
Pattern Recognition 130 (2022) 108833 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

Visual-to-EEG cross-modal knowledge distillation for continuous 

emotion recognition 

Su Zhang 

a , Chuangao Tang 

b , Cuntai Guan 

a , ∗

a School of Computer Science and Engineering, Nanyang Technological University, 639798, Singapore 
b Key Laboratory of Child Development and Learning Science (Ministry of Education), School of Biological Science and Medical Engineering, Southeast 

University, Nanjing, 210096, China 

a r t i c l e i n f o 

Article history: 

Received 26 August 2021 

Revised 3 May 2022 

Accepted 3 June 2022 

Available online 3 June 2022 

Keywords: 

Continuous emotion recognition 

Knowledge distillation 

Cross-modality 

a b s t r a c t 

Visual modality is one of the most dominant modalities for current continuous emotion recognition 

methods. Compared to which the EEG modality is relatively less sound due to its intrinsic limitation 

such as subject bias and low spatial resolution. This work attempts to improve the continuous prediction 

of the EEG modality by using the dark knowledge from the visual modality. The teacher model is built by 

a cascade convolutional neural network - temporal convolutional network (CNN-TCN) architecture, and 

the student model is built by TCNs. They are fed by video frames and EEG average band power features, 

respectively. Two data partitioning schemes are employed, i.e., the trial-level random shuffling (TRS) and 

the leave-one-subject-out (LOSO). The standalone teacher and student can produce continuous predic- 

tion superior to the baseline method, and the employment of the visual-to-EEG cross-modal KD further 

improves the prediction with statistical significance, i.e., p-value < 0 . 01 for TRS and p-value < 0 . 05 for 

LOSO partitioning. The saliency maps of the trained student model show that the brain areas associated 

with the active valence state are not located in precise brain areas. Instead, it results from synchronized 

activity among various brain areas. And the fast beta and gamma waves, with the frequency of 18 − 30 Hz

and 30 − 45 Hz, contribute the most to the human emotion process compared to other bands. The code is 

available at https://github.com/sucv/Visual _ to _ EEG _ Cross _ Modal _ KD _ for _ CER . 

© 2022 Published by Elsevier Ltd. 
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. Introduction 

Continuous emotion recognition (CER) is the process of iden- 

ifying human emotion in a temporally continuous manner. The 

motional state, once understood, can be used in various areas in- 

luding entertainment, e-healthcare, recommender system, and e- 

earning. To describe the human state of feeling, psychologists have 

eveloped the categorical and the dimensional models. The cate- 

orical model aims to obtain a discrete estimate of emotional cat- 

gory. It features simplicity and universality and has been exten- 

ively exploited in affective com puting. The dimensional model, on 

he other hand, aims to obtain a continuous estimate in a dimen- 

ional space. It can describe more complex and subtle emotions. 

his paper focuses on developing a CER method based on the di- 

ensional model. 

CER can utilize information from various modalities. The visual 

odality, usually featured by facial expressions [1,2] , is one of the 

ost dominant modalities for emotion recognition. By utilizing ei- 
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her a finely hand-crafted descriptor, e.g., facial action coding sys- 

em (FACS) [3] , or a powerful convolutional neural network, e.g., 

he Resnet for feature extraction, an emotion recognition method 

an achieve promising results. In recent years, Electroencephalog- 

aphy (EEG) has drawn considerable attention from researchers [4] , 

ue to its simple, cheap, portable, and easy-to-use solution for 

dentifying emotions [5] . In addition to the visual and EEG infor- 

ation, the audio/speech, text, and some other physiological sig- 

als (e.g., heart rate, blood pressure, and eye gaze) are also widely 

sed. 

Two general differences between the visual and EEG modali- 

ies are of the most relevance to our interest. First, facial expres- 

ions and gestures are overt and determined, whereas the EEG sig- 

al is covert and highly subject-dependent. As a result, it is fea- 

ible to directly label the emotion based on the visual modality 

rom an annotator, yet for EEG modality it is done either by pre- 

efined experiment protocol or by subjects themselves. Second, 

he visual modality usually has high and low resolutions on spa- 

ial and temporal dimensions (e.g., 40 × 40 × 3 and 30 fps, respec- 

ively, whereas the EEG modality is high on temporal resolutions 

e.g., 256 Hz) yet low on spatial resolutions (e.g., 32 electrodes). 

he greater the resolution is, the more detailed structural or phase 
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hanges in response to emotional stimuli can be studied. Based on 

he differences of modalities and the assumption that incorporat- 

ng multimodal data will produce results that are superior to uni- 

odal data, it is natural to utilize the multimodal data which can 

ssentially increase the amount of available data and hopefully at- 

enuate the defects of each modality. 

Knowledge distillation (KD) is one of the promising solutions 

o combining multimodal data. In deep learning, KD is an effective 

echnique that has been widely used to transfer information from 

ne network to another network whilst training constructively [6] . 

any cross-modal KD methods have been proposed to leverage the 

ynchronization of visual and audio information in the video data. 

 joint embedding can be learned by distilling the knowledge be- 

ween RGB/depth, face/voice, and CT/MRI images. However, to the 

est of the authors’ knowledge, there is no prior work relevant to 

isual-to-EEG cross-modal KD on CER. 

We, therefore, pose a question: Can the CER performance of 

he EEG modality be improved if we transfer the knowledge from 

he visual modality? Given a dataset containing synchronous fa- 

ial videos and EEG signals of different subjects, the facial video 

odality tends to have stronger relevance with respect to the 

xpert-labeled continuous trace. The reasons are two-fold. First, 

he experts conduct the labeling according to the subject’s facial 

xpression. Second, the EEG signal has a low information-to-noise 

atio, large bias can be existing among signals recorded at a differ- 

nt time or from different subjects. It inspires us to teach the EEG 

odality using the visual knowledge. 

In this work, we explore to what extent can the EEG modal- 

ty gain from the visual modality using the cross-modal knowl- 

dge distillation (CKD) for CER. A teacher model is firstly trained 

n the visual modality using the facial video. Its intermediate fea- 

ures, a.k.a. dark knowledge, are then used to supervise the stu- 

ent model training in an offline manner. Specifically, the teacher 

nd student models comprise a cascade spatiotemporal and a sin- 

le temporal network, respectively. The inputs to the teacher and 

tudent are facial video frames and the synchronous EEG average 

and power. The temporal embeddings from the trained teacher’s 

emporal component are taken as dark knowledge. During the 

raining of the student, its temporal embeddings are guided by 

he dark knowledge using L1 loss. Together with the concordance 

orrelation coefficient (CCC) loss, which punishes the inconsistency 

etween the prediction and label sequences by scaling the corre- 

ation coefficient with their mean square difference, the student is 

ble to learn from the visual and EEG modalities simultaneously. 

A formal definition of CCC is provided by Eq. (3) ). During the 

est of the student, it infers based on the EEG modality and the 

earned visual knowledge. Results from experiments manifest sta- 

istical significance ( p-value < 0.01 or 0.05 depending on the data 

artitioning scheme) on root mean square error (RMSE), Pearson 

orrelation coefficient (PCC), and CCC, comparing to its counterpart 

ithout KD. 

The remainder of the paper is structured as follows. Section 

 discusses the related works on CKD and CER. Section 3 elab- 

rates the pre-requisite knowledge regarding the brain, emotion, 

nd EEG. Section 4 details the proposed deep neural networks and 

he CKD. Section 5 elaborates the complete pipeline, i.e., the data 

reprocessing and model training. Section 6 reports and analyzes 

he experiment results. Section 7 concludes the paper. 

. Related works 

.1. Cross-modal knowledge distillation (CKD) 

CKD uses the teacher’s representation as a supervision signal 

o train the student to learn another task [6] . It is helpful espe-

ially when the data or labels for the target modalities are hard to 
2 
et. Based on the hypothesis that the emotional content of speech 

orrelates with the facial muscular movement and facial expres- 

ion of the speaker, Afouras et al. [7] transfer voice knowledge to 

rain lip reading-based visual speech recognition models, while Na- 

rani et al. [8] transfer the visual knowledge to learn voice feature- 

ased speech classification, both of which are without access to 

ny form of human-labeled ground truth. Hoffman et al. [9] utilize 

he RGB information to teach a depth network, and fuse the infor- 

ation across modalities. Gupta et al. [10] learn a student model 

n unlabeled depth images and optical flow by transferring the 

nowledge of a teacher model trained on well-annotated RGB im- 

ges. Zhao et al. [11] use radio data to guide human pose estima- 

ion on occluded images. Thoker and Gall [12] employ paired RGB 

ideos and skeleton sequences for CKD. The knowledge learned 

n RGB videos is transferred to the student model for skeleton- 

ased human action recognition. Garcia et al. [13] use additional 

epth images to generate a hallucination stream for RGB image 

odality and thereby improve the action recognition performance. 

ian et al. [14] employ a contrastive loss to transfer relation-based 

nowledge across modalities. Roheda et al. [15] use generative ad- 

ersarial networks (GAN) for distillation among the missing and 

vailable modalities. We see that most of the CKD methods are for 

arget detection and action recognition. It is rarely explored in the 

rea of CER. 

