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Abstract.

Objective: Motor imagery (MI) brain-computer interfaces (BCI) based on

electroencephalogram (EEG) have been developed primarily for stroke rehabilitation,

however, due to limited stroke data, current deep learning methods for cross-subject

classification rely on healthy data. This study aims to assess the feasibility of applying

MI-BCI models pre-trained using data from healthy individuals to detect MI in stroke

patients. Approach: We introduce a new transfer learning approach where features

from two-class MI data of healthy individuals are used to detect MI in stroke patients.

We compare the results of the proposed method with those obtained from analyses

within stroke data. Experiments were conducted using Deep ConvNet and state-

of-the-art subject-specific machine learning MI classifiers, evaluated on OpenBMI

two-class MI-EEG data from healthy subjects and two-class MI versus rest data

from stroke patients. Main Results: Results of our study indicate that through

domain adaptation of a model pre-trained using healthy subjects’ data, an average MI

detection accuracy of 71.15% (˘12.46%) can be achieved across 71 stroke patients.

We demonstrate that the accuracy of the pre-trained model increased by 18.15% after

transfer learning (p ă 0.001). Additionally, the proposed transfer learning method

outperforms the subject-specific results achieved by Deep ConvNet and FBCSP, with

significant enhancements of 7.64% (p ă 0.001) and 5.55% (p ă 0.001) in performance,

respectively. Notably, the healthy-to-stroke transfer learning approach achieved similar

performance to stroke-to-stroke transfer learning, with no significant difference (p ą

0.05). Explainable AI analyses using transfer models determined channel relevance

patterns that indicate contributions from the bilateral motor, frontal, and parietal

regions of the cortex towards MI detection in stroke patients. Significance: Transfer
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Transferring a DL Model from Healthy Subjects to Stroke Patients in a MI-BCI 2

learning from healthy to stroke can enhance the clinical use of BCI algorithms by

overcoming the challenge of insufficient clinical data for optimal training.

Keywords: MI-BCI for stroke rehabilitation, transfer learning, healthy-to-stroke trans-

fer, explainable AI.

1. Introduction

The diverse technological landscape of motor imagery (MI) based electroencephalogram

(EEG) brain-computer interfaces (BCI) has garnered significant attention from both

academic [1] and industry stakeholders [2]. The development and progress of EEG-

BCI systems necessitate a multidisciplinary approach, drawing on expertise from fields

such as neuroscience [3], psychology [4], computer science [5], biomedical [6] and

rehabilitative engineering [7], among others. The MI-BCI also holds the potential for

versatile applications across various user groups, including both healthy individuals [8]

and patient populations [9]. However, the predominant focus of MI-BCI has been in

the medical domain, notably stroke rehabilitation [10]. Though several clinical trials

have been performed using MI-BCI for upper limb stroke rehabilitation [11] [12], the

computational studies involving stroke data are limited.

MI-BCIs, which entail the mental imagination of hand movements, may involve

real-time feedback and can operate in either online or offline models. A traditional MI-

BCI protocol typically incorporates closed-loop training to enhance its effectiveness. In

this protocol, the user is instructed to mentally imagine specific limb movements, such as

moving their impaired or target hand or foot, based on auditory or visual cues presented

to them. EEG or other neural signals are recorded during these mental imagery tasks.

These neural signals are then decoded by BCI algorithms to identify patterns associated

with the imagined movements. Importantly, the system provides real-time feedback to

the user based on the decoded neural activity. This feedback allows the user to adjust

their mental imagery strategy. As the user refines their mental imagery and the BCI

system adapts to their unique neural patterns, a closed-loop training loop is established

[13]. Several research studies [14] [15] [16] [17] have demonstrated the effectiveness of

a comprehensive mutual learning approach in MI-BCI training, incorporating machine,

subject, and application levels. These insights were derived from participation in the

Cybathlon BCI race [18].

Conventional MI-BCI algorithms were developed using machine learning (ML)

techniques such as common spatial patterns (CSP) [19] and filter-bank CSP (FBCSP)

[20] for feature extraction. These features were then combined with classifiers like

linear discriminant analysis (LDA) [21] or random forest (RF) [22] to perform MI

classification. However, recent MI classifiers have shifted towards deep learning (DL),
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Transferring a DL Model from Healthy Subjects to Stroke Patients in a MI-BCI 3

which leverages a multi-layered neural network structure to enable nonlinear end-to-

end learning. In [23], Sakhavi et al. proposed one of the first DL methods for MI

classification using a convolutional neural network (CNN). Nonetheless, they first create

an envelope representation of the input EEG based on the FBCSP method, which is then

used as an input to the CNN. In contrast, other state-of-the-art (SOA) models, such

as Deep ConvNet [24] and EEGNet [25], utilize raw EEG to classify MI, thus removing

the need for feature engineering. The advent of deep neural networks (DNNs) in MI-

BCI has piqued the interest of BCI researchers, leading to several investigations into

their functioning [26][27]. These DL algorithms have demonstrated promising results

in classifying MI using EEG data, more so with subject-independent modeling [28][27],

where networks pre-trained using numerous multi-subject EEG trials are evaluated on

a new target subject.

MI-BCIs can be conducted using different methods of brain data collection

such as invasive methods involving direct placement of electrodes within the brain,

partially invasive methods such as electrocorticography (ECoG) [29], and non-invasive

methods such as EEG [7], magnetoencephalography (MEG) [30], functional magnetic

resonance imaging (fMRI) [31], and functional near-infrared spectroscopy (fNIRS)

[32][33][34]. Among the non-invasive methods, EEG is the most commonly utilized

for acquiring brain signals due to its high temporal resolution, user-friendliness, and

cost-effectiveness. Despite the convenience and cost-effectiveness of using non-invasive

scalp sensors to record MI-EEG data, prolonged experimentation can cause fatigue

and attention deficits in users [35], particularly in stroke patients. Consequently, most

EEG-BCI computational research involving subject-independent modeling has been

carried out on data from healthy participants [36][37][28]. The few studies involving

stroke data have focused primarily on subject-specific analyses using a small training

set [38][39][40]. Furthermore, these studies have predominantly utilized ML-based

classification methods.

Chowdhury et al. [39] developed an adaptive classifier that employs online covariate

shift detection to address subject-specific EEG nonstationarity. The authors utilized

CSP for spatial filtering and support vector machines (SVM) for classification. They

demonstrated performance improvement with adaptation by retraining the classifier.

The method was evaluated separately for a healthy group and a stroke group, each

consisting of only ten participants. Similarly, Irimia et al. [40] compared MI-BCI

control performance between healthy subjects and stroke patients using CSP for feature

extraction and LDA for classification. Their results were based on data collected from

experimental sessions ranging from 10 to 24 across five participants. Their research

findings indicated that individuals who had experienced a stroke demonstrated the

ability to operate an MI-BCI with an accuracy level comparable to that of healthy

participants. Furthermore, it was observed that stroke patients exhibited improvements

in their motor function through BCI control, irrespective of their performance level.

