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Abstract—Objective: Hand movement decoding from 

electroencephalograms (EEG) signals is vital to the rehabilitation 

and assistance of upper limb-impaired patients. Few existing 

studies on hand movement decoding from EEG signals consider 

any distractions. However, in practice, patients can be distracted 

while using the hand movement decoding systems in real life. In 

this paper, we aim to investigate the effects of cognitive distraction 

on movement decoding performance. Methods: We first propose a 

robust decoding method of hand movement directions to cognitive 

distraction from EEG signals by using the Riemannian Manifold 

to extract affine invariant features and Gaussian Naive Bayes 

classifier (named RM-GNBC). Then, we use the experimental and 

simulated EEG data under conditions without and with 

distraction to compare the decoding performance of three 

decoding methods (including the proposed method, tangent space 

linear discriminant analysis (TSLDA), and baseline method)). 

Results: The simulation and experimental results show that the 

Riemannian-based methods (i.e., RM-GNBC and TSLDA) have 

higher accuracy under the conditions without and with cognitive 

distraction and smaller decreases in decoding accuracy between 

the conditions without and with cognitive distraction than the 

baseline method. Furthermore, the RM-GNBC method has 6% 

(paired t-test, p=0.026) and 5% (paired t-test, p=0.137) higher 

accuracies than the TSLDA method under the conditions without 

and with cognitive distraction, respectively. Conclusion: The 

results show that the Riemannian-based methods have higher 

robustness to cognitive distraction. Significance: This work 

contributes to developing a brain-computer interface (BCI) to 

improve the rehabilitation and assistance of hand-impaired 

patients in real life and open an avenue to the studies on the effects 

of distraction on other BCI paradigms. 

 
Index Terms—EEG; cognitive distraction; hand movement 

decoding; Riemannian manifold  

 

I. INTRODUCTION 

ecently, human-machine collaboration has attracted plenty 

of research attention from diverse fields, such as human 
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augmentation and rehabilitation [1-4]. In human-machine 

collaboration, motion intention recognition is one of the most 

important problems. If motion intention is recognized, the 

machine is able to actively collaborate with its human partner to 

improve the performance and safety of the whole system [5-7]. 

For example, in rehabilitation [8], the rehabilitative devices can 

actively respond to improve rehabilitation when they can 

understand patients’ motion intentions. 

  The signals used to recognize motion intention can be 

classified into nonbiological signals and biological signals. 

Nonbiological signals include eye gaze, hand position, and 

head pose. Biological signals mainly contain electromyograms 

(EMG) and electroencephalograms (EEG) signals. Compared 

to motion intention recognition methods based on 

nonbiological signals, those methods based on biological 

signals may detect people’s motion intentions earlier since the 

biological signals are generated earlier than nonbiological 

signals. Further, since EEG signals are generated about 200 ms 

before EMG signals are, motion intention detection methods 

based on EEG signals may be able to detect motion intention 

earlier [6].  

Many researchers have conducted valuable work regarding 

human motion recognition (decoding) based on EEG signals. 

Generally, two kinds of EEG signals, including Sensory Motor 

Rhythm (SMR) Event-Related Desynchronization / 

Event-Related Synchronization (ERD/ERS) and 

movement-related cortical potentials (MRCPs), are used to 

decode human motion. Compared to ERD/ERS, MRCPs can 

encode more information (e.g., direction, velocity, and different 

grasps) and provide intuitive and nature control [9]. Thus, in 

this paper, we focus on studies on decoding human motion 

based on MRCPs. In 2008, Waldert et al. [10] decoded the hand 

movement from EEG signals by performing a center-out task 

and obtained an averaged accuracy of 55% for binary decoding 

across nine subjects. In 2013, Yeom et al. [11] proposed a 

decoding method that can extract a 3-D trajectory of hand 

movement from EEG signals and reconstruct hand trajectory 

with the correlation coefficients of 0.3, 0.3, and 0.15 in x, y, and 

z axes. In 2015, Jochumsen et al. [12] detected movement 

intention through MRCPs associated with motor executed and 

imaginary tasks across healthy and stroke participants and 

showed the possibility of using the single EEG channel in 

human intention decoding. In 2017, Úbeda et al. [13] decoded 

hand movement direction under the condition between the 

active and passive movements, which suggested that the 
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low-frequency EEG signals in movement direction decoding 

were correlated with the active motion. In 2018, Chouhan et al. 

[14] proposed a wavelet phase-locking value-based (W-PLV) 

method for decoding hand movement direction and reached a 

binary classification accuracy of 76.85% across seven subjects. 

In 2021, Wang et al. [15] studied neural signature and decoding 

of single-hand and both-hand movement directions and 

obtained a peak accuracy of 70.29% for 6-class classification. 

These researches show that it is feasible to decode hand motion, 

especially movement direction, from EEG signals. 

Existing studies on decoding hand movement direction do 

not consider perception, cognitive, or motor distractions, 

although, in 2020, Fahimi et al. [16] considered cognitive 

distraction when they decoded whether a subject intended to 

move or not from EEG signals. In practice, distractions are 

inevitable during the rehabilitation and assistance of people 

with disabilities. Thus, exploring how to decode hand motion 

direction given a distraction is valuable. 

Researchers have applied Riemannian Manifold to the field 

of BCIs to enhance their performance. In 2012, Barachant et al. 

[17] used a Riemannian Manifold-based method to develop a 

motor imagination (MI) BCI. Experimental results showed that 

the BCI had an accuracy of 70.2% in four-class classification, 

5.6% higher than that of traditional methods. In 2017, Wu et al. 

[18] applied Riemannian geometry to develop a method for 

decoding hand movement trajectories. The Riemannian 

manifold-based method reduced the estimation root mean 

square error by 4.30-8.30% and increased the estimation 

correlation coefficient by 6.59-11.13%. In 2021, Tang et al. [19] 

developed a Riemannian Manifold-based adaptive method for a 

MI BCI, which extended the Generalized Learning Vector 

Quantization method in the Euclidean space to the Riemannian 

space and obtained better performance. These studies show the 

potential of Riemannian Manifold in enhancing the 

performance of BCIs. However, no studies apply Riemannian 

Manifold to decode human movement directions, especially 

under a condition with a cognitive distraction. 