.2. CER Methods 

The term “continuous” possesses two characteristics in our con- 

ext. Spatially, it aims to place the emotional state as a continuous- 

alued point in the multi-dimensional space of the dimensional 

heory, instead of choosing categorical labels. Temporally, it contin- 

ously predicts the emotional state for a fixed time interval, con- 

tituting the emotional trace of the subject over a specified time 

pan. 

The CER has always been challenging due to the following 

auses. First, the emotion itself is highly subjective and subject- 

ependent. For example, the perception of emotion is influenced 

y individual experiences. Physically abused children are much 

uicker than other children to spot the signals of anger [16] . As 

 result, the data from the subjects and the ground truth from the 

nnotators are prone to personal bias. Multimodality and Trans- 

er learning among visual, audio, and physiological data are two 

romising techniques to alleviate this issue and develop reliable 

ER models. Second, by taking the facial muscular movement as 

ctions, the complex emotion cues over a large time span are a 

omposition of complex one-actions [17] . Typical one-actions can 

e defined by FACS [18] that codes the movements of individual 

acial muscles. However, as atomic as the FACS may be, human 

motion, no matter from which modality it is observed, usually 

xhibits large variations in terms of intensity and order in their 

uration, and takes longer to unfold. Models which can learn the 

ong-range temporal dependencies are in need to counter this is- 

ue. 

Soleymani et al. [19] propose a multimodal method for con- 

inuous valence prediction based on facial landmark sequence and 

EG signal. A long short-term memory (LSTM) network is used for 

eature learning. The features from the two modalities are fused 

sing feature-level and decision-level fusion schemes before feed- 

ng to the fully-connected layers. Somandepalli et al. [20] propose 

 linear dynamical system method with a late fusion method. It 

odels unimodal predictions as observations in a Kalman filter for- 

ulation. By leveraging the inter-correlations between arousal and 

alence, the predicted arousal is taken as an additional feature to 

mprove valence predictions. Han et al. [21] propose strength mod- 

ling with two models being concatenated in a hierarchical frame- 

ork. The strength information of the first model is joined with 
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Fig. 1. The illustration of the four brain lobes (left) and the placement of the 32 

EEG electrodes (right). Our brain consists of four lobes, i.e., the frontal (F), pari- 

etal (P), temporal (T), and occipital (O) lobes. By placing scalp electrodes on specific 

locations following the 10–20 system of electrode placement, the potential fluctu- 

ations of the underlying cerebral regions can be measured. The correspondences 

between the four lobes and 32 electrodes are indicated in color. 
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he original features. It expands the feature space of the input for 

he successive model. By characterizing the perceived emotion as 

ime-invariant responses to salient events, Wataraka Gamage et al. 

22] model arousal and valence variation as the output of a par- 

llel array of time-invariant filters, with each filter representing a 

alient event in the context. Chen et al. [23] combine a pretrained 

D-CNN and a TCN to learn deep spatiotemporal features from 

ideo frames and audio spectrograms, and use a spatiotemporal 

raph convolutional network to encode facial landmarks graph. Fi- 

ally, a bidirectional LSTM network is employed for unimodal and 

ultimodal predictions. Zhao et al. [24] employ adversarial domain 

daption to overcome the domain shift caused by cultural differ- 

nces. Typically, a person from an individualist culture tends to 

xpress higher arousal emotions than that from a collectivist cul- 

ure. Given the culture-specific training and testing data, the pro- 

osed method achieves the generalization by using several inter- 

ction strategies for adversarial training among the visual, audio, 

nd textual features. Deng et al. [25] address the issue of miss- 

ng labels in multi-task learning by using the output of a teacher 

odel as the soft labels. The latter and the ground truth are then 

sed to train a student model. 

We see that most CER methods are based on visual and au- 

io modalities. To the best of our knowledge, out of all the pub- 

icly available CER databases, there is only a subset [19] of the 

AHNOB-HCI database [26] where the facial video, EEG signal, 

nd continuous valence label are available. Readers interested in 

he comprehensive review on CER databases can refer to [27] . Our 

ork is based on this subset of the MAHNOB-HCI database. 

Soleymani et al. [19] and Chen et al. [23] are the most relevant 

ethods to ours. The differences are explained as follows. First, 

oncerning the motivation, our work intends to investigate the CKD 

n visual and EEG modalities, while the two papers are for mul- 

imodal feature fusion. In the case where the visual information 

s not available, our model can still work and infer based on the 

EG signal and the learned visual knowledge. Second, our visual 

odel comprises a cascade 2DCNN-TCN architecture. The produced 

patiotemporal features are directly fed to a linear layer to infer. 

hereas in [23] , the 2DCNN-TCN is first trained as a feature ex- 

ractor. An independent bidirectional LSTM network is then trained 

n top of the extracted features to infer. Third, our EEG model use 

CN to learn the temporal encoding of the EEG band power, while 

n [19] an LSTM network is used for the same purpose. 

. Physiological grounding 

The section aims to provide a decent physiological foundation 

f physiology and neuroscience related to emotion, with which the 

eader can have a better understanding of our methodology and 

xperimentation. 

Our brain consists of the left and right hemispheres, each of 

hich can be further divided into four lobes, as shown in Fig. 1 .

he frontal lobe lies behind the forehead. It involves speaking, 

uscle movements, judgment, and plan making. The parietal lobe 

ies at the top of the head toward the rear. It mainly processes the 

ensory input for touch and body position, and also integrates var- 

ous sensory information. The occipital lobe which is at the back of 

he head processes visual information. And, the temporal lobe ly- 

ng roughly above the ears processes auditory information from the 

pposite ear. About 25% of these four cortical areas either receive 

ensory input or direct muscular output, and the rest 75% , which 

re called association areas, are involved in higher mental func- 

ions (e.g., thinking, speaking, and learning) and make us human. 

hese complex functions are not located in precise brain areas, but 

he result from synchronized activities of many [28] . 

Emotion is one of such complex functions. Given our context 

here a subject is watching short film clips during the data ac- 
3 
uisition of a CER database, one possible pathway associated with 

motion can be as follows. The visual and audio stimuli first go 

hrough the occipital and temporal lobes, the sensory information 

s then delivered to the parietal lobe for integration. After which 

he integrated information is delivered to the front lobe. In there, 

 variety of judgments and regulations are made. And finally, the 

rontal lobe directs the subject’s facial muscular movement. The 

atter is then annotated by the expert, where a similar pathway 

ould repeat again in the latter’s brain. Two emotion theories are 

sed to model human emotion. The basic theory labels emotions 

iscretely as several categories. It holds that the basic emotions, 

.e., happiness, anger, fear, sadness, disgust, and surprise, are the 

oundation of human emotion. Other emotions such as satisfaction, 

atigue, and confusion are compounds of them. The dimensional 

heory models human emotion using a multi-dimensional space, 

ithin which each dimension is a perspective of emotion, such as 

alence, arousal, and dominance. 

The EEG signals, which are potential fluctuations produced by 

he central nervous system, provide promising information to de- 

ode the emotion process. By placing scalp electrodes on specific 

ocations following the 10–20 system of electrode placement, the 

otential fluctuations of the underlying cerebral regions can be 

easured, as shown in Fig. 1 . As a direct reflection of brain activ- 

ty, EEG can be divided into five frequency bands, each correspond- 

ng to different mental states. The δ wave ( 0 . 3 − 5 Hz) is associated

ith the unconscious mind. It appears when one is anesthetized 

r in a dreamless sleep. The θ wave ( 5 − 8 Hz) is associated with

he subconscious mind and memory load. It appears when one is 

leeping and dreaming, during which the working memory is being 

ncoded to form the long-term memory. The α wave ( 8 − 12 Hz) is 

ssociated with a relaxed yet aware mental state. It can be reduced 

r disappeared when one is under external visual or auditory stim- 

li. β wave ( 12 − 30 Hz) is associated with an active state of mind.

t can be observed when one is carrying out an intense focused 

ental activity, and is more obvious in the frontal lobe. Compared 

o the “fast idle” β1 wave ( 12 − 18 Hz), the β2 wave ( 18 − 30 Hz)

s associated with complex thought, integrating new experiences, 

igh anxiety, or excitement. The γ wave ( > 30 Hz) is associated 

ith high-level cognitive brain activities or attention-intensive ac- 

ivities such as the perception, transmission, processing, integra- 

ion, and feedback of information. It is also found in the process of 

ulti-modal sensory processing. (Note that the actual γ band we 

onsider in our work is within 30 − 45 Hz, as the higher band can- 

ot be effectively measured using current EEG technology due to 

uscle contamination. Also, slight differences regarding the band 

artitioning may appear in relevant works.) The work by Solemani 

t al. [19] investigates the effect of EEG features on estimating va- 

ence given facial expressions and eye movements. The ANOVA test 

hows that the EEG band power adds information which is inde- 

endent to the visual modality for valence prediction. It manifests 
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Fig. 2. The illustration of the visual model. The model takes T video frames sized 

at 40 × 40 × 3 as the input. The Resnet50 plays the role of backbone and yields the 

per-frame spatial features. The latter is then fed to TCN producing the spatiotempo- 

ral features. And finally, the regressor maps each feature point onto the 1-D space. 

ST: spatiotemporal. 
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Fig. 3. The illustration of the EEG model. The model takes raw EEG signal as the 

input, from which the EEG band power features are extracted. The latter is then fed 

to TCN producing the spatiotemporal features. And finally, the regressor maps each 

feature point onto the 1-D space. ST: spatiotemporal. 