Some recent studies have used DL to explore stroke MI-EEG data. For example,

Cheng et al. [38] utilized a DNN to extract spatial and spectral patterns to uncover
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Transferring a DL Model from Healthy Subjects to Stroke Patients in a MI-BCI 4

plasticity mechanisms in the impaired cortices of stroke patients. Their results are based

on data collected from five stroke patients over two months, and are subject-specific.

Previous research has examined SOA MI classifiers based on DL, such as the Deep

ConvNet, for subject-independent classification using data from healthy individuals,

and has demonstrated promising outcomes [28][27]. However, Raza et al. recently

evaluated the efficacy of EEGNet for cross-subject classification using data from 10

hemiparetic stroke patients and found no significant difference between cross-subject

and within-subject classification [41]. Their results emphasize the need for adaptation

when working with stroke data, due to the high variability in this population caused by

the damage sustained in the motor areas. While there have been promising results for

MI-BCI control among stroke patients in existing literature [40][42], there is a dearth

of studies exploring generic models for the stroke group, except for a few that are

conducted using small databases. This is likely due to the scarcity of an adequate MI

database that contains a sufficient number of stroke patient trials to develop robust

subject-independent models.

Research on BCI for upper limb stroke rehabilitation has revealed that there is

motor activity in the contralesional hemisphere during stroke MI, similar to what is

seen in healthy individuals. Ang et al. [42] performed a clinical study to investigate

and compare the MI-related spatial patterns of hemiparetic stroke patients with that

of healthy subjects, using CSP. Their findings illustrated comparable patterns between

the two groups, which focused on bilateral hemispheres. Shu et al. conducted a study

involving 24 stroke patients and 10 healthy individuals, in which they proposed two

physiological variables - laterality index (LI) and cortical activation strength (CAS)

- based on event-related spectral perturbation (ERSP) to predict the performance of

MI-BCI in stroke patients [43]. The analysis of spectral power changes using ERSP

revealed cortical activations in the contralesional hemisphere during paretic hand MI.

In a recent publication [44], Mansour et al. proposed the use of contralesional BCI as

an effective approach for patients with high motor impairment. The similarity observed

in motor activity between stroke patients and healthy individuals, particularly in the

contralesional hemisphere of stroke patients, provides a basis for the potential transfer

of knowledge acquired from healthy individuals to improve the effectiveness of BCI for

upper limb rehabilitation purposes.

We attempt to address this through the following main contributions.

(i) Our novel proposal suggests utilizing transfer learning from healthy individuals to

stroke patients as a means to address the issue of limited availability of stroke data.

(ii) We propose an experimental approach to transfer a generic model, developed

using left-hand (LH)/right-hand (RH) MI data obtained from healthy subjects,

for detecting MI in stroke patients relative to their affected limb.

(iii) A novel channel swapping method is introduced to pre-train effective cross-subject

models tailored to the affected limb of the stroke patient.
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Transferring a DL Model from Healthy Subjects to Stroke Patients in a MI-BCI 5

(iv) For the same set of target stroke patients, we compare the transfer learning

performance of healthy-to-stroke (H-to-S) models with that of stroke-to-stroke (S-

to-S) models and with the subject-specific performance.

(v) We assess the efficacy of our proposed approach using Deep ConvNet [24], which

is a SOA MI-BCI model. In addition, we conduct subject-specific classification

using established ML models, specifically CSP+LDA, CSP+RF, FBCSP+LDA,

and FBCPS+RF. To obtain our experimental results, we used the two-class MI

data collected from 54 healthy subjects in the OpenBMI dataset [45], as well as the

MI versus rest data collected from 71 chronic stroke patients by Ang et al. in [11]

and [12].

(vi) We compare the spatial relevance patterns in stroke patient groups using

explainable artificial intelligence (XAI) analyses, performed with S-to-S and H-to-S

models. To conduct the relevance analyses, we used DeepLift, an XAI framework

presented by Shrikumar et al. in [46].

(vii) We compare the S-to-S and H-to-S models by analyzing their adaptation speed and

data requirements. Specifically, we measure the number of epochs and the amount

of adaptation data necessary to achieve optimal accuracy in each model.

The paper is organized as follows. Section 2 presents related work. In Section

3, we introduce our proposed method for transfer learning from healthy to stroke,

provide architectural details of the Deep ConvNet and SOA ML models, and details

of model training, optimization, and adaptation settings. Section 4 describes the two

datasets used, the conventional subject-specific and subject-independent stroke (S-to-S)

classification, the flow of our transfer learning experiments, and additional analyses. We

report and discuss the results in Sections 5 and 6, before concluding in Section 7.

2. Related Work

In recent years, there has been a growing number of studies that examine cross-subject

models in the field of MI-BCI. This is attributed to the superior predictive power of

cross-subject models based on DL, compared to subject-specific models. The former

have been trained on a large number of trials from multiple subjects, leading to their

ability to perform well on new subjects without the need for extensive calibration time.

Despite these benefits, most of the research in this area has been limited to healthy

subjects, with only a few studies using data from a limited number of stroke patients.

2.1. Transfer learning in healthy subjects

Several studies have explored the use of transfer learning in MI-BCI, with a focus on

healthy subjects. One approach involves a combination of ML models and data or

classifier alignment methods. For instance, Azab et al. [36] introduced a weighted

transfer learning method that utilizes previously recorded EEG data from multiple

subjects and a few trials from the target subject to train a classifier. They incorporated
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Transferring a DL Model from Healthy Subjects to Stroke Patients in a MI-BCI 6

regularization into the classifier objective function to ensure that the parameters learned

for a new subject closely resemble those of similar subjects. The effectiveness of their

approach was demonstrated by testing it on BCI competition datasets IV 2a and III

IVa, as well as a small dataset consisting of six stroke patients and sixteen healthy

individuals. The results showed that the approach was particularly effective for low-

performing subjects.

Zheng et al. investigated the transferability of CSP features learned from data

collected using traditional MI commands to new commands [47]. Although their

approach showed promising results, it was derived from data collected from only five

healthy subjects. Xu et al. [37] proposed a transfer learning approach based on

the Riemannian tangent space and the Riemannian alignment, which utilizes labelled

samples from both the source and the target subjects. Their approach was tested on a

dataset of 52 healthy subjects and a BCI competition dataset, achieving high accuracy,

particularly for targets with fewer or no labelled samples. Finally, another transfer

learning method for MI-BCI based on the Riemannian framework was introduced by He

et al. [48]. They proposed label alignment, which aligns the EEG covariance matrices of

the source and target subjects by aligning their label sets. By evaluating their method

using the BCI competition datasets IV 1 and 2a, they showed a significant improvement

compared to the Euclidean alignment approach.