In this paper, we aim at investigating the decoding of hand 

motion direction under a cognitive distraction and the effects of 

cognitive distraction on the decoding performance of upper 

limb movement direction across different decoding methods. 

Specifically, we use two Riemannian Manifold-based decoding 

methods. The first method uses the Riemannian Manifold to 

extract affine invariant features and linear discriminant analysis 

(named TSLDA), which was proposed in [17]. The second 

method uses the Riemannian Manifold to extract affine 

invariant features and Gaussian Naïve Bayes classifier (named 

RM-GNBC) proposed in this paper. The baseline method is the 

latest one in decoding hand movement direction (i.e., the 

W-PLV method proposed in [14]). 

The contribution of this paper is that it is the first work to 

investigate effects of cognitive distraction on motion decoding 

from EEG signals and show that the Riemannian 

Manifold-based decoding methods of hand movement direction 

are more robust to cognitive distraction than the baseline 

method. The remainder of the paper is organized as follows: 

Section II introduces the method. Section III presents the 

results. Section IV describes the conclusion, limitations, and 

future work.  

II. METHOD 

A. Participants 

    Eight participants (aged 20-25 with a mean age of 23) 

volunteered to participate in the experiment and received no 

monetary compensation. All participants had no history of 

brain disease. The study abided by the principles of the 2013 

Declaration of Helsinki and was approved by the Beijing 

Institute of Technology research ethics committee with the 

approval number of V20211108. All subjects signed the 

informed consent forms. 

B. Experimental Paradigm and Procedure 

The experimental procedure included two sub-experiments: 

1) a motion task without a cognitive distraction 

（Sub-experiment 1）, and 2) a motion task with a cognitive 

distraction (Sub-experiment 2). Each sub-experiment included 

four sessions associated with hand movements in forward, 

backward, leftward, and rightward directions in the 2-D 

horizontal plane, respectively. Participants had a 10-min break 

between every two sessions. 

Before the start of the experiment, we explained the 

experimental procedure to the participants to make them 

familiar with the experimental protocol. We displayed the 

interface on a display screen. Each participant was required to 

sit in a comfortable chair 0.8 meters in front of the screen 

during the experiment, as shown in Fig. 1. We adjusted the 

position, size, and intensity of the interface and set the EEG 

collection system parameters. We placed the electrode cap on 

the scalp of the subjects correctly. We mapped the rightward 

and leftward movements of the right hand to the rightward and 

leftward movements of the cursor with one scaling factor (i.e., 

1:1 scaling), respectively. Furthermore, we mapped the forward 

and backward movements of the right hand to the upward and 

downward movements of the cursor with one scaling factor (i.e., 

1:1 scaling). 

In Sub-experiment 1, participants were instructed to move 

the block in the center of the screen to the destination indicated 

by their right hands, as shown in Fig. 2 (a). In Sub-experiment 2, 

participants were required to perform both motion and 

cognitive tasks. For the cognitive task, the participants were 

required to perform the n-back task, as shown in Fig. 2 (b). The 

n-back task has been widely used to investigate brain structural 

correlates of working memory and divided attention [20-22]. 

The 2-back task as a secondary task of the dual-task has shown 

significant distraction on the attention of the primary task 

[23-24]. In the 2-back task, an integral number from 0 to 9 was 

randomly presented by a sound every two seconds. Subjects 

were instructed to memorize the number presented in the 

stimuli and recall the number presented 4 seconds ago.    

Each session was composed of 50 trials. In each trial, 

participants were asked to relax before the experimental start. 

As shown in Fig. 2 (c) (d), at 3 s, the computer beeped, 

informing participants to get into the idle state. At 6 s, the 

screen displayed the target position. At that time point, if 
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participants took Sub-experiment 1, they were asked to keep 

the idle state; otherwise, they were asked to start to perform the 

cognitive task. At about 9 s (about 3 s after the target position 

was presented), participants started to perform the self-paced 

motion task. At 16 s, the computer beeped again, indicating the 

end of this trial.  

During the whole experiment, participants were asked to fix 

their eyes on the center of the screen to avoid eye movement 

interference. Furthermore, they were required not to produce 

any body movements, which are not related to the experimental 

requirements. 

 

 
Fig. 1. Experimental scenario 

 

C. Data Acquisition  

The experiment was conducted at the IHMS Lab of the 

School of Mechanical Engineering, Beijing Institute of 

Technology, China. EEG signals were collected by a  
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Fig. 2. Experimental paradigm: (a) experimental paradigm for motion task (b) 

experimental paradigm for cognitive distraction (c) experimental timeline for 

Sub-experiment 1 (d) experimental timeline for Sub-experiment 2. 

64-electrode portable wireless EEG amplifier (NeuSen.W64, 

Neuracle, China) from the scalp of subjects at the Fpz, Fp1, Fp2,  

AF3, AF4, AF7, AF8, Fz, F1, F2, F3, F4, F5, F6, F7, F8, FCz, 

FC1, FC2, FC3, FC4, FC5, FC6, FT7, FT8, Cz, C1, C2, C3, C4,  

C5, C6, T7, T8, CP1, CP2, CP3, CP4, CP5, CP6, TP7, TP8, Pz, 

P3, P4, P5, P6, P7, P8, POz, PO3, PO4, PO5, PO6, PO7, PO8, 

Oz, O1, and O2 locations according to an international 10-20 

system, with a forehead ground at AFz and reference at CPz. 

Two extra electrodes E1, E2 were placed behind the two ears. 

Electro-oculogram (EOG) signals were acquired from two 

electrodes positioned below and flank the outer canthi of the 

eyes. The sampling rate was set to be 1000 Hz. Electrode 

impedances were calibrated to be less than 5 KΩ. The EEG 

signals from each channel were re-referenced by binaural 

electrodes E1 and E2. 