Fig. 4. The illustration of the teacher-student interaction. ST feature denotes the 

spatiotemporal features. The training of the teacher and student models are colored 

in yellow and purple, respectively. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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he complementary nature between the visual and EEG modality, 

nd further inspires us to explore the idea of using visual to teach 

EG for CER. 

. Method 

Our method seeks to i) train a teacher model in the visual 

odality, and then 2) use the knowledge from the teacher and 

he labels to supervise the student model in the EEG modality. 

n this section, we will first detail the models for the visual and 

EG modalities, followed by explaining the interaction between the 

eacher and student. 

.1. Teacher: The visual model 

The goal of the visual model is to predict the emotional state 

iven the video frames as the inputs. Generally, there are two fun- 

amental frameworks of neural networks for visual-based emotion 

ecognition: (i) the cascade spatiotemporal architecture and (ii) the 

tandalone architecture. Type (i) usually contains a CNN to ex- 

ract spatial information, from which the temporal information is 

btained by using temporal models such as Time-delay, recurrent 

eural networks (RNN), long short-term memory networks (LSTM), 

r TCN. Type (ii) combines the two separated steps into one and 

xtracts the spatiotemporal feature using a unified model like the 

D-CNNs. 

We choose Type (i) due to the following facts. First, a 3D-CNN 

odel [29] usually has considerably more parameters than 2D- 

NNs due to the extra kernel dimension, and therefore requires 

ore data and longer time to train. However, 3D-based emotion 

ecognition databases [30] are typically based on posed behav- 

or with a few subjects, little diversity, and limited continuous la- 

els. By contrast, there are a large amount of 2D-based facial im- 

ge or emotion databases, such as MS-CELEB-1M [31] , VGGFace2 

32] , which are more diverse and determinant. Though there are 

bundant 3D video understanding databases that might be avail- 

ble for self-supervised or semi-supervised pretraining of a poten- 

ial 3D-CNN-based emotion recognition model, the techniques in- 

olved are still a hot research topic. Second, 3D-CNNs alone may 

ot be suitable to capture long-range temporal dependencies. As 

e mentioned before, CER requires to map a composition of com- 

lex one-actions with varied intensity and order to a sequence of 

ontinuous labels. However, most 3D-CNN-based networks are de- 

igned for at most 128 time steps [33] , whereas an exclusive tem- 

oral model can easily exceed this limit. 

Our visual model is illustrated in Fig. 2 . It consists of a pre-

rained Resnet50, a TCN, and a regressor (i.e., a fully connected 

ayer). Fed by T consecutive video frames, the Resnet50 produces T 

12-D spatial features. The latter is then fed to the TCN producing 

 128-D spatiotemporal features. Finally, the regressor maps the 

eatures onto the 1-D. 
4 
.2. Student: The EEG model 

The goal of the EEG model is to predict the emotional state 

iven the EEG signal as the input. It consists of a band power 

xtractor, a TCN, and a regressor. The EEG signal which is syn- 

hronous to the video frame sequence is firstly used for band 

ower calculation. Six bands, i.e., the δ, θ , α, β1 , β2 , γ we intro- 

uced in Section 3 , are chosen on top of the 32 channels, leading

o T 192-D EEG band power features. The latter are then fed to a 

CN and a regressor is used to infer. Our EEG model is illustrated 

n Fig. 3 . 

The average band power computes a single scalar that sum- 

arizes the contribution of a given frequency band to the overall 

ower of the signal. Given a windowed EEG discrete signal X(n ) 

ith N samples from one EEG electrode in the time domain, the 

ast Fourier transform (FFT) returns N complex number whose real 

nd imaginary parts represent the amplitude and phase of the sig- 

al in the frequency domain. The magnitude-squared of the FFT 

an be used to obtain an estimate of the power spectral density 

 X ( f ) = 

1 

N 

∣∣∣∣∣
N ∑ 

n =1 

X (n ) e −i 2 π f n �t �t 

∣∣∣∣∣
2 

(1) 

t f , based upon which the average band power in the frequency 

and [ f 1 , f 2 ] is defined as 

 [ f 1 , f 2 ] = 

∫ f 2 

f 1 

S X ( f ) df . (2) 

In our work, S X ( f ) is obtained using Welch’s method from the 

cipy library. 

.3. Visual-to-EEG KD 

The goal of the visual-to-EEG KD is to use the visual knowl- 

dge (i.e., the spatiotemporal visual features produced by the TCN 

f the visual model) alone with the labels to train an improved 

EG model. The interaction between the teacher and student is il- 

ustrated in Fig. 4 . 

Two stages are involved in the teacher-student interaction. In 

he first stage, the teacher model is trained by minimizing the CCC 

oss function between the frame sequences and the correspond- 

ng labels. In the second stage, the trained teacher model is used 

o extract the spatiotemporal features of the visual modality, and 
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1 https://mahnob- db.eu/hci- tagging/media/uploads/manual.pdf . 
2 https://mne.tools/stable/index.html . 
he student model is then trained using the EEG Signal, the corre- 

ponding labels, and visual spatiotemporal features. 

.4. Loss function 

Two types of loss functions are employed. The CCC loss is used 

or teacher training, and the weighted sum of CCC and L1 loss is 

sed for student training. 

CCC has been widely used to evaluate the performance of CER 

ethods. Given two time sequences, CCC evaluates the agreement 

n-between by scaling the correlation coefficient with their mean 

quare difference. As a result, a prediction that is well correlated 

ith the labels can still be penalized in proportion to the devia- 

ion, should the two have a shift in the mean. CCC is valued in

 −1 , +1] , a higher CCC indicates greater concordance. Given two 

equences U ∈ R 

T ×1 and V ∈ R 

T ×1 , their CCC is defined as 

c (U , V ) = 

2 σUV 

σ 2 
U 

+ σ 2 
V 

+ (μU − μV ) 
, (3) 

here σ 2 
U 

and σ 2 
V 

are the variances, σUV is the covariance of the 

wo sequences, and μU and μV are the means. The CCC loss is de- 

ned by converting CCC to the dissimilarity measure 1 − ρc (U , V ) 

or model training. 

Inspired by Romero et al. [34] which distills the knowledge by 

nforcing the proximity of intermediate feature maps using the L2 

oss, we further use the sparser L1 loss as the KD loss, in order 

o produce a more reasonable magnitude relevant to the CCC loss 

nd makes the training more controllable. Given two feature vec- 

ors U ∈ R 

T ×F and V ∈ R 

T ×F , the L1 loss is defined as 

 1 (U , V ) = 

1 

T F 

T ∑ 

i =1 

| u i − v i | (4) 

here u i ∈ R 

F and v i ∈ R 

F are the feature points in each time step.

The weighted sum of CCC and L1 loss for student training is 

efined as 

 (X , Y , V t , V s ) = 1 − ρc (X , Y ) + w · L 1 (V t , V s ) (5)

here X and Y denote the predictions and the labels, and V t and 

 s denote the spatiotemporal features of the teacher and student 

odel, respectively, with the constant w being the trade-off. The 

rid searching is employed to find the optimal w . 

. Implementation detail 

.1. Database 

MAHNOB-HCI is a multimodal database recorded in response 

o affective stimuli with the goal of emotion recognition and im- 

licit tagging research [26] . It provides the synchronized recording 

f facial videos, audio signals, eye gaze data, EEG signals, and other 

hysiological signals from 30 subjects. The subjects are asked to 

atch 20 emotional video clips, resulting in 440 trials. The video 

lips are between 35 and 117 s long. The EEG signals are acquired 

rom 32 electrodes on the 10 − 20 international system. The sam- 

ling frequency is 256 Hz. The facial videos are captured at 60 fps 

nd 780 × 580 resolution. For each trial, four integers ranging from 

 to 9 and self-reported by the subjects are used to label the va-

ence, arousal, dominance, and emotional keywords, respectively. 

A subset [19] of the original MAHNOB-HCI database is chosen 

o be continuously labeled. It contains 239 trials from 24 subjects 

ith obvious facial expressions. The trial number for each subject 

s not even. Five experts are employed for the annotation using 

EELTRACE and a joystick. Only the valence is continuously labeled. 

he reason is that the subjects are quiet and passively watching 

ideos, which makes the annotation of arousal, power, or expec- 

ation unavailable [19] . The continuous valence label is determined 
5 
y the average of the five experts’ labels. Our work is based on this 

ubset. 

.2. Data preprocessing 

.2.1. Facial video 

Given the facial video of a trial, it contains the facial expression 

f the subject during the stimuli watching and self-reporting. The 

atter is excluded by trimming the facial video according to the 

ime stamp information. The video is then changed to 64 fps for 

ore convenient synchronization with the continuous valence la- 

el which is at 4 fps, i.e., every 16 consecutive frames correspond 

o 1 valence label point. Finally, the video frames are resized to 

8 × 48 × 3 . 