Recently, researchers have investigated transfer learning approaches for MI-BCI

using DNNs and domain adaptation techniques. For instance, Wang et al. proposed an

unsupervised domain adaptation method that aligns Euclidean space data to improve

MI classification performance using CNNs [49]. However, they used CSP features instead

of end-to-end learning, thereby defeating the purpose of using DNNs.

In [50] Begie l lo et al. used CNNs to investigate the performance of cross-subject

classification with and without transfer learning. They fine-tuned the weights of a

model that was pre-trained on data from 105 subjects in the Physionet MI dataset, by

utilizing target data gathered from novice BCI users. Their results showed a significant

improvement after transfer learning.

Ju et al. [51] introduced a privacy-preserving DNN architecture for MI-EEG

classification based on the federated learning framework. Their algorithm extracts

common discriminative features from multi-subject EEG using a single-trial covariance

matrix, and applies domain adaptation techniques to optimize both classification and

domain loss. Their network consists of a manifold reduction layer, common embedded

space, tangent projection layer, and a federated layer. Their method outperformed

other SOA subspace, covariance, and DL methods when evaluated using the Physionet

two-class MI dataset [52].

In [28], Zhang et al. explored five different subject adaptive transfer learning

schemes using the Deep ConvNet MI-BCI model [24] and OpenBMI MI data [45], and

the results were compared with subject-independent and subject-specific baselines. In

each subject adaptive scheme, the authors performed the adaptation of a subset of model

parameters using different amounts of adaptation data of the target subject at different
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Transferring a DL Model from Healthy Subjects to Stroke Patients in a MI-BCI 7

learning rates. The performance of the subject-independent framework trained using

large amounts of multi-subject data was around 32% higher than that of the subject-

specific framework. Nevertheless, the authors performed further fine-tuning using target

subject’s data to address the problem of inter-subject EEG variability.

2.2. Transfer learning in stroke patients

The number of studies exploring transfer learning using stroke data is limited. Cao

et al. proposed a scheme to perform transfer calibration based on the performance

of existing methods [53]. They evaluated intra- and inter-subject transfer learning

calibrations using data from seven stroke patients and found that their scheme benefitted

low-precision sessions the most. In [54], Xu et al. studied transfer learning with a

combination of healthy and stroke data, collected from eleven healthy and five stroke

patients. They used EEGNet for transfer learning based on fine-tuning and achieved an

average accuracy of 66.36%. However, they did not investigate transfer learning between

the healthy and stroke groups.

This study undertakes a distinct initiative to explore transfer learning from

healthy subjects to stroke patients for the purpose of MI detection using DL models.

Additionally, we compare the performances of S-to-S transfer and H-to-S transfer

using two large-scale databases of MI trials from healthy subjects and stroke patients.

Furthermore, we introduce XAI analyses to identify spatial relevance patterns in stroke

patient groups using transfer-learned models.

3. Methodology

In this section, we outline our proposed strategy for transfer learning from healthy to

stroke. In addition, we present the Deep ConvNet MI classifier used for evaluating

our proposed method and the corresponding training parameters. We also introduce

the ML-based classifiers for MI, used for performing subject-specific MI detection using

stroke data.

3.1. Proposed Transfer Learning from Healthy to Stroke

Our approach for transfer learning from healthy to stroke involves pre-training models

with MI data from healthy individuals, which can subsequently be utilized to identify

MI versus rest state in stroke patients.

3.1.1. Model Pre-training using Data from Healthy Subjects: In order to pre-train the

”healthy” model, the data from healthy subjects must align with the corresponding

task from the target stroke dataset. The data is epoched and processed to achieve this,

after which, all the trials are aggregated to create the training set for implementing the

model. Additional information regarding this process is available in Section 4.
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Transferring a DL Model from Healthy Subjects to Stroke Patients in a MI-BCI 8

Channel Swapping. The dataset from healthy subjects contains MI trials

performed with both the left and right hands. To create effective pre-trained models for

stroke patients, it is crucial to leverage all available MI trials in the dataset. Since the

brain signal is nonstationary and is subject to variability [55], a large amount of data

is required to effectively train a robust pre-trained model for stroke patients. However,

it is important to ensure that the pre-trained models for stroke patients are tailored to

specific affected limbs. Prior research in the BCI literature has demonstrated that MI

tasks corresponding to a specific limb are typically associated with contralateral event-

related desynchronization (ERD) in the sensorimotor cortex [56] [57]. Therefore, before

incorporating trials from a different limb into the training set, spatial patterns must

be aligned with respect to the corresponding affected limb. This alignment is achieved

through channel swapping, a process in which data from channels in the left and right

hemispheres of all mismatched MI trials, along with their corresponding rest trials,

are interchanged. Subsequently, these swapped trials are combined with the remaining

matching trials to create the training set for developing the pre-trained model for stroke

patients. Figures 1(a) and 1(b) illustrate the specifics of the channel swapping procedure

schematically with respect to EEG data. By applying this channel swapping method,

two distinct pre-trained models can be created using all the trials from healthy subjects:

one model for patients with a left affected limb and another for patients with a right

affected limb.

3.1.2. Domain Adaptation based Transfer Learning: In this section, the concept of

transfer learning is briefly introduced through notations and definitions. Transfer

learning is an idea that was inspired by the natural ability of humans to transfer

knowledge to each other [58]. Transfer learning allows researchers to reuse pre-trained

models constructed with existing data to tackle prediction tasks with new data, resulting

in improved efficiency, generalizability and performance [59].

A MI-BCI domain, from a transfer learning perspective, is characterized using

Equation 1. A domain in MI-BCI is defined as a feature space that comprises attributes

extracted from MI-EEG signals of multiple subjects, denoted by X, along with its

corresponding marginal probability distribution represented by P(X), where X P X.

Two MI-BCI domains belonging to different subject groups are deemed distinct if

they have either dissimilar MI-EEG feature spaces (Xt ‰ Xs) or divergent marginal

probability distributions (P pXtq ‰ P pXsq).

D “ tX, P pXqu (1)

An MI-BCI task, such as MI classification or MI detection, is defined by Equation

2. A task T , which belongs to an MI-BCI domain D, includes a label space Y that

represents the various classes of the MI-BCI task and a predictive function fp.q that can

identify the class of an input MI-EEG signal, based on the knowledge obtained from the

training data.

T “ tY, fp.qu (2)
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Transferring a DL Model from Healthy Subjects to Stroke Patients in a MI-BCI 9

Figure 1: Pictorial representation of the proposed healthy-to-stroke (H-to-S) transfer

learning method. Subfigure (a) demonstrates model pre-training using data from healthy

subjects, based on the affected limb of the stroke patient. Subfigure (b) is an example

of channel swapping between F7 and F8. Subfigure (c) demonstrates model adaptation

and evaluation using data from the target patient.