Furthermore, hand movement trajectories were collected 

with a motion-tracking device (FASTRAK, Polhemus). The 

sampling rate was 60 Hz. One tracking sensor was attached to 

the right hands of subjects. 

 

 
Fig. 3. EEG channels used in this study.   

 

D.  Preprocessing 

EEG signals were first preprocessed by baseline correction 

and down-sampled to be 100 Hz [25]. Then, a 0.05-10 Hz 

band-pass filter was applied. After that, the independent 

component correlation algorithm (ICA) was used further to 

remove ocular artifacts [26-27]. The ICA was trained by using 

data filtered from 2-10 Hz according to the findings in [28]. 

Note that the trained ICA was applied to data filtered from 

0.05-10 Hz to keep the low-frequency EEG signals. Correlation 

coefficients of independent components (ICs) obtained from 

EEG signals through ICA and raw time-series EOG signals 

were computed. The ICs with coefficients larger than 0.6 were 

generally considered significant correlations [29] and were 

cleared to remove the ocular artifact. The remaining ICs were 

inversely transformed for clean EEG data. Furthermore, EEG 

signals were preprocessed by common average reference 

(CAR). We applied a Laplacian spatial filter to remove the 

electromyography (EMG) signals [15], and movement artifacts 
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were filtered by using artifact subspace reconstruction (ASR) 

[30]. 

Hand movement trajectories were resampled to 100 Hz to 

synchronize EEG and kinematic data. Since the motion task 

was self-paced, movement onsets were detected by using 

movement trajectories. Two-dimensional hand movement 

trajectories were transformed to the distance from the initial 

position to the current hand position. When the distance was 

larger than the specific threshold value (preset to be 0.2 cm), the 

movement was considered to get started, and the onset time was 

marked. All data processing was done in MATLAB. 

We extracted one EEG epoch from -0.5 to 0.5 s with respect 

to the movement onset in each trial. Therefore, for each session 

with or without a cognitive distraction, there was a total of 50 

epochs (50 trials × one epoch/ trial) for hand motion decoding. 

That is, 50 samples associated with hand motion without and 

with the cognitive distraction were obtained, respectively. 

Finally, we removed some trials according to the two criteria: 

(1) trials with maximum absolute amplitude of EEG exceeding 

200 µV and (2) trials with abnormal kurtosis (i.e., larger than 

six standard deviations around the mean over trials). In doing so, 

the mean with standard deviation of the number of trials 

removed across all subjects was 6±2 trials. 

 

E. Generative Model of EEG Signals  

   According to the generative model [31-32], EEG signals can 

be modelled as a linear combination of sources with additive 

noise 

                          i s i i
X t A S t N t( )                              (1) 

where   P
i
X t   represents P channels of EEG data 

measured in the ith epoch in the sensor space, Q
i
S t( )  

represents Q source signals of time activity in the ith epoch, 

  P
i
N t   refers to the additive noise of all channels, and 

the matrix P Q
s
A   represents the Q source patterns. 

Suppose that sources are not correlated. The noise 

 i i
N t A t( )


   is stationary and uncorrelated with the 

sources ( P P QA


  ,
P Q

i
t( )  ). The generative model 

can be expressed as follows 

                         i i
X t A t( )                                      (2) 

 where 
s

A A A


   
 contains the source and noise patterns 

and is supposed to be invertible. The vector i

i

i

S t
t

t

( )
( )

( )

 
   

  

 

includes the source and noise signals. 

F. Riemannian Manifold-based Decoding Methods 

In this paper, we used Riemannian Manifold-based Features 

of EEG signals, which can be written in the form of a matrix: 

1 1 1

1 1

2 2 2

1` 1

1 1

t t t T

t t t T
i

N N N
t t t T

x x x

x x x
X

x x x

  

  

  

 
 
 

  
 
 
 

                       (3) 

where Xi corresponds to the ith sample, N is the number of 

channels, and T denotes the number of sampled time points in 

each example. Each channel measurement was first regularized 

with z-score. For the ith example, the spatial covariance matrix 

was estimated by using the Sample Covariance Matrix (SCM) 

written as 

1

1
T

i i i
P X X

T
 



                                 (4) 

The SCM is known to be an unbiased estimator of the 

covariance matrix provided that the number of observations T is 

much larger than the number (i.e., N) of variables. Since SCMs 

are Symmetric Positive Definite (SPD) matrices, they belong to 

the manifold ℳ [17]. 

Each SCM Pi is mapped into the tangent space located at the 

Riemannian geometric mean PG of the whole set of samples 

[33]. Geometric mean PG of N SCM matrices 

 1 2i N
P P P P  is obtained according to [34]. 

The Riemannian manifold-based features of the ith sample 

can be described as a M = N (N +1)/2 dimensional vector Fi : 

  
Gi G P i G

F lower P P P
1 1
2 2log

 
              (5) 

where  
GP

log .  mean the manifold logarithm. 

To decrease the feature redundancy and computational cost, 

we applied the Principal Component Analysis (PCA) to the 

features to retain 95% main information. 

Two classifiers were applied to decode the right-hand 

movement direction based on Riemannian Manifold features:  

linear discriminant analysis (LDA) classifier and Gaussian 

Naïve Bayes (GNB) classifier. 

The decoding method based on LDA was called the tangent 

space linear discriminant analysis (TSLDA) proposed in [17], 

which can be expressed as 

     
i c i
Y b F b

0
                                         (6) 

where 
M

c
b 1  and b

0
  are parameters of LDA.  

The decoding method based on GNB was called Riemannian 

Manifold-GNB proposed in this paper. 

The GNB was developed from Naive Bayes Classifier (NBC). 

NBC methods are a set of supervised learning algorithms based 

on Bayes’ theorem with the “naive” assumption of conditional 

independence between all features given the value of the class 

variable [35].  