.2.2. EEG Signal 

Given the EEG signal of a trial, the first and last 30s of the 

ecording which do not correspond to stimuli watching are ex- 

luded according to the database manual. 1 The signals from the 

2 electrodes are then re-referenced to the average reference to 

nhance the signal-to-noise ratio. The default API set_eeg_reference 

rom MNE toolkit 2 is used for the average reference. After which, 

he average band power on the six bands is calculated. The 

hysiological motivation for the six-band division is elaborate in 

ection 6.3 . The window size and hop size for band power cal- 

ulation are 2s and 0.25s, respectively. The resulted 6 × 32 = 192 - 

 band power features at the frequency of 4 Hz are therefore 

ynchronized with the continuous valence labels. Note that the 

EG preprocessing was carried out following the baseline method 

19] which employed only the average reference and band-pass fil- 

ering. We did not employ other techniques to deal with the ar- 

ifacts caused by motion and respiratory. Theoretically, the delta 

and ( 0 . 3 − 5 Hz) could contain such artifacts. The visualization us- 

ng saliency maps, as shown in Fig. 6 , manifests small active re- 

ions in the frontal lobe of several subjects, which are possibly 

aused by eye blinking or rolling. 

.3. Data partitioning 

Two data partitioning schemes are used: (i) trial-level random 

huffling (TRS, 10-fold) [19] and (ii) leave-one-subject-out (LOSO, 

4-fold). TRS focuses on the trial-level and overlooks from which 

ubject the trial comes. It first randomly shuffles the 239 trials, and 

hen splits the 239 trials into 129, 86, and 24 trials for training, 

alidation, and test, so that the test set contains 10% of the data 

nd the training and validation sets contain the 60% and 40% of 

he remaining data. LOSO focuses on the subject-level. For the i th 

old, trials from the i th subject are taken as the test set. All the

rials from the remaining 23 subjects are randomly shuffled, with 

0% and 20% being the training and validation sets, respectively. 

TRS may lead to data leakage. The random shuffling would split 

he data from the same subject to training, validation, and test 

ets. Compared to the data from different subjects, the data from 

he same subject has greater consistency. The model trained in this 

anner has actually seen the test data to some extent and would 

nflate the test performance. TRS is widely used in fields like com- 

uter vision and natural language processing, where the data usu- 

lly are vastly greater in diversity and therefore invulnerable to 

he overfitting problem. However, the negative influence becomes 

ontrivial for fields with limited training data. In AI-based emotion 

ecognition, both the TRS and LOSO are widely used. In our exper- 

ment, we choose to employ both schemes and objectively report 

he results. 

https://mahnob-db.eu/hci-tagging/media/uploads/manual.pdf
https://mne.tools/stable/index.html
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Fig. 5. The illustration of generating the peak response mapping for interpretability [42] investigation. Given the trained EEG model for the i th subject, (a) N T j × 32 × 6 

valence predictions for N trials are obtained. By selectively back-propagate the peaks, (b) N T j × 32 × 6 gradient vectors for the N trials are obtained. By averaging on the 

temporal dimension, (c) N 32 × 6 gradient vectors are obtained. After which, the average over the trial dimension is conducted producing (d) the 32 × 6 gradient vector 

of the i th subject. (e) The normalized version of the latter is finally used to plot (f) the heatmap on the six bands using the MNE toolkit. B.P.: backward propagation. A.: 

average. N.: normalization. The red arrow points to the peak value for the backpropagation. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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.4. Feature synchronization 

Recall that after the data preprocessing, we have facial frames, 

EG band power features, and continuous valence labels at the fre- 

uency of 64Hz, 4Hz, and 4Hz, respectively. In order to synchro- 

ize the facial frames with the other two features, downsampling 

s employed. A consecutive 16 frames are taken as one group, cor- 

esponding to one valence label point. During the teacher training, 

he n th frame for each group is loaded in sequential and fed to the

eacher model. The integer n is randomly chosen from 0 to 15 for 

ach epoch. For the inference, only the 0th frames of each group 

re loaded. 

The visual knowledge is generated by feeding the facial frames 

ithout downsampling to the trained teacher model. The gener- 

ted visual knowledge is at the frequency of 64Hz. During the stu- 

ent training, the same downsampling scheme used on the video 

rames is applied to the visual knowledge for the synchronization 

ith the EEG band power features and continuous valence labels. 

.5. Model training 

The teacher model is trained as follows. A Resnet50 is used as 

he visual backbone. It is pre-trained on the MS-CELEB-1M dataset 3 

31] as a facial recognition task, it is then fine-tuned on the FER+ 

35] dataset as a facial expression recognition task. 

The training settings of our teacher model are summarized 

n Table 1 . To fine-tune the teacher model on the MAHNOB-HCI 

ataset, two groups (i.e., the output layer and the whole layer4, 

ccording to the Pytorch official implementation) of the Resnet50 

ackbone are selected. The backbone is initially frozen. When the 

inimum learning rate is reached, unfreeze one group (starting 

rom the output layer) and reset the scheduler. At the end of each 

poch, the best model parameters are loaded. The training would 

top if i) there is no remaining backbone layer group, ii) the early 

topping counter reaches 20, or iii) the epoch reaches 30. 

The training of our student model is much the same as the 

eacher training except the following. First, since no images are 

nvolved, data augmentation and normalization are not employed. 
3 https://github.com/TreB1eN/InsightFace _ Pytorch#2-pretrained-models- 

erformance . 

w

1

X

6 
econd, the maximal epoch number and early stopping counter are 

oth set to 15 to prevent gradient explosion. Finally, since the stu- 

ent model does not contain a Resnet backbone, it is no need to 

eset the scheduler. 

. Experiment result 

The experiment is conducted in three stages. The first stage ex- 

mines that the standalone teacher and student models can pro- 

uce results no worse than the baseline method on the valence 

egression task. The second stage investigates to what extent can 

he EEG modality be improved by the visual modality under differ- 

nt w from Eq. (5) . The last stage explores the contributions of the 

and frequencies and brain regions towards the emotion process. 

The best model from Soleymani et al. [19] , i.e., a two layers 

STM network is adopted as the baseline for the valence regres- 

ion task. To make a fair comparison, the baseline model is imple- 

ented and incorporated into our pipeline. The results for the va- 

ence regression and CKD experiments are obtained in two steps. 

irst, the model outputs for all the trials of a partition are con- 

atenated along the temporal dimension. Recall that our resam- 

ling windows have 66 . 7% overlap. A direct concatenation is not 

elcomed as it would produce an over-lengthy prediction vector 

nd further inflates the metrics. Instead, the concatenation is done 

y placing each output segment according to their windowing in- 

exes. The obtained prediction vector is therefore temporally re- 

tored to the original form, which is N-to- N corresponded to the 

abels. The mean values are taken for the overlapped steps. Sec- 

nd, the RMSE, PCC, and CCC are calculated based on the concate- 

ated prediction vectors and the continuous labels. The results are 

veraged over the N-fold. Specifically, for the TRS and LOSO parti- 

ioning, we have 10 and 24 groups of evaluation results, and the 

nal results are the average across the groups, respectively. This 

valuation protocol has been widely used in many CER contests 

36–40] . In addition, to obtain the p-value for the CKD experi- 

ents, the one-tailed paired t -test is conducted. For example, for 

he 10-fold TRS partitioning, results of the i th fold from the student 

ith and without CKD are paired. The t -test is conducted using the 

0-pair results for the three metrics. 

The three metrics are RMSE, PCC, and CCC. Given the prediction 

 ∈ R 

T N ×1 and the continuous label Y ∈ R 

T N ×1 , where the constant 

https://github.com/TreB1eN/InsightFace_Pytorch#2-pretrained-models-performance
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Fig. 6. The topographic saliency maps for the 24 subjects. The gradients of the EEG band power over the 32 electrodes are calculated following the procedure shown in 

Fig. 5 . The warmer color means a higher gradient. A region having warmer color implies that it contributes more to the valence prediction. Therefore, the red regions tend to 

be more informative for the neural networks to infer the valence compared to the blue counterparts. Sub: subject. The subject numbering is determined by the MAHNOB-HCI 

database [26] . The missing subjects are not included in the subset [19] since they are not continuously labeled in valence. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

Table 1 

The training settings for the teacher model. The Adam optimizer and ReduceLROnPlateau are from the PyTorch library. 

Optimizer Scheduler 

Adam with the CCC loss ReduceLROnPlateau 

Learning rate 1 e − 5 Patience 5 

Weight decay 1 e − 4 Factor 0.5 

Others 

Maximum epoch 30 batch size 2 

Early stopping counter 20 Window length (s) 24, equal to 96 data points 

Minimum learning rate 1 e − 6 Hop length (s) 8, equal to 32 data points 

Random flip (0.5) + random crop (40) for training 

Only center crop (40) for validation 

Normalization of video frames: mean = std = 0.5 

T

R

ε

a

r

r

ρ

i

 N denotes the length sum of all the trials from a partition, the 

MSE is formulated as: 

(X , Y ) = ‖ 

X − Y 

T N 
‖ , (6) 

nd the PCC is formulated as: 

(X , Y ) = 

σXY 

σX σY 

. (7) 
s

7

The CCC is formulated by Eq. (3) , and by substituting r we can 

eformulate it as a factor of PCC: 

c (X , Y ) = 

2 r(X , Y ) σX σY 

σ 2 
X 

+ σ 2 
Y 

+ (μX − μY ) 
. (8) 

It is worth noting that the strictness of the three metrics is var- 

ed. RMSE takes only the overall mean difference into account. A 

traight vector, once placed soundly, can have a very low RMSE to- 
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Table 2 

The result of our visual model against the baseline using the TRS and LOSO data partitioning. The mean and standard deviation are reported. TRS: 

trial-wise random shuffling. LOSO: leave-one-subject-out. ↑ : the higher the better. ↓ : the lower the better. Bold fonts indicate the best results. 