Looking at it from a probabilistic standpoint, the predictive function fp.q, also

referred to as a ”Model”, can be defined as the probability of a specific MI class occurring

given an MI-EEG feature space, represented as P pY | Xq. Therefore, the MI-BCI task

T can be restated as Equation 3.

T “ tY, P pY | Xqu (3)

The fundamental goal of transfer learning in MI-BCI is to enhance the learning of

the conditional probability distribution P pYt | Xtq in the target MI-BCI domain Dt,

by using the knowledge obtained from the corresponding MI-BCI task Ts in the source

domain Ds.
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Transferring a DL Model from Healthy Subjects to Stroke Patients in a MI-BCI 10

Inter-subject variabilities in BCI can negatively impact model performance due

to disparities in feature spaces between the source and target domains. To mitigate

this issue, domain adaptation based transfer learning methods are commonly utilized

[51][28]. In this study, the differences in MI-related neurophysiological patterns between

the healthy and patient groups of subjects exacerbate the inter-subject disparities. To

address this, we applied domain adaptation, where the model pre-trained using healthy

subjects’ data was adapted using the target stroke patient’s training set to enhance

model performance. This involves knowledge transfer by sharing parameters from the

source domain model to learn the target domain model. The entire procedure for the

proposed H-to-S transfer learning is pictorially described in Figures 1(a), 1(b), and 1(c).

3.1.3. Model Evaluation using Data from Stroke Patients: During evaluation, one of

the two models, pre-trained using data from healthy subjects, is chosen depending on

the target patient’s affected limb. We then evaluate the performance of the selected pre-

trained model using the test set of the target patient. We further performed domain

adaptation based transfer learning of the pre-trained model using the training data of

the target stroke patient, and evaluated the adapted model. The resulting subject-wise

and mean accuracies were recorded for further analysis.

3.2. Model Architecture

In this section, the architectures of the different SOA classifiers used in the experiments

are discussed.

3.2.1. Architecture of State-of-the-art MI Classifiers: All experiments were conducted

employing the following SOA ML and DL-based MI classifiers. The CSP technique

[19], a widely adopted data-driven feature extraction approach, was utilized. CSP

aims to spatially enhance EEG data by extracting the most discriminative features

for classification. By calculating a spatial filtering matrix W using two-class data, CSP

projects the EEG data into a discriminative subspace where one class exhibits maximum

variance while minimizing variance from the other class. Four such spatial filters are

derived for filtering. Subsequently, log-variance based features are extracted from the

filtered data.

The FBCSP technique [20], a benchmark algorithm for EEG-BCI in MI

classification and based on CSP [19], operates within the realm of ML. FBCSP

effectively extracts features that are spectro-spatially relevant, and its efficacy has been

demonstrated across multiple MI-BCI studies [60][11][12]. This methodology entails

segmenting the initial EEG data into nine distinct narrow frequency bands, followed by

subjecting these bands to spatial filtration through the CSP algorithm. Consequently,

four notably distinctive CSP filters are derived from each band. The log-variance of the

CSP-filtered EEG data serves as the feature. From a pool of 36 features, derived from

the combination of 9 frequency bands with 4 features per band, the Mutual Information

Page 10 of 47AUTHOR SUBMITTED MANUSCRIPT - JNE-106539.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Transferring a DL Model from Healthy Subjects to Stroke Patients in a MI-BCI 11

Table 1: Deep ConvNet [24] Architecture and Training Parameters

Input: (22,1000), where 22 = No. of channels, 1000 = No. of time samples

Training parameters: Learning rate - 0.001, No. of epochs - 200

Block Layer No. of Filters Size Output Shape

1 Conv2D 25 (1,10) (25,22,991)

Conv2D 25 (22,1) (25,1,991)

BatchNorm2D

ELU

MaxPooling, Stride (1,3), (1,3) (25,1,330)

2

Dropout (p = 0.5)

Conv2D

BatchNorm2D

ELU

MaxPooling, Stride

50 (1,10)

(1,3), (1,3) (50,1,107)

3

Dropout (p = 0.5)

Conv2D

BatchNorm2D

ELU

MaxPooling, Stride

100 (1,10)

(1,3), (1,3) (100,1,32)

4

Dropout (p = 0.5)

Conv2D

BatchNorm2D

ELU

MaxPooling, Stride

200 (1,10)

(1,3), (1,3) (200,1,7)

5
Conv2D

LogSoftmax

2 (1,7)

(2,1)

based Best Individual Features with Parzen Window (MIBIFPW) algorithm [61] is

employed to select the most informative four features. Subsequently, a support vector

machine (SVM) classifier is trained utilizing the selected features to effectively categorize

individual trials into one of two classes. For this classification task, an epsilon-support

vector regression using a radial basis function kernel variant of SVM is adopted [62].

Due to the recent progress of deep learning [63], several neural network based EEG-

BCI classification models have been introduced and are reported to be performing better

than the machine learning counterparts [5]. In our study on MI-BCI, we showcase our

innovative transfer learning approach from healthy to stroke, utilizing the Deep ConvNet

- a top-performing CNN classifier for MI detection - developed by Schirrmeister et al.

in [24]. The study conducted by Kaishuo et al. in [28] using the OpenBMI dataset

indicated that the Deep ConvNet performed well in transfer learning among healthy

subjects. The architecture of the Deep ConvNet comprises a temporal convolution and

a spatial convolution, followed by max-pooling, three convolution-max-pooling blocks,

and a fully-connected softmax classification layer. The Deep ConvNet incorporates the

exponential linear unit (ELU) [64] as the activation function in every layer. We used
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Transferring a DL Model from Healthy Subjects to Stroke Patients in a MI-BCI 12

the Pytorch framework [65] to implement the Deep ConvNet model. Table 1 outlines

the architectural specifics of the Deep ConvNet tailored to the datasets employed within

this study. For subject-independent classification, only Deep ConvNet was employed, as

DL models have demonstrated higher predictive power when trained with large amounts

of data. This enables them to perform well on new subjects without requiring extensive

calibration time. Subject-specific analyses were carried out using ML models as well as

Deep ConvNet.

3.3. Training and Adaptation Parameters

The Deep ConvNet was trained using the Adam optimizer [66] and the negative log-

likelihood loss function to update the model weights. In addition, Batch Normalization

[67] and Dropout [68] were performed for each convolution-max-pooling block. The

training was conducted for 200 epochs, and the final model was selected for evaluation

and further analysis. The learning rate used during training was fixed at 0.001. These

parameters were kept consistent throughout all training and adaptation experiments.

4. Experiments

This section presents an overview of the OpenBMI two-class MI-EEG dataset and the

MI versus rest stroke dataset. We elaborate on the techniques employed for data

preparation and division in our experiments. In addition, we provide the specifics

of the conventional subject-specific and subject-independent classification within the

stroke group. Furthermore, we delve into the supplementary experiments and analyses

carried out to enhance our understanding of transfer learning from healthy to stroke.

