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Abstract—Brain-computer interface (BCI) technology 
based on event-related potentials (ERP) of 
electroencephalography (EEG) is widely used in daily life 
and medical treatment. However, the research of 
identifying the miniature and more informative asymmetric 
visual evoked potentials (aVEPs), which belongs to ERP, 
needs further exploration. Herein, a task-related 
component analysis combining paired character decoding 
(TRCA-PCD) method, which can enhance reproducibility of 
aVEPs in multiple trials and strengthen the features of 
different samples, was designed to realize fast decoding of 
aVEPs. The BCI performance and the influence of 
repetition times between the TRCA-PCD method, the 
discriminative canonical pattern matching (DCPM) method 
and traditional task-related component analysis (TRCA) 
method were compared using a 32-class aVEPs dataset 
recorded from 32 subjects. The highest average 
recognition accuracy and information transfer rate (ITR) of 
TRCA-PCD after parameter selection were 70.37 ±  2.49% 
(DCPM: 64.91 ±  2.81%, TRCA: 44.01 ± 3.25%) with the peak 
value of 97.92% and 28.90 ±  3.83 bits/min (DCPM: 21.29 ±  
3.35 bits/min, TRCA: 11.54 ± 2.81 bits/min) with the peak 
value of 94.55 bits/min respectively. Statistical analysis 
indicated that the highest average recognition rate could 
be obtained when the repetition time was six, and the 
highest ITR could be obtained when the repetition time was 
one. Overall, the results verified the effectiveness and 
superiority of TRCA-PCD in recognition of aVEPs and 
provided a reference for parameter selection. Therefore, 
the TRCA-PCD method can promote the further application 
of aVEPs in the BCI speller field. 
 

Index Terms—Brain-computer interfaces (BCI), 
Event-related potential (ERP), Task-related component 
analysis (TRCA), Paired character decoding (PCD), 
Asymmetric visual evoked potentials (aVEPs)  
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I. INTRODUCTION 
RAIN-COMPUTER interface (BCI) technology has been 

developed and gradually applied in clinical practice due to 

the advances in computer-based biological communication 

technology [1]. BCI technology is crucial in the new generation 

of human-computer interaction and human-computer hybrid 

intelligence. It can establish a direct information 

communication channel between the human brain and the 

external environment through the collection, recognition, and 

transformation of the electrical activities and characteristic 

signals of the nervous system [2]. ERP recognition technology 

has steadily developed and has been widely used in BCI 

research. For instance, Martínez-Cagigal et al. (2017) designed 

an asynchronous P300-BCI based on the web browser for 

severely disabled people [3]. Deng et al. also designed a 

brain-controlled wheelchair system based on steady-state visual 

evoked potentials (SSVEP) [4]. Moreover, Chen et al. designed 

a target detection system based on rapid serial visual 

presentation (RSVP) [5]. Presently, the matrix character flicker 

paradigm and RSVP paradigm are commonly used to induce 

ERP. However, both of them require the central visual field of 

the subjects to feel the strong stimuli flickering screen for 

robust ERP signal, which can easily lead to visual fatigue, thus 

limiting multi-task operation [1], [6]. Xu et al. (2018) first 

proposed a new method for character recognition, which 

encoded and induced aVEPs through space-code division 

multiple access (SCDMA) based on the spatial contralateral 

dominant characteristics of human brain response to stimuli [7]. 

Traditional BCI systems can recognize the dominant feature 

of EEG with amplitude larger than 2μV due to non-linear, 

non-stationary, and strong noise of EEG signal. However, it is a 

new field that needs further research for the detection of the 

miniature aVEPs signal, which contains more information [8], 

[9]. Besides, there is little research on the recognition of aVEPs. 

Xiao et al. designed and constructed a spatial filter based on the 

spatial symmetry of EEG. They proposed a discriminative 

canonical pattern matching (DCPM), which could effectively 

suppress the common mode noise of left and right hemispheres 

of the brain and greatly improve the signal-to-noise ratio (SNR) 

and recognition rate of aVEPs [10-12]. This algorithm is the 

main algorithm to identify aVEPs at present. Other algorithms, 

such as stepwise linear discriminant analysis (SWLDA) [13], 

Bayesian linear discriminant analysis (BLDA) [14], xDAWN 

[15], and EEGNet [16], have achieved good results in P300 

recognition induced by traditional paradigms, but these 
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algorithms are not as effective as DCPM in recognition of 

aVEPs [10]. 

