various methods usually achieve
better performance in the cross-domain scenario S1→S2 than
EDF → S2 (and similarly S2→S1 is better than EDF → S1).
To explain this, as shown in Table I, S1 and S2 are closer to
each other, as they have the same EEG channel. Meanwhile,
EDF has a different EEG channel and sampling rate, and thus
it is a distant domain from S1 and S2. These results indicate
that distant domain adaptation is still very challenging. Finally,
we observed that S1→EDF is easier than S2→EDF, proba-
bly because S1 and EDF have close sampling rates to each
other.

F. Ablation Study

We assessed the contribution of each component in our
ADAST framework, namely the unshared domain-specific
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TABLE II
COMPARISON AGAINST VARIOUS BASELINES

Best results are in bold, and the second best are underlined.

TABLE III
ABLATION STUDY SHOWING THE DIFFERENT VARIANTS OF OUR PROPOSED ADAST FRAMEWORK

ATT: domain-specific attention, DC: dual classifiers, ST: self training. The first row indicates using only the domain discriminator along with a
single classifier.

attention module (ATT), the dual classifiers (DC) and self-
training (ST). Particularly, we conducted an ablation study
to show the results of different variants of ADAST in
Table III.

The results emphasize three main conclusions. First, using the
proposed domain-specific attention benefits the overall perfor-
mance, as it helps to preserve the domain-specific features. Sec-
ond, the self-training improves the classification performance by
∼ 1.1%. This improvement shows the benefit of incorporating
the target domain class information in modifying the classifi-
cation boundaries by using pseudo labels. Third, the addition
of dual classifiers benefits the classification performance in
overall as it avoids the variance in the training data. Moreover,
combining it with the self-training in specific is helpful to further
improve the performance by 2.5% through improving the quality
of the pseudo labels.

G. Representation Visualization

In Section IV-E, the results illustrate the advantages of our
proposed ADAST framework over the initial Source-Only per-
formance. To make the comparison more intuitive, we visualized
the feature representations that are learned during the training
process using Uniform Manifold Approximation and Projection
(UMAP) [42].

First, we investigated the alignment quality, where Fig. 4 visu-
alizes the source and target alignment in the scenario S2→EDF.
In particular, Fig. 4(a) shows the Source-Only alignment, and
Fig. 4(b) shows our ADAST framework alignment. In these fig-
ures, the red dots represent the source domain, and the blue dots
denote the target domain. We can observe that the Source-Only
is not very efficient as many disjoint patches are not well-aligned
with the target domain. However, our ADAST framework
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Fig. 4. UMAP feature space visualization showing the source and target
domains alignment using (a) Source-Only, and (b) our ADAST, applied for
the scenario S2→EDF.

Fig. 5. UMAP feature space visualization showing the target domains clas-
sification performance after (a) Source-Only, and (b) our ADAST alignment,
applied for the scenario S2→EDF.

improves the alignment of the two domains to become arc-
shaped, which increases the overlapped region and they become
less discriminative.

Additionally, we investigated the target domain classification
performance in the aforementioned scenario after the alignment
in Fig. 5. In particular, Fig. 5(a) is the Source-Only performance,
and Fig. 5(b) is the one after our alignment. We noticed that
the Source-Only alignment generates a lot of overlapping sam-
ples from different classes, which degrades the target domain
classification performance. On the other hand, our ADAST
framework improves the discrimination between the classes and
they become more distinct from each other. This is achieved
with the aid of the iterative self-training strategy.

H. Domain-Specific vs Domain-Invariant Features

In this subsection, we show that domain-invariant features has
been extracted in two different manners.

Quantitatively: To have a quantitative insight about extract-
ing domain-specific information, we use the Kullback-Leibler
(KL) divergence as a distribution similarity measure. In gen-
eral, KL-divergence is a non-symmetric measure of the dif-
ference between two probability distributions p(x) and q(x).
Specifically, the KL-divergence of q(x) from p(x), denoted as
DKL(p(x), q(x)), is a measure of the information lost when
q(x) is used to approximate p(x) [43]. So, if we can approximate
p(x) with q(x) without a big loss in information (achieve a low
KL divergence value), then we can conclude more similarity
between the two distributions, and vice versa.

To validate this idea, we first extract the reference features
for each domain. To do so, we use the feature extractor network
and the dual-classifiers to train the source domain data with the

TABLE IV
KL-DIVERGENCE BETWEEN ORIGINAL FEATURES (R) AND

DOMAIN-INVARIANT (DI) AND DOMAIN-SPECIFIC (DS) FEATURES APPLIED

FOR BOTH SOURCE AND TARGET DOMAINS

cross-entropy loss, and freeze the extracted features from the
last epoch (i.e., Rs). Since we do not have access to the target
domain labels, we use the pretrained model (on source domain
data) to obtain the target domain features (i.e., Rt).