The computations were carried out using multiple GPU and CPU resource clusters

provided by the School of Computer Science and Engineering at NTU and the National

Supercomputing Centre in Singapore.

4.1. Datasets and Data Preparation

In this section, we provide a detailed description of the datasets used in our transfer

learning experiments to obtain meaningful insights.

4.1.1. OpenBMI MI Dataset: The OpenBMI MI-EEG dataset, which is an open-source

dataset published by Lee et al. in [45], was chosen as our dataset of healthy subjects.

The OpenBMI dataset contains two-class MI data involving the left-hand and right-

hand grasping tasks. The MI-EEG dataset from OpenBMI, which is approximately

60 GB in size, contains recordings from 54 healthy individuals, aged between 24 and

35 years, collected using 62 Ag/AgCl electrodes at a sampling frequency of 1000 Hz.

Each subject provided EEG data from two sessions, with 200 MI trials per session, of

which 100 trials belonged to each class. The sessions were divided into an offline phase

(phase 1), for constructing the classifier, and an online test phase (phase 2) with visual
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Transferring a DL Model from Healthy Subjects to Stroke Patients in a MI-BCI 13

Figure 2: (a) The 62-channel EEG montage of the OpenBMI dataset, and (b) the 27-

channel EEG montage of the stroke datasets. The 22 common channels between the

two datasets are highlighted using red circles.

feedback. At the beginning of each trial, a fixation mark was displayed to prepare the

subject, followed by a visual cue (a left or right arrow) for 4 seconds, during which the

corresponding MI task was performed. The screen remained blank for approximately 6

seconds after each trial, during which the subject was allowed to rest. We used post-cue

MI data from 0 to 4 seconds and downsampled it to 250 Hz for our experiments.

The rest-state trials are typically not included while implementing MI-EEG

classifiers for healthy subjects. In the context of MI-BCI for healthy individuals, the

classification of two distinct MI tasks is more prevalent than MI versus rest classification.

Therefore, for the purpose of this study, we specially epoched rest-state segments from

every MI trial in the dataset. More details regarding this procedure are provided in

Section 4.1.4.

4.1.2. Stroke Dataset 1: The stroke dataset 1 was originally collected and documented

by specific authors of this study and was featured in the publication by Ang et al.

[12]. This dataset includes MI versus rest trials acquired from 37 stroke patients, aged

between 21 and 70 years, during their MI-BCI screening session for post-stroke motor

rehabilitation. The patients who were recruited had experienced their first subcortical

stroke at least nine months prior to recruitment, with a moderate to severe impairment

of upper extremity function as represented by a subscore of 11-45 on the Fugl-Meyer

Motor Assessment (FMMA) [69]. The data consists of 160 4s trials for each patient, with

80 trials belonging to each class. These trials were collected across 4 runs, with each
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Transferring a DL Model from Healthy Subjects to Stroke Patients in a MI-BCI 14

Table 2: Data Preparation Details

Dataset No. of subjects
MI Trials

per subject

Rest trials

per subject

Trials removed

per subject
Channels selected Total no. of trials

OpenBMI [45] 54
200 Left-hand

200 Right-hand
400 None 22 channels in common with stroke dataset = 54*800 = 43,200

Stroke Dataset 1 [12] 37 80 80 4* 22 channels in common with OpenBMI dataset = 37*156 = 5,772

Stroke Dataset 2 [11] 34 80 80 2* 22 channels in common with OpenBMI dataset = 34*158 = 5,372

*Trials were removed due to data quality issues.

run comprising 40 trials. The EEG data was collected using 27 channels at a sampling

frequency of 250 Hz and bandpass filtered by the acquisition hardware between 0.05-40

Hz. Out of the 37 stroke patients in this dataset, 20 of them experienced impairment

in their left hand and the remaining 17 experienced impairment of their right hand as

a result of the stroke.

4.1.3. Stroke Dataset 2: The stroke dataset 2, previously recorded by specific authors

of this research in a study conducted by Ang et al. [11], is similar to stroke dataset

1, and is also a part of the post-stroke BCI motor rehabilitation screening session.

The participants enrolled in this study, ranging in age from 21 to 80 years, had

experienced their initial clinical stroke, which was verified through neuroimaging, at

least four months prior to recruitment. These individuals had sustained moderate to

severe impairment of upper extremity function, as evaluated by an FMMA score ranging

from 10 to 50. The dataset consists of 160 MI of hand open-and-close versus rest trials

collected from each of the 34 stroke patients, over 2 runs of 80 trials each. The data

collection protocol is the same as that of stroke dataset 1. Among the 34 stroke patients,

20 of them experienced impairment in their left hand, while the remaining 14 experienced

impairment in their right hand as a result of the stroke.

4.1.4. Data Preparation and Division: Since the purpose of this study is transfer

learning from healthy to stroke, we used all the MI trials present in the OpenBMI

dataset to pre-train the models. In addition, we required resting-state trials. Therefore,

for each LH or RH MI trial in the dataset, we extracted the resting-state segment that

occurs at the end of the trial. We ensured that the epoched rest segment had the same

number of samples as the MI segment. Hence, for each subject in the dataset, after

epoching the rest trials, we obtained a total of 800 trials, comprising LH MI and the

corresponding rest trials and RH MI and the corresponding rest trials. The model was

pre-trained using 400 MI trials and 400 rest trials each from the 54 healthy subjects.

No validation data was used during training.

The combined stroke dataset, obtained by merging stroke datasets 1 and 2 from [11]

and [12], was approximately 60 GB in size and included MI versus rest trials from 71

stroke patients. We noticed issues with data quality in the last trial of every run, during

our preliminary analysis of both datasets. As a result, we excluded these trials, leaving

each subject in stroke dataset 1 with 156 trials and each subject in stroke dataset 2 with

158 trials.
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Transferring a DL Model from Healthy Subjects to Stroke Patients in a MI-BCI 15

Figure 3: Schematic Illustration of Data Division

For each target patient, we set aside 50% of the data, i.e. 78 trials for patients

from stroke dataset 1 and 79 for patients from stroke dataset 2, for training subject-

specific models and for adaptation purposes. The remaining trials were kept exclusively

for model evaluation. For training the subject-independent MI model for each target

patient in the combined stroke dataset, we used all the trials from the remaining 70

stroke patients. No validation data was used for training.