Bayes’ theorem states the following relationship, given class 

variable y and independent features x1 through xn: 

 
   

 
1

1

1

, ,
, ,

, ,

n

n

n

P y P x x y
P y x x

P x x
           (7) 
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Using the naive conditional independence assumption that  

   1 1 1
, , , , , ,

i i i n i
P x y x x x x P x y

 
      (8) 

For all xi, this relationship is simplified to  

 
   

 
1

1

1

, ,
, ,

n

ii

n

n

P y P x y
P y x x

P x x



              (9) 

Since  1
, ,

n
P x x  is constant given the input, we can use 

the following classification rule:  

     1 1`
, ,

n

n ii
P y x x P y P x y


          (10) 

   1`
arg maxˆ

n

iiy
y P y P x y


            (11) 

In addition, we can use Maximum A Posteriori (MAP) 

estimation to estimate P(y) and P (xi |y). The former is then the 

relative frequency of Class y in the training set. 

GNBC uses the Gaussian Naive Bayes algorithm for 

classification. The likelihood of the features is assumed to be 

Gaussian (the proof can be seen in Appendix-C): 

 
 i y

i

yy

x
P x y

2

22

1
exp

22





 
  
 
 

             (12) 

The parameters 
y

  and 
y

  are estimated using maximum 

likelihood [36]. Mean decoding accuracies were calculated by 

the 5×5 cross-validation method over all subjects.  

 

G.  EEG Sensor Space Model Patterns 

The source patterns 
s
A  can be identified according to the 

algorithm proposed in [32] with the fitted linear model (i.e., (6)). 

The detailed steps of the algorithm can be found in [32].  

Given the trained model parameters (
c
b , PG), the sources 

pattern A can be identified in the following steps. First, the 

tangent space pattern 
c
d  associated with 

c
b  is computed. 

Next, 
c
d is inversly transformed to the covariance matrix 

space to obtain 
d
P . 

Finally, the generalized eigenvalues of 
d
P and PG can be 

calculated. 

As the RM-GNBC method is non-linear, the TSLDA method 

was adopted to identify the EEG sensor space model patterns 

based on the Riemannian Manifold.  

 

H.   Simulation Setting  

Since the cognitive distraction may reduce motion-related 

cortical potentials from related brain regions due to the loss of 

the mental source to the motion task [37-38], the generative 

model of EEG signals related to the motion task given the 

distracted state could be written as 

   i i i
X t I A t( )                             (13) 

where 
P P

i
  ， each parameter of 

i
 obeys the 

distribution  N 20, . Larger β may mean larger negative 

impact of distraction on EEG signals related to the motion task. 

   The motivation for the model (13) is to generate the 

simulation data of EEG signals given different levels of 

cognitive distraction to investigate the effects of different levels 

of cognitive distraction on movement decoding since the 

experimental data only reflected a certain level of distraction. 

In binary classification problem simulations, we investigated 

the performance of the three decoding methods as the function 

of the level of the cognitive distraction. During the simulation, 

we set three brain sources with two noise sources, and 1000 

epochs were generated for testing the performance of decoding 

methods. First, we generated the pattern matrix A defined as 

 A Bexp with the random matrix  B N 0,1  . Second, 

we introduced the cognitive distraction of the brain sources 

according to (13). Third, the covariance matrices 
i
C were 

generated as follows: 

   

i

T
i i i

T

i i

T T
i

C X X

A t A t

A t t A

( ) ( )

( ) ( )

 

     

     

                      (14) 

where 
i

T
i
t t( ) ( )   is linearly correlated with the source 

signal power, which is set as follows: 

i

i

i

ST
i

P
t t

P

0
( ) ( )

0


 
    
 
 

                   (15) 

where the random parameter 
iS
P was evenly evaluated between 

0 and 1, and the parameter 
i
P


was generated through 

i i

T
i

P t t( ) ( )


    with  i
t N( ) 0,1 . 

  In the simulation, the power of the source 
iS
P  is related to the 

class of the ith epoch. The class label y is generated by using  

 
ii S

y sign P
1

2

 
  

 

                             (16) 

Five-fold CV was used to compute the classification 

accuracies of three decoding methods to evaluate the method 

performance. 

III. RESULTS 

A. EEG Source Analysis 

Fig. 4 shows the source analysis results of the TSLDA 

method for a specific subject given the condition with cognitive 

distraction. As shown in Fig. 4 (a), we found that the TSLDA 

method primarily depended on the first four sources with the 

highest four eigenvalues. As shown in Fig. 4 (b), the patterns of 

sources 1, 2, and 3 had the highest activity in the bilateral 

sensorimotor and parietal electrodes, whereas the patterns of 

source 4 had the highest activation in medial prefrontal 
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(a) 

 

 
(b)  

 

Fig. 4 Source analysis results of TSLDA for a specific subject given the 

cognitive distraction. (a) Eigenvalues (λ) of the TSLDA method with 59 

components. The components are ordered in descending order according to 

max(λ，1/λ). (b) Patterns of the first 4 Riemann sources. 

 

electrodes. Note that we obtained similar patterns for different 

CV folds. In addition, although the patterns changed between 

different conditions and subjects, the patterns of some sources 

had the highest activity in bilateral sensorimotor and parietal 

electrodes, while the patterns of some sources had their highest 

activation in medial prefrontal electrodes for different 

conditions and subjects. 

These results showed that although the Riemannian 

Manifold-based models relied on the mixture of residual eye 

artifact and brain activity, they primarily depended on brain 

activity. 

B. Effects of Cognitive Distraction on Decoding Performance 

of Different Methods 

   Binary classifications of hand movement directions with and 

without cognitive distraction were conducted for the two 

combinations of binary classifications of the four 

hand-movement directions. For comparison, we implemented 

the proposed method, W-PLV method in [14], and TSLDA 

method in [17] and computed the mean accuracies of all 

methods across the same subjects. The mean accuracies of 

binary classifications were obtained by the 5 × 5 

cross-validation method for all methods. We tested statistical 

differences between the three methods with the permutation 

paired t-tests [39-40] and controlled the false discovery rate 

(FDR) according to [41]. 

Fig. 5 shows the mean accuracy comparison between the 

conditions with and without cognitive distraction across the 

three decoding methods (RM-GNBC, TSLDA, and W-PLV). 