Tanaka et al. proposed a spatial filtering method based on 

task-related component analysis (TRCA) with advantages in 

near-infrared spectroscopy (NIRS) data [17], [18]. In terms of 

SSVEP-BCI, TRCA method is used widely since it can 

maximize the reproducibility of time-locked activities in the 

experiment and has good performance in extracting task-related 

components. In 2017, Nakanishi et al successfully applied this 

algorithm to SSVEP signal analysis and further proposed an 

ensemble task-related component analysis method (Ensemble 

TRCA) which can improve the signal-to-noise ratio (SNR) of 

the feature signal used for target recognition and further 

improve the recognition rate of classification and ITR [19]-[21]. 

Mei et al. applied the TRCA method in controlling the 

quadcopter, Liu et al used it in the mobile situation, and Zheng 

et al. used it to decode EEG features in brain switch based on 

code-modulated visual-evoked potential (c-VEP) [22]-[24]. 

Zhao et al. designed the steady state peripheral visual evoked 

potential (SSPVEP) stimulation paradigm to reduce users’ 

visual fatigue using peripheral vision and the Ensemble TRCA 

algorithm [25]. Tang et al. designed a novel inter TRCA 

(iTRCA) spatial filter to extract the related components of each 

flicker in a multifocal SSVEP (mfSSVEP)-based BCI speller 

[26]. Tanaka et al. maximized both trial-by-trial reproducibility 

within a single subject and similarity across a group of subjects 

based on group task-related component analysis (gTRCA) and 

enhanced ERP evoked and induced responses using 

cross-correlation task-related component analysis (xTRCA) 

[27], [28].  

In summary, the recognition rate and ITR of aVEPs are lower 

than traditional P300 and SSVEP. However, the recognition of 

aVEPs could improve in the future through algorithm 

improvement. Presently, TRCA has achieved good results in 

recognition of SSVEP. However, there is little research on 

TRCA-based algorithm in the field of aVEPs detection. Besides, 

its recognition ability has not been verified.  

The aVEPs are time-locked EEG with two different 

repetitive stimulation tasks. Therefore, TRCA may have good 

recognition results for aVEPs since it can maximize the 

reproducibility of neural data during the task. This study 

proposed a method to improve the performance of detecting 

aVEPs signals. First, according to the characteristics of aVEPs, 

training samples of new structure was used to strengthen the 

features. Second, the performance was evaluated using a 

32-character aVEPs dataset recorded from 32 subjects. The 

recognition rate and ITR of each subject with different 

repetition times were calculated based on the Leave-one-out 

(LOO) Cross-Validation method. Moreover, the influence of 

repetition times on the recognition results with training was 

analyzed using Two-way repeated measures ANOVA. The 

general rules were summarized to provide a reference for 

parameter selection. This study aimed to demonstrate the 

efficiency of the TRCA-PCD in the detection of aVEPs and 

promote further application of aVEPs in the field of BCI 

speller. 

II. MATERIALS AND METHODS 

A. Introduction of aVEPs Dataset 

Herein, a miniature aVEPs dataset collected in 2020 

WORLD ROBOT COMPETITION-BCI CONTROL BRAIN 

ROBOT CONTEST consisting of List A and B were used. The 

data included 32 subjects’ continuous EEG data acquisition (14 

subjects from List A, 18 subjects from List B). Each person had 

three blocks with 16 characters of data. Block1 and block3 

contained ‘M, V, Q, 2, B, W, G, K, P, 5, E, D, O, I, C, 4’. 

Block2 contained ‘S, X, U, Y, R, J, 3, L, H, T, F, A, 6, Z, 1, N’. 

The data of each character included 6 repeated trials. A single 

trial had 10 labels (each block had 96 trials, and each subject 

had 288 trials). 

The dataset needs to be obtained after registering and logging 

in on the Oneuro official website. The dataset link is: 

https://oneuro.cn/n/competitiondetail/chinabci_2020_erp_with

_training/doc1. 

B. Experimental Procedure 

The main structure of the aVEPs-based character speller is 

shown in Fig. 1. The background color of the screen was black. 

Thirty-two white characters were evenly distributed on the 

screen (4 × 8 matrix). A yellow pentagram visual cue appeared 

at the beginning of the experiment for 0.8 s directly below the 

white character, indicating that the subjects were about to pay 

attention to the stimuli [7]. The subjects needed to quickly 

move and maintain at the fixation point to the corresponding 

character. The char label was immediately set on the EEG data 

when the cue disappeared. The visual stimuli started after 0.2 s. 