The Deep ConvNet performs classification using raw EEG data. However, in the

case of FBCSP, a prerequisite was the segmentation of EEG data into nine distinct

frequency bands. Previous studies have established that the relevant MI-associated

data within EEG primarily resides in spectrally confined ranges, specifically the mu

(8-12 Hz), low beta (12-20 Hz), and high beta (22-32 Hz) bands [70]. Consider an

individual raw EEG data trial, denoted as x P RCˆT , where C denotes the count of

EEG channels, T represents the time instances, and Nc represents the total number of

unique classes. Each view in an FBCSP corresponds to a focused narrow-band EEG

representation, achieved by employing spectral filtration on the initial EEG data x using

a filter bank F “ fi
Nb
i“1, comprising Nb temporal filters. This filtration procedure results

in the localization of time series data along the third dimension of x into the spectral

domain.

Therefore, we have the equation:

xFB “ F b x P RNbˆCˆT (4)

Here, the symbol b denotes the operation of bandpass filtering.

The filter bank F can comprise an arbitrary number of filters with different cutoff

frequencies. However, in line with [20], we applied a filter bank with Nb “ 9 filters. Each

filter had a bandwidth of 4Hz and non-overlapping frequency bands ranging from 4Hz to

40Hz (4-8, 8-12, ..., 36-40 Hz). The Chebyshev Type II filter was employed for filtering,

with a transition bandwidth of 2Hz and a stopband ripple of 30dB. This selection of the

filter bank was based on the conventional division of EEG into neurologically significant

spectral bands proposed in the FBCSP algorithm. It has been demonstrated to achieve

high classification accuracies across multiple studies [20][61].
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Transferring a DL Model from Healthy Subjects to Stroke Patients in a MI-BCI 16

Figure 4: Illustration of our experimental procedure involving the stroke-to-stroke

transfer learning and subject-specific classification. Two types of models were obtained

from our experiments: (i) subject-specific model using the training data from target

stroke patient, and, (ii) subject-independent stroke model using multi-subject training

data from remaining stroke patients. The subject-independent models were evaluated

with and without adaptation using data from the target patient.

Finally, to account for the differences in EEG channel layout between the OpenBMI

dataset and the stroke dataset, we identified the common channels between the two

datasets. Figure 2(a) illustrates the 62-channel EEG montage of the OpenBMI dataset,

and Figure 2(b) illustrates the 27-channel montage of the stroke dataset. We used data

from the 22 common channels between the two datasets, highlighted using red circles,

to conduct all our experiments and analyses.

As both OpenBMI and the stroke datasets were referenced to the nasion, no

additional preprocessing of the data was needed. The raw EEG data from both datasets

were used in all our experiments. It is important to note that the test set of the target

stroke patient remains consistent across all analyses to ensure a fair comparison. Table

2 and Figure 3 provide the specifics of the data preparation and division steps.

4.2. Classification within the Stroke Dataset

Here, we present two types of analyses conducted on the stroke dataset, which will be

used as benchmarks for comparison with our proposed H-to-S transfer learning method.

Figure 4 depicts the framework of these experiments, which comprises the training and

evaluation of conventional subject-specific and subject-independent stroke models.

4.2.1. Transfer Learning from Stroke to Stroke: The first baseline for comparison with

our proposed method is the S-to-S transfer performance. In this baseline approach, we

train subject-independent stroke models for MI versus rest classification using the leave-

one-subject-out cross-validation (LOSO-CV) method. We record subject-wise accuracies

and the average accuracy across all patients for comparison purposes. We further adapt
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Transferring a DL Model from Healthy Subjects to Stroke Patients in a MI-BCI 17

each subject-independent stroke model using the training data of the target stroke

patient, following a procedure similar to that used in the proposed H-to-S transfer

learning. The results were compiled for further analysis.

To train the ”S-to-S” model for each test/target patient, the training data includes

all trials from the remaining patients in the stroke dataset. However, since stroke

patients in our dataset have unilateral affected limbs, care should be taken while using

trials of a training subject whose affected limb is not the same as the target affected

limb. Thus, we interchange data from channels in the left and right hemispheres of all

MI and the corresponding rest trials of patients with a different affected limb compared

to the target. This is similar to the channel swapping procedure outlined in Section

3.1.1 for the proposed H-to-S transfer. Subsequently, we aggregated the trials of all

subjects to develop the MI versus rest S-to-S model that is most suitable for evaluation

using the test data of the target stroke subject.

4.2.2. Subject-specific Classification using Stroke Data: For comparison with our

proposed transfer learning from healthy to stroke, an important baseline is the subject-

specific model performance using stroke data. This also enables us to evaluate the

subject-specific performance of DL compared to that of SOA ML methods. To create

subject-specific models, we adopt the hold-out method, where a portion of the subject-

specific data is reserved for testing and the remaining trials are used to train the model.

We record subject-wise accuracies, as well as the average accuracy across all stroke

patients, to compare with our proposed method.

4.3. Investigation on the Impact of Channel Swapping

Several experiments were conducted to examine the effects of channel swapping during

S-to-S and H-to-S transfer. For this purpose, we created S-to-S and H-to-S transfer

models without channel swapping and evaluated their performances for comparison

with the proposed approach with channel swapping. Moreover, two different scenarios

of using training data from healthy subjects, without channel swapping, to develop pre-

trained models for H-to-S classification were also explored. Please note that we did not

perform adaptation in this analysis, as the primary aim was to assess the impact of

channel swapping on performance. Figure 5 is a visual depiction of H-to-S and S-to-S

transfer without channel swapping.

4.3.1. Healthy-to-Stroke Transfer Without Channel Swapping We evaluated H-to-S

transfer without channel swapping, under two different scenarios of usage of training

data from healthy subjects.

Using Two-class MI Data from Healthy Subjects to Train One Model: During model

pre-training using healthy subjects’ data for the classification using stroke data, we

proposed a technique in which we exchanged data from channels in the left and right
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Figure 5: Illustration of Healthy-to-Stroke (H-to-S) and Stroke-to-Stroke (S-to-S)

Transfer Without Channel Swapping.

hemisphere in MI trials that did not involve the target affected limb. This technique was

motivated by the fact that two-class MI tasks in individuals often exhibit contrasting

neural oscillatory patterns [56]. To demonstrate the necessity and significance of channel

swapping in our pre-training strategy, we conducted a second analysis where we repeated

the H-to-S classification experiments by using all trials without any channel swapping

during the pre-training phase. That is, 800 trials of each of the 54 subjects are combined

without any channel swapping to train a single MI versus rest classification model that is

evaluated on stroke data. We compared the results of this analysis with those obtained

from the proposed technique with channel swapping.

Using Unilateral MI Data from Healthy Subjects to Train Two Distinct Models: As

part of our second investigation on healthy to stroke transfer, we trained two distinct

models using data from healthy subjects. One model was trained on LH MI and the

corresponding rest trials, while the other model was trained on RH MI and associated

rest state trials. No channel swapping was required in this approach. During the

evaluation step, one of the two models, pre-trained using healthy subjects’ data, is

selected based on the target patient’s affected limb, similar to the proposed method.

The MI versus rest classification results obtained from this analysis are compared with
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those of our proposed method.