Visual modality Ours with TRS Soleymani et al. with TRS Ours with LOSO Soleymani et al. with LOSO 

Validation Test Validation Test Validation Test Validation Test 

RMSE ↓ 0.054 ±0.006 0.054 ±0.006 0.060 ±0.006 0.058 ±0.009 0.053 ±0.005 0.049 ±0.015 0.060 ±0.007 0.055 ±0.020 

PCC ↑ 0.697 ±0.054 0.686 ±0.079 0.623 ±0.079 0.611 ±0.150 0.699 ±0.068 0.684 ±0.203 0.611 ±0.105 0.602 ±0.264 

CCC ↑ 0.690 ±0.057 0.674 ±0.085 0.606 ±0.086 0.589 ±0.163 0.695 ±0.068 0.602 ±0.228 0.596 ±0.107 0.533 ±0.251 

Table 3 

The result of our EEG model against the baseline using the TRS and LOSO data partitioning. The mean and standard deviation are reported. TRS: 

trial-wise random shuffling. LOSO: leave-one-subject-out. ↑ : the higher the better. ↓ : the lower the better. Bold fonts indicate the best results. 

EEG modality Ours with TRS Soleymani et al. with TRS Ours with LOSO Soleymani et al. with LOSO 

Validation Test Validation Test Validation Test Validation Test 

RMSE ↓ 0.067 ±0.005 0.066 ±0.009 0.083 ±0.006 0.080 ±0.012 0.068 ±0.007 0.066 ±0.025 0.087 ±0.020 0.081 ±0.034 

PCC ↑ 0.463 ±0.103 0.435 ±0.205 0.347 ±0.091 0.353 ±0.228 0.467 ±0.116 0.474 ±0.267 0.360 ±0.147 0.427 ±0.267 

CCC ↑ 0.444 ±0.109 0.415 ±0.201 0.331 ±0.092 0.333 ±0.214 0.445 ±0.118 0.377 ±0.250 0.348 ±0.129 0.306 ±0.257 
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ards a twisting vector. PCC and CCC evaluate the linearity and 

greement. Intuitively, PCC looks into the “shape” of the two given 

ectors, and discards the “distance” in-between. And both the 

hape and distance are evaluated by CCC since it contains an extra 

erm of mean difference in the denominator. Therefore, CCC can 

e taken as the most strict metric out of the three. Also note that 

uring the training, the sequence length for CCC computing is de- 

ermined by the resampling window length of a batch. And during 

he evaluation, it is determined by the length sum of all the trials 

n a partition. 

.1. Valence regression result 

The result of our visual model against the baseline using the 

RS and LOSO data partitioning are reported in Table 2 . For the 

RS partitioning, it can be observed that results from the test set 

re more consistent with those from the validation set. Only a 

light drop on PCC and CCC when it goes from validation to test 

n both of the two methods. As we mentioned before, the reasons 

re two-fold: i) the visual modality is highly determined, and ii) 

ata from one subject are already seen by the model during the 

raining stage. For the LOSO partitioning, the gap between the val- 

dation and test results is relatively larger. Up to 13 . 38% and 10 . 57%

rop on CCC can be observed from ours and the baseline, respec- 

ively. Overall, our method produces superior results to that from 

he baseline methods on RMSE, PCC, and CCC. 

The result of our EEG model against the baseline using the TRS 

nd LOSO data partitioning are reported in Table 3 . For the TRS 

artitioning, consistent results between the validation and test are 

lso observed for the two methods. For the LOSO partitioning, up 

o 15 . 28% and 12 . 07% drop on CCC are observed from ours and

he baseline, respectively, which is larger than their visual counter- 

art. In this modality, our EEG model also produces better results 

gainst the baseline in terms of RMSE, PCC, and CCC. 

.2. Knowledge distillation result 

Based on Eq. (5) , the grid search is employed for w ranging

rom 0.2 to 2.0, with a step of 0.2. All the other settings remain

he same. 

The results of the student with and without CKD using TRS and 

OSO partitioning are reported in Tables 4 and 5 , respectively. In 

he interval of 0 . 2 ≤ w ≤ 1 . 0 , the best validation results are found

hen w = 1 . 0 and w = 0 . 4 for TRS and LOSO, respectively. They

lso lead to the best test results with statistical significance ( p- 

alue ≤ 0 . 01 and p-value < 0 . 05 on the three metrics for TRS and
8

OSO partitioning, respectively). When 1 . 0 < w ≤ 2 . 0 , though bet-

er validation results are yield for LOSO, the corresponding test re- 

ults are without statistical significance. 

Comparing the results from TRS partitioning against LOSO par- 

itioning, we can see that the former tends to have more stars (i.e., 

maller p-values) and more consistent metrics between the valida- 

ion and test set. LOSO is prone to over-fitting when w > 1 . 0 . We

an therefore infer that the CKD using TRS partitioning is more ef- 

ective. Indeed, it can be explained that both the teacher and stu- 

ent have seen examples similar to the test examples, and there- 

ore produce joint embeddings that are of greater representability 

uring the testing. 

.3. Interpretation 

In our work, we are also particularly interested in revealing the 

ontribution of each brain lobe and the band of EEG towards the 

motion process. To this end, we visualize the skull saliency map 

or each band and subject, based on the trained student model and 

he peak response mapping [41] (PRM). The PRM is based on an 

bservation that the backward propagation of the peak logit usu- 

lly leads to informative regions of an image corresponding to the 

lass. 

Given the EEG band power calculated in the 6 bands ( 0 . 3 − 5 Hz,

 − 8 Hz, 8 − 12 Hz, 12 − 18 Hz, 18 − 30 Hz and 30 − 45 Hz) from 32

lectrodes (note that the β band is split to two sub-bands β1 and 

2 ), the PRM is adopted as follows, with Fig. 5 illustrating the 

ipeline. The EEG band power from the LOSO partitioning is fed 

o the trained student model that is corresponding to the i th sub- 

ect. For each trial of the test set from the i th subject, the peak

calar from the prediction is used to carry out the backward prop- 

gation, producing T j 32 × 6 gradient vectors, where T j denotes the 

ime steps of the jth trial. The temporally averaged gradient vec- 

or ( N × 32 × 6 where N denotes the trial number) of this trial to- 

ether with those from other trials are averaged again to obtain 

he gradient vector ( 32 × 6 ) for the i th subject. Normalization of 

he gradient vectors over the 6 bands is employed, so that the 

nter-band information is preserved. Note that a per-band normal- 

zation rescaling each band independently is inappropriate, since 

he visualization would all look similar in terms of color inten- 

ity. After which, for the k th out of the 6 bands, 32 scalars cor-

esponding to the 32 electrodes of the 10–20 system are used to 

enerate the 6 skull saliency maps for the i th subject. The same 

rocess is conducted on all the 24 subjects obtaining 24 × 6 to- 

ographic saliency maps. Finally, the results from all the subjects 

re averaged and visualized as well. Theoretically, we expect that 



S. Zhang, C. Tang and C. Guan Pattern Recognition 130 (2022) 108833 

Table 4 

The result of our EEG model taught by visual knowledge against the standalone counterpart using the TRS partitioning. The mean, 

standard deviation, and p-value are reported. The p-value is obtained using the one-tailed paired t -test over the 10-fold TRS parti- 

tioning. TRS: trial-wise random shuffling. ↑ : the higher the better. ↓ : the lower the better. 
 : 0 . 01 < p-value ≤ 0 . 05 . 

 : 0 . 001 < p- 

value ≤ 0 . 01 . 
 
 
 : p-value ≤ 0 . 001 . Bold fonts indicate the best results. 

TRS Without KD w = 0 . 2 w = 0 . 4 

mean ±std mean ±std p-value mean ±std p-value 

Validation RMSE ↓ 0.067 ±0.005 0.066 ±0.005 0.001 (
 
 
 ) 0.066 ±0.005 0.004 (

 ) 

PCC ↑ 0.463 ±0.103 0.469 ±0.103 0.019 (
 ) 0.469 ±0.105 0.003 (

 ) 

CCC ↑ 0.444 ±0.109 0.450 ±0.110 0.014 (
 ) 0.449 ±0.111 0.030 (
 ) 

Test RMSE ↓ 0.066 ±0.009 0.066 ±0.010 0.013 (
 ) 0.065 ±0.010 0.010 (

 ) 

PCC ↑ 0.435 ±0.205 0.442 ±0.205 0.013 (
 ) 0.442 ±0.204 0.011 (
 ) 

CCC ↑ 0.415 ±0.201 0.422 ±0.202 0.022 (
 ) 0.422 ±0.201 0.015 (
 ) 

TRS w = 0 . 6 w = 0 . 8 w = 1 . 0 

mean ±std p-value mean ±std p-value mean ±std p-value 

Validation RMSE ↓ 0.065 ±0.005 0.004 (

 ) 0.065 ±0.005 0.001 (
 
 
 ) 0 . 065 ± 0 . 005 < 0 . 001 (
 
 
 ) 