Each visual stimulus had six tiny white dots (clustered within 

0.5°) with less than 1 mm diameter. The eccentricity between 

the cue and the stimuli was 2.1° [10]. The polar angle between 

the cue and the horizontal axis with the stimuli point as the 

origin was 135°. SCDMA scheme coding was used for visual 

stimulation. Parallel channels were formed via the left and right 

stimulation in space [11]. Herein, the time label representing 

the character number was named ‘char label’, and the time label 

representing the left and right visual stimulation below the 

character was named ‘stimulus label’.  

For example, when the character to be watched is ‘3’, first, a 

yellow pentagram visual cue will firstly appear directly below 

character ‘3’ on the screen and disappear after holding for 0.8s. 

Then, after another 0.2 s, a single visual stimulus composed of 

six tiny white dots will appear on the left below the character 

‘3’. The visual stimulus will disappear after holding for 0.05 s. 

After that, there is no visual stimulus below the character 3, and 

this state will last for 0.05 s. The complete process of 0.1s from 

the appearance to the disappearance of visual stimulus is called 

‘left - empty’. The stimulus label will record this process as ‘0’. 

Similarly, if this process is "right - empty", the stimulus label is 

set as ‘1’. Analogously, the stimulus sequence of complete 

character 3 is ‘left - empty - right - empty - right - empty...’, 

Expressed as ‘011...’ with stimulus label. The sequence 

composed of 10 stimulus labels is called a stimulus sequence. 

The character ‘3’ is represented as ‘0110010110’, as shown in 

Table I of Appendix. In particular, the coding feature of 

‘stimulus label’ indicates that each two adjacent stimuli are not 

repeated, i.e., ‘10’ or ‘01’ appears in pairs. In addition, the char 

label of character ‘3’ is ‘121’, this means the character ‘3’ is in 
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the first row of the eighth column on the screen, so the char 

label can be expressed as ‘12 (column) + 1 (row)’ (The column 

counts from 5, and 5-12 represents the 1-8 columns of the 

character on the screen.). Each stimulus sequence will be 

repeated six times (interval, 0.2 s) to obtain a reliable output. So, 

each character will contain 60 visual stimuli divided into six 

groups (10 in each group).  

C. Signal Recording and Pre-Processing 

Herein, 64 wet electrode EEG acquisition system of 

Neuroscan Synapps2 was used to collect the data of aVEPs. 

The EEG cap electrode was installed following the 

international 10-20 system (Fig. 2). The GND electrode was 

connected to the AFz electrode, and the REF reference 

electrode was between the Cz and the CPz electrodes. The 

experimental paradigm was based on Matlab-2019b. The 

sampling rate of the original aVEPs data was 1000Hz. It was 

stored after being processed by a bandpass-filter at 0.1-100Hz 

and a notch filter at 50Hz. 

For data preprocessing, the original data was downsampled 

to 200Hz. The average value of the left and right mastoid 

electrodes was then selected for re-reference. The data were 

filtered at 1-20Hz through Chebyshev filter since the frequency 

of aVEPs EEG is mainly concentrated within 1-20Hz. It is 

known that the aVEPs data belongs to visual evoked potentials, 

and the occipital lobe of the brain is the visual area, which is 

mainly responsible for vision and image recognition. Therefore, 

this study selected 21 channels located in the occipital area for 

analysis to reduce the data dimension further and improve the 

calculation speed [7], as shown in the blue labeled electrodes in 

Fig. 2. 
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Fig. 1. The paradigm of aVEPs speller. ‘θ‘’ and ‘φ’ represent eccentricity and polar angle, respectively. The blue square represents the stimulus 
sequence of single-trial of character ‘3’, which was not displayed on the screen during the experiment. 
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Fig. 2. Channel locations according to the international10-20 system. 

D. Discriminative Canonical Pattern Matching (DCPM) 

DCPM method is suitable for the single-trial classification 
of ERP components. It can reduce the training and calibration 
time and improve the efficiency of ERP-BCI in individual 
feature recognition. Several studies [10-12] have shown that 
DCPM has a better classification effect on all ERP features 
(aVEPs, mVEP, P300, etc.) than other algorithms due to its 
robustness and generalization classification algorithm. 