4.3.2. Stroke-to-Stroke Transfer Without Channel Swapping In our transfer learning

baseline study, using subject-independent stroke model, we swapped the data from

channels in the left and right hemispheres for those patients in the training set for whom

the affected limb did not correspond to the target affected limb. We also performed a

second analysis, where we repeated the LOSO-CV experiments using all trials from the

stroke training set without any channel swapping to train a MI versus rest classification

model. We compared the results of this analysis with those obtained from the proposed

baseline for S-to-S transfer with channel swapping.

We refrained from conducting an S-to-S transfer analysis that uses unilateral MI

data, due to an unequal number of patients with left versus right affected limbs.

Selecting trials from the stroke training set based on the affected limb would have been

impractical in our study and would have introduced bias in the subject-independent

models due to different sizes of training data.

4.4. XAI based Interpretation of Transfer Learning from Stroke to Stroke and Healthy

to Stroke

We conducted an XAI analysis using the DeepLift framework [46] to better understand

the neurophysiological basis of decision-making in the transfer learned models. This

analysis involved backpropagating the network’s output to identify the contributions of

EEG input from specific channels. The DeepLift method calculates relevance scores by

comparing the activation of each neuron to its reference activation and assigning scores

based on the resulting difference [46].

n
ÿ

i“1

C∆xi∆t “ ∆t (5)

This approach is mathematically expressed as equation 5, which also satisfies the

summation-to-delta property. Specifically, given a target output neuron t, a set of

intermediate neurons required to compute t denoted as xi, and the difference-from-

reference denoted as ∆t, DeepLift assigns relevance scores C∆xi∆t to ∆xi, representing

the amount of difference-from-reference in t that can be attributed to the difference-

from-reference of xi.

We used the test set of target stroke patients for the DeepLift analysis and computed

the DeepLift relevance scores using the Captum XAI library [71].

4.4.1. Procedure: To calculate the channel-wise relevance scores, the first step involves

creating a DeepLift criterion instance for the model. Then, individual trials are passed

through the ”attribute” function of the criterion to obtain class-based attributions.

The attribute function carries out backward propagation of the output score through all

layers of the model sequentially, and produces relevance scores for each neuron in the
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underlying layers. The output attributions have the same dimensions as the EEG input

trial (Nc, Nt), and are averaged across time samples to obtain a single score for each

channel in the input. These relevance scores are averaged class-wise across all trials and

further normalized between 0 and 1, for each subject.

The analysis was performed using subject-specific stroke models, as well as the S-

to-S and H-to-S models, with and without adaptation. Please note that the S-to-S and

H-to-S models utilized in this analysis are the actual baseline and proposed methods,

described in Sections 4.2.1 and 3.1, respectively. The analysis was performed at three

levels: the first level demonstrates average relevance patterns across all stroke patients,

regardless of their affected limb, while the second level illustrates differences between

the two groups of stroke patients associated with left and right affected limb, and the

third one highlights individual differences in relevance patterns for some representative

patients. To conduct the first two levels of analysis, the attribution scores were averaged

across all patients or respective patient groups.

4.5. Comparing S-to-S versus H-to-S Transfer Learning in terms of Adaptation Speed

and Adaptation Efficiency

To further compare the S-to-S and H-to-S transfer models, we conducted experiments to

evaluate their transfer learning performance under varying amounts of adaptation data

and training epochs. The model’s adaptation efficiency was determined by measuring its

performance with different amounts of adaptation data, while the speed of adaptation

was determined by evaluating the model’s performance for varying numbers of training

epochs. We conducted the adaptation experiments for both models, by incrementally

increasing the amount of adaptation data by 10%, while the number of epochs was fixed

at 200. Furthermore, during the initial adaptation of the model using 100% adaptation

data, detailed in Sections 3.1.3 and 4.2.1, we saved the model parameters at 20-epoch

intervals. This allowed us to evaluate the performance of models trained for epochs

ranging from 20-200, with an interval of 20.

5. Results

Our study utilized both Deep ConvNet and SOA ML classifiers for MI to obtain a range

of results. Specifically, we present the average accuracies of subject-specific models,

and S-to-S and H-to-S models, with and without adaptation. We also analyzed the

subject-wise classification accuracies for all three types of models. In order to evaluate

the statistical significance of improvements across all comparisons, a two-sided Wilcoxon

signed-rank test was employed with a confidence level of 0.05. We would like to reiterate

that in each analysis performed, every target stroke patient was evaluated using the

same test set. Furthermore, we report the results from additional analyses using S-to-S

and H-to-S models pre-trained without channel swapping. We provide visualizations of

channel-wise relevances across all stroke patients and patient groups. Finally, we report
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on the differences between the S-to-S and H-to-S models in terms of speed and efficiency

of adaptation.

Table 3: Accuracies (in %) of Subject-Specific Machine Learning and Deep Learning

Stroke Models.

Subject ID FBCSP + LDA FBCSP + RF CSP + LDA CSP + RF Deep ConvNet
1 56.41 58.97 56.41 52.56 50.00
2 42.31 44.87 51.28 53.85 43.59
3 93.59 92.31 93.59 93.59 87.18
4 50.00 44.87 46.15 51.28 52.56
5 67.95 71.79 64.10 56.41 62.82
6 82.05 73.08 47.44 47.44 79.49
7 67.95 66.67 65.38 65.38 65.38
8 78.21 73.08 66.67 61.54 93.59
9 64.10 69.23 71.79 64.10 60.26
10 60.26 70.51 57.69 58.97 74.36
11 91.03 85.90 62.82 66.67 58.97
12 66.67 50.00 43.59 47.44 48.72
13 55.13 50.00 53.85 51.28 48.72
14 57.69 60.26 46.15 50.00 50.00
15 93.59 91.03 75.64 67.95 83.33
16 61.54 58.97 52.56 48.72 61.54
17 50.00 42.31 43.59 46.15 55.13
18 57.69 71.79 53.85 55.13 58.97
19 58.97 69.23 57.69 43.59 70.51
20 57.69 58.97 50.00 56.41 75.64
21 61.54 65.38 57.69 51.28 50.00
22 79.49 46.15 52.56 65.38 60.26
23 58.97 53.85 55.13 48.72 69.23
24 50.00 70.51 56.41 51.28 75.64
25 78.21 79.49 60.26 60.26 70.51
26 64.10 64.10 60.26 56.41 61.54
27 89.74 93.59 61.54 62.82 85.90
28 50.00 60.26 46.15 44.87 55.13
29 57.69 65.38 41.03 35.90 62.82
30 92.31 96.15 70.51 67.95 78.21
31 71.79 66.67 79.49 75.64 75.64
32 64.10 66.67 52.56 53.85 66.67
33 55.13 55.13 42.31 44.87 56.41
34 69.23 55.13 47.44 47.44 43.59
35 64.10 65.38 47.44 55.13 55.13
36 42.31 38.46 48.72 52.56 52.56
37 58.97 73.08 61.54 58.97 71.79
38 67.95 62.82 44.87 38.46 50.00
39 69.62 72.15 48.10 46.84 67.09
40 55.13 55.13 58.97 61.54 57.69
41 50.63 43.04 51.90 46.84 50.63
42 67.09 69.62 59.49 54.43 58.23
43 56.41 65.38 57.69 64.10 71.79
44 69.62 74.68 55.70 55.70 72.15
45 55.70 58.23 59.49 59.49 50.63
46 69.23 82.05 73.08 65.38 66.67
47 40.51 51.90 58.23 48.10 63.29
48 64.10 57.69 57.69 57.69 67.95
49 73.42 78.48 70.89 63.29 74.68
50 82.05 82.05 56.41 56.41 61.54
51 55.70 55.70 50.63 54.43 64.56
52 71.79 69.23 50.00 47.44 62.82
53 59.49 58.23 50.63 49.37 62.03
54 58.23 53.16 49.37 51.90 60.76
55 65.38 65.38 51.28 58.97 67.95
56 74.36 71.79 50.00 60.26 67.95
57 60.26 58.97 56.41 51.28 62.82
58 48.72 46.15 55.13 51.28 50.00
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59 65.82 65.82 45.57 53.16 53.16
60 77.22 74.68 45.57 51.90 63.29
61 73.08 73.08 65.38 73.08 75.64
62 63.29 54.43 41.77 41.77 49.37
63 97.44 87.18 48.72 52.56 82.05
64 56.41 50.00 51.28 51.28 56.41
65 76.92 65.38 62.82 64.10 70.51
66 67.09 63.29 45.57 43.04 65.82
67 62.82 78.21 47.44 48.72 61.54
68 94.94 89.87 82.28 81.01 55.70
69 48.10 45.57 48.10 41.77 48.10
70 50.00 51.28 48.72 50.00 61.54
71 88.46 87.18 75.64 75.64 83.33