As shown in Fig. 5, the mean accuracy of the proposed 

RM-GNBC method slightly decreased from 81% in the 

situation without cognitive distraction to 78% in the situation 

with cognitive distraction, and the accuracy decrease of 3% was 

not statistically significant (paired t-test, p = 0.327 >0.05). The 

mean accuracy of the TSLDA method in [17] decreased from 

75% in the situation without cognitive distraction to 73% in the 

situation with cognitive distraction, and the accuracy decrease 

of 2% was not statistically significant (paired t-test, p = 

0.128 >0.05). In comparison, the mean accuracy of the W-PLV  

 

*
*

*

*

*
*

 
Fig. 5 The performance comparison of three decoding methods between conditions with and without distraction (T-test:∗ p<0.05). The error bar of each Subject 

refers to the standard deviation of five CVs. The error bar of the mean result refers to the standard deviation of eight participants. 
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method significantly decreased by 9% from 77% in the 

situation without cognitive distraction to 68% in the situation 

with cognitive distraction (paired t-test, p = 0.005 <0.05). 

These results suggested that the Riemannian Manifold-based 

methods (i.e., the RM-GNBC and TSLDA methods) had higher 

robustness to cognitive distraction than the baseline method 

(i.e., W-PLV). Furthermore, the proposed method (i.e., 

RM-GNBC method) showed 6% (81% vs 75%, paired t-test, 

p=0.026<0.05) and 5% (78% vs 73%, paired t-test, 

p=0.137 >0.05) higher accuracies than the TSLDA method 

under the condition without and with cognitive distraction, 

respectively. More details about decoding accuracy over all 

subjects can be seen in Appendix-A. 

 

C. Accuracy Comparison of Decoding Methods under Different 

Levels of Distraction by Simulation 

     In the simulation, we investigated the performance of three 

decoding methods given different levels of cognitive 

distraction. Fig. 6 shows the accuracy comparison results 

between the three decoding methods given different levels of 

cognitive distraction. We saw that, if there were almost no 

cognitive distraction (i.e., the cognitive distraction parameter β 

in (3) was 0.001), all the three decoding methods performed 

relatively high accuracy (91.0% for RM-GNBC, 91.3% for 

TSLDA, and 80.0% for W-PLV). As the cognitive distraction 

level increased, the accuracy of all decoding methods decreased. 

However, compared to the W-PLV, the Riemannian 

Manifold-based decoding methods showed a smaller and 

smoother accuracy decrease. The simulation results suggested 

that the Riemannian Manifold-based decoding methods had 

higher robustness to cognitive distraction than the W-PLV 

method. 

 

 
Fig. 6 The performance comparison of three decoding methods under different 

levels of cognitive distraction in the simulation 

 

IV. DISCUSSION AND CONCLUSION 

In this paper, we investigated the decoding of the upper limb 

movement direction under cognitive distraction by using EEG 

signals and the effects of cognitive distraction on the decoding 

performance of upper limb movement direction across the 

methods based on Riemannian tangent space (including our 

RM-GNBC and TSLDA in [17]) and the baseline method. The 

experimental and simulation results suggested that the methods 

based on Riemannian tangent space were more robust to 

cognitive distraction than the baseline method, and the 

RM-GNBC method had 6% (paired t-test, p=0.026) and 5% 

(paired t-test, p=0.137) higher accuracies than the TSLDA 

method under the conditions without and with cognitive 

distraction, respectively. 

By comparing the accuracy of these methods between 

situations without and with cognitive distraction, we found that 

cognitive distraction degraded the performance of the decoding 

methods. The accuracy of the baseline method decreased by 

9.0%, and the paired t-test showed the accuracy difference was 

statistically significant (p = 0.005<0.05). In comparison, the 

accuracy of the proposed RM-GNBC method decreased by 

3.0%, and the paired t-test showed that the difference in 

decoding accuracy was not statistically significant (p 

=0.327 >0.05). The accuracy of the TSLDA method decreased 

by 2.0%, and the paired t-test showed that the difference in 

decoding accuracy was not statistically significant (p 

=0.128 >0.05). These results suggested that the Riemannian 

Manifold-based methods (including the proposed and TSLDA 

methods) had higher robustness to cognitive distraction than 

the baseline method. The good robustness of the Riemannian 

Manifold-based methods to cognitive distraction might be 

owed to the affine invariance of Riemannian Manifold-based 

features [42].  

To further investigate the effects of different levels of 

cognitive distraction on decoding performance, we built the 

generative model (13) of EEG signals related to the motion task 

given the different distraction states and applied this model to 

generate simulated EEG data under different levels of cognitive 

distraction. The simulation results showed that when there was 

almost no cognitive distraction (i.e., the cognitive distraction 

parameter β in (13) was 0.001), all the three decoding methods 

performed high accuracy (91.0% for the RM-GNBC, 91.3% for 

the TSLDA, and 80.0% for the baseline method). As the 

cognitive distraction level increased, the accuracy of all 

decoding methods decreased. However, the Riemannian 

Manifold-based decoding methods (i.e., the RM-GNBC and 

TSLDA decoding methods) showed a smoother and smaller 

accuracy decrease than the baseline decoding method. The 

simulation results suggested that the Riemannian 

Manifold-based decoding methods had higher robustness to 

cognitive distraction than the baseline method.  

This work contributes to developing a BCI to improve the 

rehabilitation and assistance of hand-impaired patients and 

developing active human-centric assistive systems for healthy 

people in real life. First, the hand-impaired patients may get 

distracted during rehabilitation and assistance. From this aspect, 

the Riemannian Manifold-based decoding methods (i.e., the 

RM-GNBC and TSLDA decoding methods) can have more 

robust performance and thus may help hand-impaired patients 

more efficiently. Second, cognitive distraction is common for 

healthy people. Thus, this work can lay a foundation for the 

future development of an active human-machine collaboration 

system based on EEG signals and open a new research direction 

in the field of decoding hand movement parameters from EEG 

signals. Furthermore, this work can open an avenue to the 

studies on effects of cognitive distraction on other BCI 

paradigms. 