The main idea of DCPM is to maximize the spatial feature 
difference between the two types of samples with 
Discriminative Spatial Patterns (DSP) spatial filter, to reveal 
the underlying correlation between the filtered training 
template and the test sample with Canonical Correlation 
Analysis (CCA) algorithm, to calculate the Pearson correlation 
between the training template and the test sample with pattern 
matching. The category corresponding to the maximum 

correlation coefficient is the test sample category [29]. More 
details about DCPM can be found in [10-12]. 

E. Traditional TRCA Method 

The overall process of identifying aVEPs using the 
traditional TRCA algorithm can be divided into three stages: 
(1) training a spatial filter and a template; (2) calculating a 
correlation coefficient matrix for testing; (3) decoding 
computation (Fig. 3 (a)). 

Suppose , 1, 2c t sN N N
kX R k 

 =  are the training sets, where 
Nc, Nt, Ns and k indicate the number of channels, time points, 
samples, and label categories, respectively. Suppose Xk can be 
expressed as Xk= [x1, x2, …, xi], where i represents the index of 
channels, then a linear model can be expressed as follows [17]: 
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wi indicates the weight matrix, making y(t) consist of the 
task-related component only. Wk = [w1, w2, ..., wi] can be found 
via inter-trial covariance maximization. The h-th trial of Xk and 
the estimated task-related component can be described as x(h)(t) 
and y(h)(t), h = 1, 2, ..., Ns. All the covariance between two 
trials can be summed as follows [19]: 
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where Nc , iiiiSS =
2121 1)( is defined as [19]: 
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The normalization constraint of y(t) can be described as 
follows [17]: 
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The optimal weight vector kŴ can be obtained based on 
Rayleigh-Ritz theory as follows [17]: 
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kŴ indicates the eigenvector corresponding to the eigenvalues 
of Q−1S in a descending order. 

The correlation coefficient between the data of the m-th 
label in the single-trial testing data (10 labels) NtNcRY   and 
averaged training data across trials for k-th label 
category NtNc

k RX  can be calculated as follows [19]: 
( ) ( , ).m T T

k k k kr Y W X W=                           (6) 
ρ(a, b) indicates the two-dimensional correlation analysis 
between a and b, k=1, 2, m=1, 2, …, 10. 

Then the predicted code of the m-th label in Y is 
.maxargˆ )(m

k
k

rk =                                   (7) 

Finally, a 10-bit character can be encoded and compared 
with the code list in Table Ⅰ of Appendix. The recognition 
result can be output only when it is completely matched. 

F. TRCA-PCD Method 

1) The Training and Testing DATA  

Different from the traditional TRCA algorithm, X1 in the 
task-related component analysis combining paired character 
decoding (TRCA-PCD) method represents all training data 
with label categories of ‘01’ and ‘00’ instead of ‘0’, similarly, 
X2 represents ‘10’ and ‘11’ instead of ‘1’. This is due to ERP 
having significant nonlinear reorganization of ongoing 
oscillations under weak stimulation [7], [30]. So, the aVEPs 
pattern would influence the following one or even more. 
Specifically, label 0 had at least two ERP patterns 
corresponding to sequences ‘00’, ‘01’, respectively, while 
label 1 corresponding to ‘10’, ‘11’. Therefore, the m-th label in 
testing data Y should also be set to the corresponding data 
length during the test, so as to ensure the same dimension as 
the training data. 
2) Parameter Selection   

Suppose the eigenvalues of Q−1S in the formula (5) are λ1, 
λ2, …, λNc(sorted in descending order). The smallest value of p 
should satisfy: 

1
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where λj, Nc and p indicate the j-th eigenvalues of Q−1S, the 
number of total eigenvalues of Q−1S and the first p eigenvalues 
of Q−1S, respectively. This means 90% of the variance was 
retained. So, the new spatial filter can be written as p

kW . The 
idea of principal component analysis (PCA) is used here. 
3) Calculation of Decoding 

After the calculation of formula (6), suppose the repetition 
times are n, j

m
kr )( )(  represents the correlation coefficient 

between the m-th label in the j-th trial of testing data and the 
averaged training data across trials for k-th label category, and 
the final correlation coefficient r(m) can be calculated as 
follows: 

( ) ( ) ( )
2 1

1
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nm m m

j j
j
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n =

= −                     (9) 

It should be noted that during the decoding process, starting 
from r(1), the step size is two values, and the two adjacent 
values are read in turn. The first value is recorded as “10” if 
greater than the second value; else, “01”. The code can be 
finally forecasted by follows: 
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      (10) 

This decoding method can improve the recognition rate to a 
certain extent compared to using a single correlation 
coefficient for discrimination. The implementation of the 
TRCA-PCD method is shown in Fig. 3 (b). 
4) The Recognition Principle of TRCA-PCD 

The principle of using TRCA-PCD to identify aVEPs is 
shown in Fig. 4. The difference between channel ‘PO7’ and 
channel ‘PO8’ became obvious after processing of averaging 
due to the significant effects of aVEPs (Fig. 4 (a) and (c)) [8]. 
The brain topographic maps also show the significant 
differences between the two stimuli responses in the occipital 
region. Therefore, the recognition of aVEPs can be realized if 
the characteristics of two ERP patterns are found. TRCA-PCD 
mainly extracts the most relevant components in similar tasks. 