PCC ↑ 0.473 ±0.107 0.001 (
 
 
 ) 0.477 ±0.108 0.001 (
 
 
 ) 0 . 478 ± 0 . 107 < 0 . 001 (
 
 
 ) 

CCC ↑ 0.453 ±0.114 0.011 (
 ) 0.457 ±0.115 0.005 (

 ) 0 . 458 ± 0 . 113 0 . 002 (

 ) 

Test RMSE ↓ 0.065 ±0.010 0.002 (

 ) 0.065 ±0.010 0.003 (

 ) 0 . 065 ± 0 . 009 < 0 . 001 (
 
 
 ) 

PCC ↑ 0.450 ±0.202 0.001 (
 
 
 ) 0.457 ±0.204 0.008 (

 ) 0 . 454 ± 0 . 207 0 . 010 (

 ) 

CCC ↑ 0.428 ±0.199 0.002 (

 ) 0.436 ±0.202 0.011 (
 ) 0 . 433 ± 0 . 205 0 . 010 (

 ) 

TRS w = 1 . 2 w = 1 . 4 w = 1 . 6 

mean ±std p-value mean ±std p-value mean ±std p-value 

Validation RMSE ↓ 0.065 ±0.005 < 0.001 (
 
 
 ) 0.064 ±0.005 < 0.001 (
 
 
 ) 0.064 ±0.005 < 0.001 (
 
 
 ) 

PCC ↑ 0.479 ±0.108 < 0.001 (
 
 
 ) 0.480 ±0.109 0.002 (

 ) 0.481 ±0.108 < 0.001 (
 
 
 ) 

CCC ↑ 0.459 ±0.114 0.004 (

 ) 0.461 ±0.116 0.009 (

 ) 0.461 ±0.115 0.006 (

 ) 

Test RMSE ↓ 0.064 ±0.009 < 0.001 (
 
 
 ) 0.064 ±0.009 < 0.001 (
 
 
 ) 0.064 ±0.009 < 0.001 (
 
 
 ) 

PCC ↑ 0.456 ±0.206 0.001 (
 
 
 ) 0.459 ±0.205 0.004 (

 ) 0.460 ±0.205 0.002 (

 ) 

CCC ↑ 0.436 ±0.204 0.005 (

 ) 0.437 ±0.204 0.007 (

 ) 0.438 ±0.204 0.006 (

 ) 

TRS w = 1 . 8 w = 2 . 0 

mean ±std p-value mean ±std p-value 

Validation RMSE ↓ 0.064 ±0.005 0.003 (

 ) 0.064 ±0.005 0.005 (

 ) 

PCC ↑ 0.476 ±0.103 0.084 0.475 ±0.105 0.140 

CCC ↑ 0.453 ±0.108 0.317 0.452 ±0.110 0.415 

Test RMSE ↓ 0.064 ±0.009 0.028 (
 ) 0.064 ±0.009 0.024 (
 ) 

PCC ↑ 0.450 ±0.207 0.252 0.450 ±0.207 0.249 

CCC ↑ 0.427 ±0.206 0.369 0.427 ±0.206 0.377 

Table 5 

The result of our EEG model taught by visual knowledge against the standalone counterpart using the LOSO partitioning. The mean, 

standard deviation, and p-value are reported. The p-value is obtained by using the one-tailed paired t -test over the 24-fold LOSO 

partitioning. LOSO: leave-one-subject-out. ↑ : the higher the better. ↓ : the lower the better. 
 : 0 . 01 < p-value ≤ 0 . 05 . 

 : 0 . 001 < p- 

value ≤ 0 . 01 . 
 
 
 : p-value ≤ 0 . 001 . Bold fonts indicate the best results. 

LOSO Without KD w = 0 . 2 w = 0 . 4 

mean ±std mean ±std p-value mean ±std p-value 

Validation RMSE ↓ 0.068 ±0.007 0.067 ±0.006 0.096 0.067 ±0.006 0.002 (

 ) 

PCC ↑ 0.467 ±0.116 0.475 ±0.110 0.225 0.480 ±0.111 0.039 (
 ) 

CCC ↑ 0.445 ±0.118 0.451 ±0.115 0.259 0.454 ±0.115 0.050 (
 ) 

Test RMSE ↓ 0.066 ±0.025 0.065 ±0.025 0.059 0 . 063 ± 0 . 025 0 . 001 (
 
 
 ) 

PCC ↑ 0.474 ±0.267 0.480 ±0.269 0.034 (
 ) 0 . 482 ± 0 . 269 0 . 014 (
 ) 

CCC ↑ 0.377 ±0.250 0.382 ±0.250 0.319 0 . 387 ± 0 . 253 0 . 033 (
 ) 

LOSO w = 0 . 6 w = 0 . 8 w = 1 . 0 

mean ±std p-value mean ±std p-value mean ±std p-value 

Validation RMSE ↓ 0.067 ±0.006 0.004 (

 ) 0.067 ±0.006 0.004 (

 ) 0.066 ±0.006 0.004 (

 ) 

PCC ↑ 0.477 ±0.111 0.107 0.477 ±0.111 0.107 (
 ) 0.479 ±0.112 0.067 

CCC ↑ 0.452 ±0.115 0.149 0.452 ±0.115 0.149 0.454 ±0.115 0.084 

Test RMSE ↓ 0.064 ±0.025 0.003 (

 ) 0.064 ±0.025 0.003 (

 ) 0.063 ±0.024 < 0 . 001 (
 
 
 ) 

PCC ↑ 0.482 ±0.268 0.022 (
 ) 0.482 ±0.268 0.022 (
 ) 0.481 ±0.270 0.030 (

 ) 

CCC ↑ 0.383 ±0.251 0.177 0.383 ±0.251 0.177 0.385 ±0.254 0.084 

LOSO w = 1 . 2 w = 1 . 4 w = 1 . 6 

mean ±std p-value mean ±std p-value mean ±std p-value 

Validation RMSE ↓ 0.066 ±0.006 < 0.001 (
 
 
 ) 0.066 ±0.006 < 0.001 (
 
 
 ) 0.066 ±0.006 < 0.001 (
 
 
 ) 

PCC ↑ 0.484 ±0.111 0.015 (
 ) 0.484 ±0.115 0.016 (
 ) 0.486 ±0.114 0.011 (
 ) 

CCC ↑ 0.458 ±0.116 0.012 (
 ) 0.458 ±0.118 0.015 (
 ) 0.459 ±0.118 0.012 (
 ) 

Test RMSE ↓ 0.064 ±0.024 0.003 (

 ) 0.064 ±0.024 0.001 (
 
 
 ) 0.063 ±0.024 < 0.001 (
 
 
 ) 

PCC ↑ 0.481 ±0.271 0.037 (
 ) 0.480 ±0.270 0.200 0.481 ±0.270 0.150 

CCC ↑ 0.381 ±0.253 0.324 0.378 ±0.250 0.798 0.380 ±0.251 0.504 

LOSO w = 1 . 8 w = 2 . 0 

mean ±std p-value mean ±std p-value 

Validation RMSE ↓ 0 . 065 ± 0 . 006 < 0 . 001 (
 
 
 ) 0.065 ±0.006 < 0.001 (
 
 
 ) 

PCC ↑ 0 . 487 ± 0 . 116 0 . 009 (

 ) 0.485 ±0.116 0.017 

CCC ↑ 0 . 460 ± 0 . 120 0 . 011 (
 ) 0.457 ±0.118 0.035 

Test RMSE ↓ 0.063 ±0.024 < 0.001 (
 
 
 ) 0.063 ±0.024 < 0.001 (
 
 
 ) 

PCC ↑ 0.481 ±0.270 0.140 0.479 ±0.271 0.220 

CCC ↑ 0.381 ±0.251 0.483 0.382 ±0.253 0.437 
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Fig. 7. The overall topographic saliency maps for all the 24 subjects. The warmer 

color means a higher gradient, and further implies more contribution to the valence 

prediction. 
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he saliency map of the β and γ bands should manifest a warmer 

olor compared to those from other bands. 

The per-subject topographic saliency maps over the six bands 

re illustrated in Fig. 6 . Note that by referencing the saliency maps 

o the brain division and 32-electrode placement shown in Fig. 1 , 

e can locate the active and less active brain regions for the state 

f high valence. We see that the last two columns, correspond- 

ng to the β2 and γ bands, are apparently warmer than the rest 

our columns. Specifically, in the β2 band, an active frontal lobes 

s observed on all subjects, while in the γ band, the occipital and 

arietal lobes take the place. We could explain that during the ex- 

eriment, subjects should be focused on watching the movie clips, 

ith their occipital and temporal lobes perceiving the visual and 

udio stimuli, the parietal lobe integrating the perceived, and the 

rontal lobe making the decision and directing the facial expres- 

ion. 

Moreover, active temporal lobes are observed over all the sub- 

ects and six bands. In the δ band ( 0 . 3 − 5 Hz), no lobe is compara-

ly active against the temporal lobe. In the θ band ( 5 − 8 Hz), mild

ctivation of the frontal lobe can be observed from Subject 1, 2, 3, 

0, 14, 16, 18, 20, 23, and 27. And so are the active parietal lobe

bserved from Subject 8, 10, 13, 14, 19, and 21. And the active oc- 

ipital lobes are observed from Subject 1, 5, 16, 19, 20, 21, 25, 27,

nd 30. In the α band ( 8 − 12 Hz), more active frontal lobes can

e observed from Subject 1, 5, 6, 7, 13, 19, 20, 21, 22, 29, and 30.

ighly active parietal lobes are observed for all the subjects ex- 

ept for Subject 2. And, Subject 2, 3, 4, and 24 have active occipital

obes. 