Some limits still exist in this paper. First, in this study, we 

focused on four directions of upper limb movement (i.e., 
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moving forward, backward, leftward, and rightward). However, 

in practice, there are many other hand movement directions. 

Thus, the proposed method should be further validated for the 

other hand movement directions (such as moving upward and 

downward). Second, this work only studied the binary 

classification of hand motion directions rather than multi-class 

decoding. Third, we investigated the movement direction 

decoding from EEG signals with a cognitive distraction. To 

better apply the proposed method, we should consider more 

types of distractions, such as visual and auditory distractions. 

Fourth, as shown in Fig. 4, it may be impossible to completely 

rule out that the decoding models relied on a mixture of residual 

eye artifact and brain activity. Fifth, in this paper, the findings 

on the effects of cognitive distraction on decoding performance 

are only limited to motor decoding. To generalize the results to 

other BCI paradigms, we need to perform corresponding 

experiments and analyses under other BCI paradigms. Sixth, to 

analyze the effects of different levels of cognitive distraction on 

decoding performance, we proposed a simple generative model 

for simulating EEG data given different levels of cognitive 

distraction according to the current findings [33-34]. However, 

we did not validate the proposed model. To validate the 

proposed model, we need to conduct experiments under 

different levels of cognitive distraction. To perform such 

experiments, we need to define, generate, and measure different 

levels of cognitive distraction, which is rather hard, if not 

infeasible. 

APPENDIX A 

Detailed Performance of Three Decoding Methods between 

Conditions with and without Distraction 

Tables below showed the detailed results for the three methods 

given the condition without and with cognitive distractions. In 

the tables, d1 refers to the forward direction; d2 refers to the 

backward direction, d3 refers to the leftward direction, d4 refers 

to the rightward direction. 
 

TABLE I. RESULTS OF BINARY CLASSIFICATIONS USING W-PLV 

METHOD IN [14] UNDER THE CONDITION WITH AND WITHOUT 

COGNITIVE DISTRACTION ACROSS ALL SUBJECTS. 

W-PLV 

Subjects 

without Cognitive Distraction with Cognitive Distraction 

d1-d2 std d3-d4 std mean d1-d2 std d3-d4 std mean 

Sub1 0.81 0.04 0.82 0.05 0.82 0.75 0.08 0.69 0.05 0.72 

Sub2 0.76 0.23 0.78 0.16 0.77 0.63 0.04 0.78 0.04 0.71 

Sub3 0.87 0.07 0.85 0.04 0.86 0.73 0.14 0.81 0.08 0.77 

Sub4 0.74 0.11 0.58 0.13 0.66 0.71 0.09 0.67 0.07 0.69 

Sub5 0.76 0.08 0.77 0.05 0.77 0.73 0.11 0.65 0.06 0.69 

Sub6 0.67 0.10 0.78 0.09 0.73 0.67 0.19 0.53 0.15 0.60 

Sub7 0.76 0.08 0.75 0.08 0.76 0.68 0.09 0.65 0.08 0.67 

Sub8 0.91 0.03 0.73 0.13 0.82 0.72 0.04 0.54 0.07 0.63 

mean 0.79 0.09 0.76 0.09 0.77 0.70 0.10 0.66 0.08 0.68 

std 0.07 0.06 0.08 0.04 0.06 0.04 0.05 0.09 0.03 0.05 

 

TABLE II. RESULTS OF BINARY CLASSIFICATIONS USING TSLDA 

METHOD IN [17] UNDER THE CONDITION WITH AND WITHOUT 

COGNITIVE DISTRACTION ACROSS ALL SUBJECTS. 

TSLDA 

Subjects 

without Cognitive Distraction with Cognitive Distraction 

d1-d2 std d3-d4 std mean d1-d2 std d3-d4 std mean 

Sub1 0.77 0.18 0.76 0.14 0.77 0.70 0.07 0.67 0.03 0.68 

Sub2 0.73 0.09 0.86 0.09 0.79 0.71 0.04 0.76 0.08 0.74 

Sub3 0.79 0.03 0.81 0.10 0.80 0.77 0.07 0.78 0.16 0.78 

Sub4 0.76 0.08 0.66 0.10 0.71 0.73 0.08 0.72 0.09 0.73 

Sub5 0.78 0.10 0.78 0.10 0.78 0.73 0.07 0.75 0.07 0.74 

Sub6 0.75 0.06 0.61 0.05 0.68 0.71 0.10 0.68 0.20 0.70 

Sub7 0.82 0.05 0.73 0.07 0.78 0.81 0.08 0.76 0.05 0.79 

Sub8 0.79 0.10 0.64 0.10 0.72 0.73 0.09 0.62 0.10 0.68 

mean 0.77 0.09 0.73 0.09 0.75 0.74 0.08 0.72 0.10 0.73 

std 0.03 0.04 0.08 0.02 0.04 0.03 0.02 0.05 0.05 0.04 

 

 

TABLE III. RESULTS OF BINARY CLASSIFICATIONS USING OUR 

PROPOSED RM-GNBC METHOD UNDER THE CONDITION WITH AND 

WITHOUT COGNITIVE DISTRACTION ACROSS ALL SUBJECTS.  