The relevant components of the two stimulus sequences are 
found after W1 and W2 filtering and being arranged from large 
to small based on the correlation (Fig. 4 (b) and (d)). The main 
components of the two stimuli have opposite trends. Several 
most relevant components are selected as the feature templates 
of aVEPs to accurately recognize aVEPs and reduce the 
dimension. The correlations between the test data and the 
feature templates of the two stimulus sequences are calculated 
via the Pearson correlation coefficient. The larger the 
correlation coefficient is, the closer the test data are to the 
feature template, thus achieving the final recognition.  

The essence of TRCA-PCD method to outperform the 
traditional TRCA is that the sample features can be 
strengthened when using paired samples for training and 
decoding, thereby improving the recognition accuracy. 

G. Evaluation of Algorithms 

1) Evaluation Criterion 

The performance of the TRCA-PCD based method was 

analyzed by simulating an online test on the dataset. The 

recognition accuracy and ITR of different subjects and 

numbers of testing trials were calculated based on the LOO 
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method with block as the unit. One block of data was left for 

each test. The rest of the data was used for training until all 

blocks were tested. Similarly, the data stream of the test was 

provided by simulating online. A new packet was obtained 

based on the required repetition times by calling the data 

reading method every time. The packet recorded the label 

information received in the reading process and the length of 

the aVEPs signal used. Packets in the same block were sent in 

chronological order. The block end flag in the last packet was 

set to 1 after all data in a block were sent. The program 

termination flag was set to 1 when all the experimental data 

was sent. 

The recognition accuracy and ITR can be used as the 

evaluation criteria. ITR can be calculated as follows [31]: 

).60()
1

1log)P-1(log(logITR 222 TN
PPPN 

−

−
++=    (11) 

N indicates the number of characters in each block, P 

represents the recognition accuracy, and T shows the average 

test time. ITR can be calculated in bits/min. Length of EEG 

data obtained from the beginning of character stimulation to 

the time when the algorithm is called can be used as the time 

length of the trial. The average time length of repetition times 

is the average trial time T to calculate ITR. The recognition 

accuracy can be calculated based on the consistency of the 

decoding result and the actual data code. 
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Fig. 3. Diagrams of the TRCA (a) and TRCA-PCD (b) methods. The 
green box in (a) and the red part in (b) represent the differences 
between the two algorithms, respectively.  
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Fig. 4. Identification principle of TRCA-PCD. X1 contains the 
component of left miniature aVEPs (‘00’,’01’), X2 contains the 
component of right miniature aVEPs (‘10’,’11’). (a) The averaging of X1. 
(b) Related components of left miniature aVEPs. (c) The averaging of 
X2.  (d) Related components of right miniature aVEPs. The red and blue 
lines in (a) and (c) represent channel PO7 and PO8, respectively. Lines 
from thick to thin in (b) and (d) indicate the correlations from large to 
small. The red lines in (b) and (d) represent the largest correlation 
component, and the blue lines represent the second-largest correlation 
component, etc. 
 
2) Statistical Method 

SPSS 26.0 statistical software was used to assess the effect 

of the different methods and repetition times on recognition 

accuracy and ITR. Shapirov-Wilk test was used to evaluate 

whether the recognition accuracy and ITR conformed to 

normal distribution. Two-way repeated measures ANOVA 
was used to judge the impact of different algorithms on 
accuracy and ITR with the change of repetition times. All 

significant levels were selected as α = 0.05 to obtain the 

general rule of the algorithms in processing aVEPs. The 
Greenhouse-Geisser method was used to correct Mauchly's 
Test of Sphericity. The Bonferroni correction was adopted for 

multiple comparisons of methods and repetition times. 
 
3) Selection of data length 

According to the reference [30], the significant feature of 

aVEPs will appear at 200-300 ms after stimulation. The length 

of single data packet read by the simulated online test system 

is 50ms (10 sample points), so the data lengths which could be 

obtained between 200-300 ms are 200 ms, 250 ms and 300 ms. 