To summarize, we focus on the overall saliency map shown 

n Fig. 7 . In terms of brain lobes, all the four lobes can be ac-

ive on the six bands, which conforms to the fact that complex 

ental functions do not reside in any one place [16] , instead 

f locating complex functions in precise brain areas [43–45] . In 

erms of bands, the β2 and γ , with the frequency of 18 − 30 Hz

nd 30 − 45 Hz, contribute the most to the human emotion pro- 

ess compared to other bands. The observation complies with the 

nowledge we discussed before, that i) the β band corresponds to 

 focused state of mind, and is more obvious in the frontal lobe, 

nd ii) the γ band corresponds to the high-level cognition process 

uch as the perception, transmission, and integration of the visual 

nd audio stimuli from the occipital, temporal, and parietal lobes. 

. Conclusion 

The goal of CER is to continuously predict the emotional trace 

n the multi-dimensional space over a specified time span. How- 

ver, the recognition of emotion, if driven by data, suffers from 

he subject bias that exhibits in multiple stages of the emotion 

rocess. The issue is escalated for physiological signal, compared 

o the more objective and determinant cues from visual or audio 

odalities. Also, emotion cues over a large time span are a com- 

osition of complex one-actions, manifesting large variations on 

ntensity and order in their duration. A model that is capable of 

apturing long-range dependencies is crucial in this area. 
10 
To improve the CER performance of the EEG modality, we ex- 

lore the idea of teaching an EEG-based CER model using the 

isual knowledge from a visual-based CER model. The teacher 

odel features a cascade CNN-TCN architecture and is fed by video 

rames. A subset [19] of the MAHNOB-HCI database [26] that in- 

ludes facial videos, EEG signals, and continuous valence labels of 

4 subjects are employed for the experiment. Two data partition- 

ng schemes, i.e., the TRS and LOSO are employed. The experiment 

rst validates the performance of the standalone teacher and stu- 

ent models in visual and EEG modalities, and obtained promising 

esults compared to the baseline. After which, the spatiotemporal 

eature of the trained teacher is taken as the dark knowledge. The 

atter, together with the continuous label, is used to teach the stu- 

ent model. The experiment using the TRS and LOSO partitioning 

chemes both show an increase with statistical significance, i.e., p- 

alue < 0 . 01 for TSR and p-value < 0 . 05 for LOSO partitioning on

MSE, PCC, and CCC. 

Moreover, we also explore the interpretability of the student 

odel from the physiological perspective. Specifically, the contri- 

ution of different brain regions and EEG frequency bands towards 

he emotion process is visualized using the PRM [41] . The result 

hows that all four brain lobes play synergistic roles in the emo- 

ion process. Complex brain function does not reside in any one 

ocation. And, the β2 and γ bands, corresponding to the frequency 

and of 18 − 30 Hz and 30 − 45 Hz, contribute more to the emotion 

rocess compared to other bands. 

To the best of the authors’ knowledge, this is the first visual- 

o-EEG CKD method on CER. Compared to other audio-visual CER 

orks where a larger amount of data and continuous labels are 

vailable, our work involving EEG has only a subset of MAHNOB- 

CI with continuous labels on valence to employ. More data are in 

eed for more extensive experimentation and compelling results. 

nspired by mental chronometry, which is a subject that studies 

he reaction time in perceptual-motor tasks to infer the content, 

uration, and temporal sequencing of mental operations, the future 

ork may aim to model the pattern of visual and EEG cues, as well 

s their spatiotemporal connection in-between. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

cknowledgments 

This work was supported by the RIE2020 AME Programmatic 

und, Singapore (No. A20G8b0102). 

eferences 

[1] R. Jiang, A.T. Ho, I. Cheheb, N. Al-Maadeed, S. Al-Maadeed, A. Bouridane, Emo- 

tion recognition from scrambled facial images via many graph embedding, Pat- 
tern Recognit. 67 (2017) 245–251 . 

[2] M. Faraki, X. Yu, Y.-H. Tsai, Y. Suh, M. Chandraker, Cross-domain similar- 
ity learning for face recognition in unseen domains, in: Proceedings of the 

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, 

pp. 15292–15301 . 
[3] P. Ekman, E.L. Rosenberg, What the Face Reveals: Basic and Applied Studies of 

Spontaneous Expression using the Facial Action Coding System (FACS), Oxford 
University Press, USA, 1997 . 

[4] Y. Wang, S. Qiu, X. Ma, H. He, A prototype-based SPD matrix network for do-
main adaptation eeg emotion recognition, Pattern Recognit. 110 (2021) 107626 . 

[5] S.M. Alarcao, M.J. Fonseca, Emotions recognition using eeg signals: a survey, 
IEEE Trans. Affect. Comput. 10 (3) (2017) 374–393 . 

[6] L. Wang, K.-J. Yoon, Knowledge distillation and student-teacher learning for 

visual intelligence: a review and new outlooks, IEEE Trans. Pattern Anal. 
Mach.Intell. (01) (2021) 1 . 

[7] T. Afouras, J.S. Chung, A. Zisserman, ASR is all you need: cross-modal distil- 
lation for lip reading, in: ICASSP 2020-2020 IEEE International Conference on 

Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2020, pp. 2143–2147 . 

http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0001
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0002
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0003
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0004
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0005
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0006
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0007


S. Zhang, C. Tang and C. Guan Pattern Recognition 130 (2022) 108833 

 

[

[

[  

[  

[

[

[  

[

[

[  

 

[

[

[

[

[

[  

[  

 

[

[

 

[  

[

[

[

S

m
w

T
l

C

f
n

2
D
i
a

s

C
H

E
f

a

b
a

I
A

o
I

[8] A. Nagrani, S. Albanie, A. Zisserman, Seeing voices and hearing faces: cross–
modal biometric matching, in: Proceedings of the IEEE conference on Com- 

puter Vision and Pattern Recognition, 2018, pp. 8427–8436 . 
[9] J. Hoffman, S. Gupta, J. Leong, S. Guadarrama, T. Darrell, Cross-modal adapta- 

tion for RGB-D detection, in: 2016 IEEE International Conference on Robotics 
and Automation (ICRA), IEEE, 2016, pp. 5032–5039 . 

[10] S. Gupta, J. Hoffman, J. Malik, Cross modal distillation for supervision transfer, 
in: Proceedings of the IEEE conference on Computer Vision and Pattern Recog- 

nition, 2016, pp. 2827–2836 . 

[11] M. Zhao, T. Li, M. Abu Alsheikh, Y. Tian, H. Zhao, A. Torralba, D. Katabi,
Through-wall human pose estimation using radio signals, in: Proceedings 

of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, 
pp. 7356–7365 . 

[12] F.M. Thoker, J. Gall, Cross-modal knowledge distillation for action recognition, 
in: 2019 IEEE International Conference on Image Processing (ICIP), IEEE, 2019, 

pp. 6–10 . 

[13] N.C. Garcia, P. Morerio, V. Murino, Modality distillation with multiple stream 

networks for action recognition, in: Proceedings of the European Conference 

on Computer Vision (ECCV), 2018, pp. 103–118 . 
[14] Y. Tian, D. Krishnan, P. Isola, Contrastive representation distillation, in: Inter- 

national Conference on Learning Representations, 2020 . 
[15] S. Roheda, B.S. Riggan, H. Krim, L. Dai, Cross-modality distillation: a case 

for conditional generative adversarial networks, in: 2018 IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2018, 
pp. 2926–2930 . 

[16] D.G. Myers, Psychology, 2004. 
[17] N. Hussein, E. Gavves, A.W. Smeulders, Timeception for complex action recog- 

nition, in: Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition, 2019, pp. 254–263 . 

[18] N. Sankaran, D.D. Mohan, N.N. Lakshminarayana, S. Setlur, V. Govindaraju, Do- 

main adaptive representation learning for facial action unit recognition, Pat- 
tern Recognit. 102 (2020) 107127 . 

[19] M. Soleymani, S. Asghari-Esfeden, Y. Fu, M. Pantic, Analysis of eeg signals and 
facial expressions for continuous emotion detection, IEEE Trans. Affect. Com- 

put. 7 (1) (2015) 17–28 . 
20] K. Somandepalli, R. Gupta, M. Nasir, B.M. Booth, S. Lee, S.S. Narayanan, On- 

line affect tracking with multimodal kalman filters, in: Proceedings of the 6th 

International Workshop on Audio/Visual Emotion Challenge, 2016, pp. 59–66 . 
[21] J. Han, Z. Zhang, N. Cummins, F. Ringeval, B. Schuller, Strength modelling 

for real-worldautomatic continuous affect recognition from audiovisual signals, 
Image Vis. Comput. 65 (2017) 76–86 . 

22] K. Wataraka Gamage, T. Dang, V. Sethu, J. Epps, E. Ambikairajah, Speech-based 
continuous emotion prediction by learning perception responses related to 

salient events: a study based on vocal affect bursts and cross-cultural affect 

in AVEC 2018, in: Proceedings of the 2018 on Audio/Visual Emotion Challenge 
and Workshop, 2018, pp. 47–55 . 