RM-GNBC 

Subjects 

without Cognitive Distraction with Cognitive Distraction 

d1-d2 std d3-d4 std mean d1-d2 std d3-d4 std mean 

Sub1 0.90 0.04 0.89 0.03 0.90 0.79 0.06 0.79 0.08 0.79 

Sub2 0.75 0.11 0.76 0.10 0.76 0.78 0.07 0.89 0.02 0.84 

Sub3 0.84 0.11 0.82 0.14 0.83 0.93 0.04 0.95 0.04 0.94 

Sub4 0.85 0.12 0.66 0.07 0.76 0.75 0.11 0.83 0.12 0.79 

Sub5 0.93 0.03 0.81 0.11 0.87 0.73 0.08 0.76 0.08 0.75 

Sub6 0.76 0.11 0.87 0.03 0.82 0.71 0.07 0.73 0.10 0.72 

Sub7 0.79 0.17 0.75 0.05 0.77 0.68 0.09 0.63 0.03 0.66 

Sub8 0.89 0.03 0.76 0.10 0.83 0.77 0.06 0.77 0.11 0.77 

mean 0.84 0.09 0.79 0.08 0.81 0.77 0.07 0.79 0.07 0.78 

std 0.06 0.05 0.07 0.04 0.05 0.07 0.02 0.09 0.04 0.08 

 

APPENDIX B 

Probability Distribution of Riemannian Features  

We applied the q-q plots to test the probability distribution of 

Riemannian features. Fig. 7 shows the q-q plot of one 

Riemannian feature. The result suggested that the feature can 

be considered Gaussian. The similar q-q plots of other features 

were obtained. 

 

Fig. 7  The  q-q plot of one Riemannian feature 

REFERENCES 

[1]. V. K. Benzy, A. P. Vinod, R. Subasree, S. Alladi and K. Raghavendra, 

"Motor Imagery Hand Movement Direction Decoding Using Brain 

Computer Interface to Aid Stroke Recovery and Rehabilitation," in IEEE 

Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, 

no. 12, pp. 3051-3062, Dec. 2020. 

[2]. R. Foong et al., "Assessment of the Efficacy of EEG-Based MI-BCI 

With Visual Feedback and EEG Correlates of Mental Fatigue for 

Upper-Limb Stroke Rehabilitation," in IEEE Transactions on 

Biomedical Engineering, vol. 67, no. 3, pp. 786-795, March 2020. 

[3]. K. K. Ang and C. Guan, "EEG-Based Strategies to Detect Motor Imagery 

for Control and Rehabilitation," in IEEE Transactions on Neural 

Systems and Rehabilitation Engineering, vol. 25, no. 4, pp. 392-401, 

April 2017. 

[4]. S. Y. Gordleeva et al., "Real-Time EEG–EMG Human–Machine 

Interface-Based Control System for a Lower-Limb Exoskeleton," in 

IEEE Access, vol. 8, pp. 84070-84081, 2020. 

This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBME.2022.3187085

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University. Downloaded on July 01,2022 at 01:26:37 UTC from IEEE Xplore.  Restrictions apply. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

9 

[5]. Z. Li et al., "Hybrid Brain/Muscle Signals Powered Wearable Walking 

Exoskeleton Enhancing Motor Ability in Climbing Stairs Activity," in 

IEEE Transactions on Medical Robotics and Bionics, vol. 1, no. 4, pp. 

218-227, Nov. 2019. 

[6]. T. Teng, L. Bi and X. Fan, "Using EEG to recognize emergency 

situations for brain-controlled vehicles," 2015 IEEE Intelligent Vehicles 

Symposium (IV), 2015, pp. 1305-1309 

[7]. S. Haufe et al., "Electrophysiology-baseddetection of emergency braking 

intention in real-world driving" J. Neural Eng. vol. 11, no. 5,2014. 

[8]. A. Pastore et al., "Motor intention decoding during the active and 

robot-assisted reaching," presented at the 7th IEEE International 

Conference on Biomedical Robotics and Biomechatronics, Enschede, 

The Netherlands, 2018. 

[9]. P. Ofner et al. "Attempted Arm and Hand Movements can be Decoded 

from Low-Frequency EEG from Persons with Spinal Cord Injury," 

Scientific Reports. vol. 7134, no. 9,2019. 

[10]. S. Waldert et al., “Hand movement direction decoded from MEG and 

EEG,” Journal of Neuroscience, vol. 28, no. 4, pp. 1000-1008, Jan 23, 

2008. 

[11]. H. G. Yeom, J. S. Kim, and C. K. Chung, "Estimation of the velocity and 

trajectory of three-dimensional reaching movements from non-invasive 

magnetoencephalography signals," Journal of Neural Engineering, vol. 

10, no. 2, Apr 2013. 

[12]. M. Jochumsen et al., “Detecting and classifying movement-related 

cortical potentials associated with hand movements in healthy subjects 

and stroke patients from single-electrode, single trial EEG,” Journal of 

Neural Engineering, vol. 12, no. 5, Oct 2015. 

[13]. A. Ubeda et al., “Classification of upper limb center-out reaching tasks 

by means of EEG-based continuous decoding techniques,” Journal of 

NeuroEngineering and Rehabilitation, vol. 14, no. 1, p. 9, Feb 1 2017. 

[14]. T. Chouhan et al., “Wavlet phase-locking based binary classification of 

hand movement directions from EEG,” Journal of Neural Engineering, 

vol. 15, no. 6, Dec 2018.  

[15]. J. Wang, L. Bi, W. Fei and C. Guan, "Decoding Single-Hand and 

Both-Hand Movement Directions from Noninvasive Neural Signals," in 

IEEE Transactions on Biomedical Engineering, vol. 68, no. 6, pp. 

1932-1940, June 2021. 

[16]. F. Fahimi, S. Dosen, K. K. Ang, N. Mrachacz-Kersting and C. Guan, 

"Generative Adversarial Networks-Based Data Augmentation for 

Brain-Computer Interface," in IEEE Transactions on Neural Networks 

and Learning Systems. 

[17]. A. Barachant, S. Bonnet, M. Congedo and C. Jutten, "Multiclass 

Brain–Computer Interface Classification by Riemannian Geometry," in 

IEEE Transactions on Biomedical Engineering, vol. 59, no. 4, pp. 

920-928, April 2012. 

[18]. D. Wu, B. J. Lance, V. J. Lawhern, S. Gordon, T. -P. Jung and C. -T. Lin, 

"EEG-Based User Reaction Time Estimation Using Riemannian 

Geometry Features," in IEEE Transactions on Neural Systems and 

Rehabilitation Engineering, vol. 25, no. 11, pp. 2157-2168, Nov. 2017. 