In order to further verify which data length would achieve the 

best performance, the experiments of 200ms, 250ms and 

300ms data lengths could be used for comparative analysis. 

III. RESULTS 

A. Target Identification Performance 

Fig. 5 shows the highest average recognition results 

estimated by a LOO method across 32 subjects with different 

data lengths (the segmented window sizes were 200ms, 250ms 

and 300ms). The green, blue and red bar graphs represent the 

recognition results of TRCA, DCPM and TRCA-PCD, 
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respectively.  

The accuracy of all subjects increased with the increasing of 

repetition times. The ITR decreased with the increasing of 

repetition times while adopting TRCA-PCD and DCPM 

methods. But the highest ITR result with the traditional TRCA 

method could be achieved when the repetition time was 3. 

The highest averaged accuracy rate of TRCA-PCD (70.37 ± 

2.49%, data length = 300 ms, repetition time = 6) was 5.46% 

higher than that of DCPM (64.91 ± 2.81%, data length = 300 

ms, repetition time = 6) and 26.26% higher than that of TRCA 

(44.01 ± 3.25%, data length = 300 ms, repetition time = 6).  

The fastest average ITR of TRCA-PCD (28.90 ± 3.83 

bits/min, data length = 250 ms, repetition time = 1) was 7.61 

bits/min faster than that of DCPM (21.29 ± 3.35 bits/min, data 

length = 300 ms, repetition time = 1) and 17.36 bits/min faster 

than that of TRCA (11.54 ± 2.81 bits/min, data length = 250 

ms, repetition time = 3). More detailed results are shown in 

Table Ⅱ in Supporting Document. 
The comparison of the three methods indicates that the 

TRCA-PCD method outperforms the DCPM and traditional 
TRCA method. And the TRCA-PCD method helps to achieve 
the best performance regardless of data length. 

B. Statistical Analysis Results 

The accuracy results showed that the interactions between 
methods and repetition times were statistically significant 
(data length = 200ms, F (5.99, 185.64) = 19.74, p < 0.001; data 

length = 250ms, F (5.79, 179.41) = 6.73, p < 0.001; data length 
= 300ms, F (5.08, 157.35) = 4.73, p < 0.001). The ITR results 
showed that the interactions between methods and repetition 
times were statistically significant (data length = 200ms, F 
(2.24, 69.30) = 14.07, p < 0.001; data length = 250ms, F (2.71, 
83.84) = 15.53, p < 0.001; data length = 300ms, F (2.40, 74.24) 
= 14.72, p < 0.001). 

When the interaction is meaningful, it’s not significant to 

analyze the main effect alone. It’s necessary to analyze the 

difference of accuracy and ITR with different methods at 

different repetition times one by one, that is, the individual 

effect of internal factors in each subject. The detailed results 

are shown in Table Ⅲ in Supporting Document.  
When the data length was 250 ms in the ITR result, there 

had significant differences between TRCA-PCD and DCPM, 

TRCA-PCD and TRCA (repetition time = 4, 5, 6, p < 0.01), 

but there had no significant differences between DCPM and 

TRCA (repetition time = 4, 5, 6, p > 0.05). In all other 

situations, the simple effects of the three methods were 

statistically significant (p < 0.01) to accuracy and ITR with the 

change of repetition times. 

When the data length was 200 ms and 250 ms, the simple 

effects of repetition times were not statistically significant (p > 

0.05) to ITR with the TRCA method. In all other situations, the 

simple effects of repetition times were statistically significant 

(p < 0.05) to accuracy and ITR with different methods. 
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Fig. 5. Optimal averaged recognition accuracy and ITR of the three methods with different repetition times for all subjects. (a) The accuracy results 
with 200 ms’ data. (b) The accuracy results with 250 ms’ data. (c) The accuracy results with 300 ms’ data. (d) The ITR results with 200 ms’ data. (e) 
The ITR results with 250 ms’ data. (f) The ITR results with 300 ms’ data. The error bars indicate standard errors. The asterisks in all subfigures 
indicate significant differences between the three methods obtained by one-way repeated measures ANOVAs (* p < 0.05, ** p < 0.01, *** p < 0.001). 
 