23] H. Chen, Y. Deng, S. Cheng, Y. Wang, D. Jiang, H. Sahli, Efficient spatial tem-
poral convolutional features for audiovisual continuous affect recognition, in: 

Proceedings of the 9th International on Audio/Visual Emotion Challenge and 
Workshop, 2019, pp. 19–26 . 

24] J. Zhao, R. Li, J. Liang, S. Chen, Q. Jin, Adversarial domain adaption for multi-
-cultural dimensional emotion recognition in dyadic interactions, in: Proceed- 

ings of the 9th International on Audio/Visual Emotion Challenge and Work- 

shop, 2019, pp. 37–45 . 
25] D. Deng, Z. Chen, B.E. Shi, Multitask emotion recognition with incomplete la- 

bels, in: 2020 15th IEEE International Conference on Automatic Face and Ges- 
ture Recognition (FG 2020), IEEE, 2020, pp. 592–599 . 

26] M. Soleymani, J. Lichtenauer, T. Pun, M. Pantic, A multimodal database for af- 
fect recognition and implicit tagging, IEEE Trans. Affect Comput. 3 (1) (2011) 

42–55 . 

27] M. Jaiswal, C.-P. Bara, Y. Luo, M. Burzo, R. Mihalcea, E.M. Provost, Muse: a mul-
timodal dataset of stressed emotion, in: Proceedings of The 12th Language Re- 

sources and Evaluation Conference, 2020, pp. 1499–1510 . 
28] N. Müller, R. Knight, The functional neuroanatomy of working memory: con- 

tributions of human brain lesion studies, Neuroscience 139 (1) (2006) 51–58 . 
29] G.R. Alexandre, J.M. Soares, G.A.P. Thé, Systematic review of 3D facial expres- 

sion recognition methods, Pattern Recognit. 100 (2020) 107108 . 

30] G. Fanelli, J. Gall, H. Romsdorfer, T. Weise, L. Van Gool, A 3-D audio-visual cor-
pus of affective communication, IEEE Trans. Multimedia 12 (6) (2010) 591–598 . 

[31] Y. Guo, L. Zhang, Y. Hu, X. He, J. Gao, MS-Celeb-1M: a dataset and benchmark
for large-scale face recognition, in: European Conference on Computer Vision, 

Springer, 2016, pp. 87–102 . 
11
32] Q. Cao, L. Shen, W. Xie, O.M. Parkhi, A. Zisserman, VGGFace2: A dataset 
for recognising faces across pose and age, in: 2018 13th IEEE international 

conference on Automatic Face & Gesture Recognition (FG 2018), IEEE, 2018, 
pp. 67–74 . 

33] X. Wang, R. Girshick, A. Gupta, K. He, Non-local neural networks, in: Proceed- 
ings of the IEEE conference on Computer Vision and Pattern Recognition, 2018, 

pp. 7794–7803 . 
34] A. Romero, N. Ballas, S. Ebrahimi Kahou, A. Chassang, C. Gatta, Y. Bengio, Fit- 

Nets: hints for thin deep nets, arXiv e-prints (2014) . arXiv–1412 

35] E. Barsoum, C. Zhang, C.C. Ferrer, Z. Zhang, Training deep networks for facial 
expression recognition with crowd-sourced label distribution, in: Proceedings 

of the 18th ACM International Conference on Multimodal Interaction, 2016, 
pp. 279–283 . 

36] M. Valstar, J. Gratch, B. Schuller, F. Ringeval, D. Lalanne, M. Torres Torres, 
S. Scherer, G. Stratou, R. Cowie, M. Pantic, AVEC 2016: depression, mood, and 

emotion recognition workshop and challenge, in: Proceedings of the 6th Inter- 

national on Audio/Visual Emotion Challenge and Workshop, 2016, pp. 3–10 . 
37] F. Ringeval, B. Schuller, M. Valstar, J. Gratch, R. Cowie, S. Scherer, S. Mozgai,

N. Cummins, M. Schmitt, M. Pantic, AVEC 2017: real-life depression, and affect 
recognition workshop and challenge, in: Proceedings of the 7th Annual Work- 

shop on Audio/Visual Emotion Challenge, 2017, pp. 3–9 . 
38] F. Ringeval, B. Schuller, M. Valstar, R. Cowie, H. Kaya, M. Schmitt, S. Amiripar-

ian, N. Cummins, D. Lalanne, A. Michaud, et al., AVEC 2018 workshop and chal-

lenge: Bipolar disorder and cross-cultural affect recognition, in: Proceedings of 
the 2018 on Audio/Visual Emotion Challenge and Workshop, 2018, pp. 3–13 . 

39] F. Ringeval, B. Schuller, M. Valstar, N. Cummins, R. Cowie, L. Tavabi, M. Schmitt, 
S. Alisamir, S. Amiriparian, E.-M. Messner, et al., AVEC 2019 workshop and 

challenge: state-of-mind, detecting depression with AI, and cross-cultural af- 
fect recognition, in: Proceedings of the 9th International on Audio/Visual Emo- 

tion Challenge and Workshop, 2019, pp. 3–12 . 

40] D. Kollias, A. Schulc, E. Hajiyev, S. Zafeiriou, Analysing affective behavior in the 
first ABAW 2020 competition, in: 2020 15th IEEE International Conference on 

Automatic Face and Gesture Recognition (FG 2020)(FG), 794–800. 
[41] Y. Zhou, Y. Zhu, Q. Ye, Q. Qiu, J. Jiao, Weakly supervised instance segmentation

using class peak response, in: Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, 2018, pp. 3791–3800 . 

42] X. Bai, X. Wang, X. Liu, Q. Liu, J. Song, N. Sebe, B. Kim, Explainable deep learn-

ing for efficient and robust pattern recognition: a survey of recent develop- 
ments, Pattern Recognit. 120 (2021) 108102 . 

43] D.M. Beck, The appeal of the brain in the popular press, Perspect. Psychol. Sci. 
5 (6) (2010) 762–766 . 

44] A.P. Shimamura, Bridging psychological and biological science: the good, bad, 
and ugly, Perspect. Psychol. Sci. 5 (6) (2010) 772–775 . 

45] W.R. Uttal, The New Phrenology: The Limits of Localizing Cognitive Processes 

in the Brain, The MIT press, 2001 . 

u Zhang received his bachelor degree from Xiamen University, China in 2013, and 

aster degree from Yunnan Normal University in 2018. He is currently working to- 
ards the PhD degree in the School of Computer Science and Engineering, Nanyang 

echnological University, Singapore. His current research interests include machine 
earning, deep learning and emotion recognition. 

huangao Tang received the BS degree in electronic and information engineering 

rom Northwest A&F University, Yangling, China, in 2013, and the MS degree in sig- 
al and information processing form Beijing Normal University, Beijing, China, in 

016. He is currently pursuing the PhD degree with the Key Laboratory of Child 
evelopment and Learning Science, Ministry of Education, in the School of Biolog- 

cal Science and Medical Engineering, Southeast University, Nanjing, China. He was 
 visiting student in Nanyang Technological University from 2020 to 2021. His re- 

earch interests include affective computing, pattern recognition, and deep learning. 

untai Guan received his PhD degree from Southeast University, China, in 1993. 
e is currently a President’s Chair Professor in the School of Computer Science and 

ngineering, Director of Artificial Intelligence Research Institute, Director of Centre 
or Brain-Computing Research, and Co-Director of S-Lab for Advanced Intelligence, 

t the Nanyang Technological University, Singapore. His research interests include 

rain-computer interfaces, machine learning, neural signal and image processing, 
nd artificial intelligence. He is a recipient of the Annual BCI Research Award, the 

ES Prestigious Engineering Achievement Award, the Achiever of the Year (Research) 
ward, and the Finalist of President Technology Award. He is an Associate Editor 

f the IEEE Transactions on Biomedical Engineering, IEEE Transactions on Artificial 
ntelligence, Brain-Computer Interfaces, etc. He is a Fellow of IEEE and AIMBE. 

http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0008
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0009
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0010
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0011
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0012
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0013
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0014
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0015
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0017
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0018
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0019
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0020
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0021
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0022
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0023
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0024
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0025
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0026
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0027
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0028
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0029
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0030
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0031
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0032
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0033
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0034
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0034
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0035
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0036
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0037
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0038
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0039
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0041
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0042
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0043
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0044
http://refhub.elsevier.com/S0031-3203(22)00314-4/sbref0045

	Visual-to-EEG cross-modal knowledge distillation for continuous emotion recognition
	1 Introduction
	2 Related works
	2.1 Cross-modal knowledge distillation (CKD)
	2.2 CER Methods

	3 Physiological grounding
	4 Method
	4.1 Teacher: The visual model
	4.2 Student: The EEG model
	4.3 Visual-to-EEG KD
	4.4 Loss function

	5 Implementation detail
	5.1 Database
	5.2 Data preprocessing
	5.2.1 Facial video
	5.2.2 EEG Signal

	5.3 Data partitioning
	5.4 Feature synchronization
	5.5 Model training

	6 Experiment result
	6.1 Valence regression result
	6.2 Knowledge distillation result
	6.3 Interpretation

	7 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	References