Next, we train the original model with source and target
data to obtain the domain-invariant (DI) and domain-specific
(DS) features before and after the domain-specific attention
module respectively. Finally, we calculate the following KL-
divergence on the source domain sides as: DKL(DIs, Rs) and
DKL(DSs, Rs). Similarly, we calculate the following KL-
divergence on the target domain sides as: DKL(DIt, Rt) and
DKL(DSt, Rt).

We perform this experiment on the cross-domain sce-
nario (EDF → S1), and provide the results in Table IV.
Notably, the KL-divergence value is the minimum between
the domain-specific features and their corresponding original
domain features. This indicates a minimal information loss when
trying to approximate the domain-specific features using the ref-
erence features, i.e., more similarity between them. Therefore,
we conclude the efficacy of the domain-specific attention module
in preserving the unique characteristics of each domain.

Visual Inspection: To analyze the feature space of both
domain-invariant and domain-specific features, we visualize
their distribution in the scenario (EDF → S1) with UMAP, as
shown in Fig. 6. We notice that the feature extractor can ex-
tract domain-invariant information by minimizing the distance
between source and target distributions as shown in Fig. 6(a).
However, these domain-invariant features still mis-classify some
classes as seen in Fig. 6(b). Meanwhile, the domain-specific
attention helps to better align the domains (Fig. 6(c)), as well
as improving the class-wise alignment as in Fig. 6(d). In addi-
tion, the wake class (Magenta) is now closer to the Rapid Eye
Movement (REM) class (Yellow), which is reasonable since both
classes share related information. Similarly, the points of N3
class become closer to N2 class. This implies that our model well
learns specific features that can be adapted to the new unseen
domain.

I. Sensitivity Analysis

Effect of target classification loss: Since the self-training
process relies on target domain pseudo labels, it is not practical to
assign a high weight to the target classification loss as the pseudo
labels are expected to have some uncertainties. Therefore, we
studied the effect of the different variants to the weight assigned
to the target classification loss λ1, as shown in Fig. 7.

Notably, when λ1 is very small (i.e., λ1 = 1e-6), it makes the
self-training useless, and the performance becomes very close
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Fig. 6. UMAP feature space visualization showing the domain-invariant alignment (a) domain-wise, and (b) class-wise, besides the domain-specific alignment
(c) domain-wise, and (d) class-wise under the scenario of EDF → S1.

Fig. 7. Sensitivity analysis to the different variants of λ1 and λ2 in (10).

to the case without self-training. As we gradually increase λ1

value, we notice improvement in the overall performance until
we reach the optimal value of λ1 = 0.01. Further increasing λ1

deteriorates the performance as the model is highly penalized
based on the pseudo labels which may contain false examples.

Effect of classifier weight constraint: Since the dual classifiers
share the same architecture, it is important to keep their predic-
tions relatively different but not with a big gap. The classifier
weight constraint is the factor that keeps this distance with an
acceptable margin, and hence, it becomes important to study the
effect of this term and how its weight λ2 should be selected. We
analyzed the performance of our model with different λ2 values,
as illustrated in Fig. 7.

When λ2 is very small, it makes the two classifiers perform
very closely to each other, which has a similar performance
with a single classifier. The performance is gradually improved
when increasing λ2, as the two classifiers tend to have different
classification decisions. It can be found that the best performance
is achieved with λ2 = 0.001. However, as its value is increased
beyond this threshold (i.e., 0.001), we notice that the overall
performance degrades. This happens as the weights of the two
classifiers became very dissimilar, moving them away from the
correct predictions.

V. CONCLUSION

In this paper, we proposed a novel adversarial domain adap-
tation architecture for sleep stage classification using single-
channel raw EEG signals. We tackle the problem of the domain
shift that happens when training the model on one dataset (i.e.,
the source domain), and testing it on another out of distribution

dataset (i.e., the target domain). We developed unshared atten-
tion mechanisms to preserve domain-specific features. We also
proposed a dual classifier-based iterative self-training strategy,
which helps the model to adapt the classification boundaries
according to the target domain with robust pseudo labels. The
experiments performed on six cross-domain scenarios generated
from three public datasets prove that our model can achieve
superior performance over state-of-the-art domain adaptation
methods. Additionally, the ablation study shows that the dual
classifier-based self-training is the main contributor to the im-
provement as it considers class-conditional distribution in the
target domain.
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