[19]. F. Tang, M. Fan and P. Tiňo, "Generalized Learning Riemannian Space 

Quantization: A Case Study on Riemannian Manifold of SPD Matrices," 

in IEEE Transactions on Neural Networks and Learning Systems, vol. 32, 

no. 1, pp. 281-292, Jan. 2021. 

[20]. S. Watter，G. M. Geffen and L. B. Geffen, “The n-back as a dual-task: 

P300 morphology under divided attention”. Psychophysiology, 2001, 

vol. 38, no. 6, pp:998-1003. 

[21]. A. M. Owen et al. “N-back working memory paradigm: a meta-analysis 

of normative functional neuroimaging studies,” Human Brain Mapping, 

2010, vol. 25, no. 1, pp: 46-59. 

[22]. S. Lei and M. Roetting, “Influence of task combination on EEG spectrum 

modulation for driver workload estimation,” Human Factors the Journal 

of the Human Factors & Ergonomics Society, 2011, vol. 53, no. 2, pp: 

168-79. 

[23]. A. Gevins and M. E. Smith. “Neurophysiological measures of cognitive 

workload during human-computer interaction,” Theoretical Issues in 

Ergonomics Science, 2003, vol. 4, no. 1, pp: 113-131. 

[24]. A. M. Brouwer et al. “Estimating workload using EEG spectral power 

and ERPs in the n-back task,” Journal of Neural Engineering, vol. 9, no. 

4, 2012. 

[25]. J. Omedes, A. Schwarz, L. Montesano and G. Müller-Putz, "Hierarchical 

decoding of grasping commands from EEG," 2017 39th Annual 

International Conference of the IEEE Engineering in Medicine and 

Biology Society (EMBC), Jeju, Korea (South), 2017, pp. 2085-2088. 

[26]. T. Teng, L. Bi and Y. Liu, "EEG-Based Detection of Driver Emergency 

Braking Intention for Brain-Controlled Vehicles," in IEEE Transactions 

on Intelligent Transportation Systems, vol. 19, no. 6, pp. 1766-1773, 

June 2018. 

[27]. J. T. Gwin, K. Gramann, S. Makeig, and D. P. Ferris, "Removal of 

movement artifact from high-density EEG recorded during walking and 

running," Journal of Neural Engineering, vol. 103, no. 6, pp. 3526-34, 

Jun 2010. 

[28]. I. Winkler et al., "On the influence of high-pass filtering on ICA-based 

artifact reduction in EEG-ERP," 2015 37th Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society 

(EMBC), 2015, pp. 4101-4105. 

[29]. J. Cohen, “The t Test for Means,” in Statistical Power Analysis for the 

Behavioral Sciences, 2nd ed. Routledge.1988, pp. 19-74 

[30]. N. Robinson, A. P. Vinod, K. K. Ang, K. P. Tee and C. T. Guan, 

"EEG-Based Classification of Fast and Slow Hand Movements Using 

Wavelet-CSP Algorithm," in IEEE Transactions on Biomedical 

Engineering, vol. 60, no. 8, pp. 2123-2132, Aug. 2013 

[31]. D. Sabbagh et al., “Predictive regression modeling with MEG/EEG: 

from source power to signals and cognitive states,” NeuroImage, vol. 

222, 2020. 

[32]. R. J. Kobler et al., "On the interpretation of linear Riemannian tangent 

space model parameters in M/EEG," 2021 43rd Annual International 

Conference of the IEEE Engineering in Medicine & Biology Society 

(EMBC), 2021, pp. 5909-5913. 

[33]. F. Yger, M. Berar and F. Lotte, "Riemannian Approaches in 

Brain-Computer Interfaces: A Review," in IEEE Transactions on Neural 

Systems and Rehabilitation Engineering, vol. 25, no. 10, pp. 1753-1762, 

Oct. 2017. 

[34]. H. Karcher, “Riemannian center of mass and mollifier smoothing,” 

Communications on pure and applied mathematics, vol. 30, no. 5, pp. 

509–541, 1977. 

[35]. A. H. Jahromi and M. Taheri, "A non-parametric mixture of Gaussian 

naive Bayes classifiers based on local independent features," 2017 

Artificial Intelligence and Signal Processing Conference (AISP), 2017, 

pp. 209-212. 

[36]. K. Ryu and R. Myung, "Evaluation of mental workload with a combined 

measure based on physiological indices during a dual task of tracking 

and mental arithmetic," Int. J. Ind. Ergon., vol. 35, no. 11, pp. 991-1009, 

Nov. 2005. 

[37]. G. Ying et al., "Identification of task parameters from movement-related 

cortical potentials," Medical & Biological Engineering & Computing, 

vol. 47, no. 12, pp. 1257-1264, 2009. 

[38]. A. P. Dempster, N. M. Laird and D. B. Rubin, "Maximum likelihood 

from incomplete data via the EM algorithm", J. R. Statist. Soc., vol. 39, 

no. 1, pp. 1-38, 1977. 

[39]. E. Maris, R. Oostenveld, "Nonparametric statistical testing of EEG- and 

MEG-data," in Journal of Neuroscience Methods, , vol. 164, no. 1, pp. 

177-190, 2007. 

[40]. T. E. Nichols, A. P. Holmes, "Nonparametric permutation tests for 

functional neuroimaging: a primer with examples," in Human Brain 

Mapping, vol. 15, no. 1, pp. 1-25, 2002. 

[41]. Y. Benjamini, D. Yekutieli, "The control of the false discovery rate in 

multiple testing under dependency," in Annals of Statistics, vol. 29, no. 4, 

2001.  

[42]. P. Zanini, M. Congedo, C. Jutten, S. Said and Y. Berthoumieu, "Transfer 

Learning: A Riemannian Geometry Framework With Applications to 

Brain–Computer Interfaces," in IEEE Transactions on Biomedical 

Engineering, vol. 65, no. 5, pp. 1107-1116, May 2018. 

 

This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBME.2022.3187085

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanyang Technological University. Downloaded on July 01,2022 at 01:26:37 UTC from IEEE Xplore.  Restrictions apply. 