IV. DISCUSSIONS 
Presently, non-invasive brain-computer interaction 

technology is widely used because it is simple and fast but less 

costly. Besides, researchers have provided some 

improvements of software and hardware to achieve a good 

human-machine interaction experience. For instance, EEG 

acquisition equipment with semi-dry and dry electrodes can 

save the time of injecting conductive paste. Moreover, 
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washing the hair will not be required after the experiment, thus 

improving the efficiency of the experiment [32, 33]. The 

wireless signal transmission mode is more convenient for EEG 

data acquisition in motion scenes [34-36]. The 

human-machine interface with mild weak stimulation can 

greatly save visual resources and reduce fatigue and other 

discomforts [8, 37]. The aVEPs are weak visual 

stimulation-evoked potentials, which were proposed in 2018. 

It will be widely used in the BCI speller field with a good 

application prospect after improving recognition and ITR. 

Although the TRCA-based algorithm has rapidly developed 

and was applied in the SSVEP recognition field in 2017, it is 

rarely used in other evoked EEG fields, such as P300 and 

aVEPs. To find new applications, an improved TRCA 

algorithm is used here to recognize aVEPs. The results showed 

that the proposed TRCA-PCD algorithm could efficiently 

recognize aVEPs, and the averaged accuracy of some subjects 

(subject 11, subject 26) could even reach 97.92%. Therefore, 

this study can promote further application of aVEPs. 

Herein, data of three blocks of each subject were 

cross-verified through online simulation. The data 

transmission and processing were consistent with the real 

online test, indicating that the results were consistent with the 

online results. This conclusion has been verified in the 2020 

WORLD ROBOT COMPETITION-BCI CONTROL BRAIN 

ROBOT CONTEST. Block1 and block3 were the EEG data of 

the same group character, and block2 was the EEG data of 

another group character. The experimental results indicated 

that the cross-validation results were stable. Moreover, it still 

had a high recognition rate when using one group of character 

data for training to recognize another group of character data. 

Therefore, the proposed TRCA-PCD method is featured by 

good robustness and migration recognition ability. 

The form of training samples and spatial filter were created 

after drawing upon the idea of references [7] and [30]. This is 

different from Wong et al (2020). The key idea of them is to 

use the target stimulus and the neighboring stimuli to construct 

the spatial filter Wk [38]. It is worth noting that the so-called 

‘neighboring stimuli’ are due to their nearby flickering 

frequencies. This means that the stimuli are not necessarily 

continuous in space. At the same time, each stimulus sample is 

trained using an integral trial as one unit. Fig. 6 shows the 

generation of spatial filter Wk from learning across multi 

stimulus. However, the spatial filter of the TRCA-PCD 

proposed by us is obtained from the samples dominated by a 

single type of stimulus. The spatial filter W1 is obtained from 

the left stimulus dominated samples (‘00’, ‘01’), and the 

spatial filter W2 is obtained from the right stimulus dominated 

samples (‘10’, ‘11’). At the same time, the TRCA-PCD 

algorithm decomposes the single trial to obtain the training 

samples, and combines the recognition results to decode the 

characters. Fig. 7 shows the generation of spatial filter from 

the TRCA-PCD method.  

The essential reason why the TRCA-PCD learns through 

continuous stimuli is that the previous stimulus will affect the 

subsequent adjacent stimuli. Due to the fact that characters are 

binary coded, ‘0’ can only be followed by ‘0’ or ‘1’, and ‘1’ 

can only be followed by ‘0’ or ‘1’. This seems similar to 

learning from two stimuli, but in fact it is not. Without learning 

from continuous stimuli, the TRCA-PCD method cannot learn 

the effective data features because it is out of the influence 

range of a single stimulus. 

In statistical analysis, it was considered that the values with 

student residuals exceeding ± 3 are outliers, and the outliers 

were reported in Table Ⅳ in Supporting Document. The 

results show that almost all ACC and ITR outliers were 

generated by subject 17. We recalculated the results of 

abnormal values, and the results were consistent. It was 

confirmed that these abnormal values belong to real outliers. 

This shows that subject 17 could induce aVEPs with obvious 

characteristics, which exists in the actual EEG experiment. It is 

necessary to consider the role of this kind of subject in the 

overall population, so these outliers were still enrolled in the 

statistical calculation. 

According to the recognition accuracy and ITR of the 

methods for all subjects in Fig. 5, it can be seen that in the 

online test with training, the offline training can find out the 

repetition times needed under the condition of the best 

recognition result, so as to optimize the program and improve 

the average recognition rate and ITR in the online test. 

However, in the online test without training, due to the lack of 

training data, the optimal parameters can not be determined. 

The general rule can be summarized through the statistics of 

the results in this paper: In the pursuit of the highest 

recognition accuracy, the number of testing trials can be set to 

6; in the pursuit of the highest ITR, the number of testing trials 

can be set to 1.  
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Fig. 6. Generation of spatial filter from learning across multi stimulus in the ms-eTRCA method. kX is the average of the SSVEP data across a 
number of training trials for the k-th visual stimulus. k is the transpose of all trials’ assemble of TX

k
. A consists of d neighboring stimulus samples of 

kX , B consists of d k . The final W consists of W1 to WNf.  
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Fig. 7. Generation of spatial filter from the TRCA-PCD method. The W1 is generated by the left stimulus dominated samples from all characters, and 
the W2 is generated by the right stimulus dominated samples from all characters. These samples are all decomposed from the complete trials. 

 

In this paper, the repetition times refer to the number of 

times the algorithm needs to repeatedly obtain the character 

data to recognize a character in an online simulation test. This 

is consistent with the description in reference [7]. For an 

online system, when the repetition times of obtaining character 

data increase, the calculation time becomes longer, which will 

reduce the value of ITR. Although the recognition accuracy is 

improved, on the whole, ITR will eventually show a 

downward trend since the calculation time has a greater impact 

on ITR. 

It is undeniable that there are some shortcomings in this 

study. First, the accuracy increased with repetition times, but 

there were only six repetition times in the dataset for each 

subject. Therefore, more repetition times are needed to assess 

whether and when the accuracy rate tends to converge. Second, 

combined with the statistical analysis results, the aVEPs 

recognition accuracy based on TRCA-PCD was negatively 

correlated with ITR. However, the algorithm should have 

achieved the highest accuracy and ITR at the same time. In 

addition, the impact of different number of training sets on the 

TRCA-PCD method has not been studied. Further studies are 

in need to explore the above problems. 

V. CONCLUSION 
This study designed the TRCA-PCD algorithm to assess the 

recognition of aVEPs based on the data acquired from 32 

subjects. The performance of TRCA-PCD was evaluated 

through recognition accuracy, ITR indicators, and statistical 

analysis. The results show that the TRCA-PCD algorithm has 

better recognition performance in recognition of aVEPs than 

DCPM and TRCA. In any case, this study provides a solid 

basis for the research of recognition of aVEPs in the future. 

APPENDIX 
TABLE I 

CHARACTER LABEL AND CODE 
 

Char/LBL Code Char/LBL Code Char/LBL Code Char/LBL Code 
A/51 0 1 1 0 1 0 0 1 0 1 I/71 1 0 0 1 0 1 1 0 1 0 Q/91 1 0 1 0 0 1 0 1 0 1 Y/111 0 1 1 0 1 0 1 0 0 1 
B/52 0 1 1 0 0 1 1 0 0 1 J/72 0 1 0 1 0 1 1 0 0 1 R/92 0 1 0 1 0 1 0 1 1 0 Z/112 1 0 1 0 1 0 1 0 0 1 
C/53 0 1 1 0 0 1 0 1 0 1 K/73 0 1 0 1 1 0 0 1 1 0 S/93 1 0 0 1 1 0 0 1 0 1 1/113 1 0 1 0 0 1 1 0 1 0 
D/54 0 1 0 1 1 0 1 0 1 0 L/74 1 0 1 0 0 1 0 1 1 0 T/94 0 1 1 0 0 1 1 0 1 0 2/114 1 0 1 0 1 0 1 0 1 0 
E/61 1 0 0 1 1 0 0 1 1 0 M/81 1 0 0 1 1 0 1 0 0 1 U/101 1 0 1 0 1 0 0 1 0 1 3/121 0 1 1 0 0 1 0 1 1 0 
F/62 1 0 0 1 0 1 1 0 0 1 N/82 0 1 1 0 1 0 0 1 1 0 V/102 1 0 0 1 0 1 0 1 1 0 4/122 1 0 0 1 1 0 1 0 1 0 
G/63 0 1 0 1 1 0 0 1 0 1 O/83 1 0 1 0 1 0 0 1 1 0 W/103 1 0 0 1 0 1 0 1 0 1 5/123 0 1 0 1 0 1 0 1 0 1 
H/64 1 0 1 0 0 1 1 0 0 1 P/84 0 1 0 1 1 0 1 0 0 1 X/104 0 1 0 1 0 1 1 0 1 0 6/124 0 1 1 0 1 0 1 0 1 0 
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