Mean 65.60±13.46 65.31±13.58 56.00±10.41** 55.54±10.01** 63.51±11.14

CSP = common spatial patterns, FBCSP = filter-bank CSP, LDA = linear discriminant analysis, and RF = random forest.
The subject-specific accuracies were obtained using the hold-out analysis. The ** (pă0.001) indicate that the average accuracies are
significantly lower than that of FBCSP+LDA, which is the best-performing model with an average accuracy of 65.60%.

5.1. Average Accuracy of Conventional Subject-Specific Classification using Stroke

Data

The subject-specific classification accuracies of both the ML models and the Deep

ConvNet establish a baseline for our study. The evaluation of subject-specific

classification was executed through a hold-out analysis. Among the different

SOA models, FBCSP demonstrated the highest average subject-specific performance.

Specifically, it achieved an accuracy of 65.60% utilizing the LDA classifier and 65.31%

with the RF classifier, across 71 stroke patients.

Subsequently, the Deep ConvNet achieved an average subject-specific accuracy

of 63.51%, a value that did not significantly deviate from the accuracy achieved

by FBCSP+LDA (p “ 0.18). In contrast, the CSP model exhibited a substantial

performance deficit compared to the other two models. The disparity was statistically

significant (p ă 0.001), with the CSP model attaining accuracies of 56.00% and 55.54%

when employing the LDA and RF classifiers, respectively. A comprehensive breakdown

of the subject-specific accuracies for the ML models and the Deep ConvNet can be found

in Table 3.

5.2. Average Accuracy of the Proposed Healthy-to-Stroke Transfer Learning and the

Stroke-to-Stroke Transfer Learning

Table 4 shows that our proposed method achieved an average accuracy of 53.00% before

adaptation and 71.15% after adaptation, using Deep ConvNet. The results illustrate

that the pre-adaptation performance of our proposed method is considerably lower than

the subject-specific performances of FBCSP and Deep ConvNet, with a p-value less than

0.001, and the corresponding average pre-adaptation accuracy of subject-independent

stroke models with p ă 0.05. Although there is a significant difference (p ă 0.05)

between the precision of the H-to-S and the S-to-S models before transfer learning, the

adaptation performances of the two models are similar, with no significant difference.

Furthermore, our proposed H-to-S transfer learning approach exhibited significantly

higher performance than the corresponding H-to-S classification without adaptation
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(p ă 0.001), and the subject-specific classification accuracies of FBCSP and Deep

ConvNet (p ă 0.001).

Table 4: Accuracies (in %) of Deep ConvNet Stroke-to-Stroke (S-to-S) and Healthy-to-

Stroke (H-to-S) Models, With (w) and Without (w/o) Adaptation.

Subject ID Stroke-to-Stroke (S-to-S) Healthy-to-Stroke (H-to-S)
w/o adaptation w adaptation w/o adaptation w adaptation

1 51.28205128 73.07692308 47.43589744 65.38461538
2 44.87179487 47.43589744 50 52.56410256
3 61.53846154 92.30769231 55.12820513 93.58974359
4 51.28205128 53.84615385 51.28205128 48.71794872
5 57.69230769 73.07692308 47.43589744 76.92307692
6 50 83.33333333 57.69230769 75.64102564
7 56.41025641 71.79487179 46.15384615 60.25641026
8 53.84615385 94.87179487 24.35897436 91.02564103
9 46.15384615 73.07692308 38.46153846 69.23076923
10 52.56410256 74.35897436 58.97435897 80.76923077
11 73.07692308 98.71794872 42.30769231 88.46153846
12 48.71794872 50 57.69230769 61.53846154
13 56.41025641 55.12820513 42.30769231 52.56410256
14 50 67.94871795 56.41025641 57.69230769
15 55.12820513 100 57.69230769 96.15384615
16 51.28205128 65.38461538 51.28205128 58.97435897
17 50 52.56410256 53.84615385 56.41025641
18 48.71794872 61.53846154 38.46153846 60.25641026
19 48.71794872 79.48717949 56.41025641 80.76923077
20 51.28205128 71.79487179 43.58974359 65.38461538
21 57.69230769 66.66666667 48.71794872 60.25641026
22 50 64.1025641 41.02564103 61.53846154
23 57.69230769 79.48717949 46.15384615 71.79487179
24 50 76.92307692 50 79.48717949
25 51.28205128 76.92307692 37.17948718 73.07692308
26 48.71794872 71.79487179 37.17948718 66.66666667
27 61.53846154 93.58974359 57.69230769 92.30769231
28 51.28205128 55.12820513 52.56410256 60.25641026
29 70.51282051 88.46153846 42.30769231 88.46153846
30 50 83.33333333 39.74358974 83.33333333
31 57.69230769 84.61538462 42.30769231 76.92307692
32 53.84615385 62.82051282 52.56410256 61.53846154
33 55.12820513 56.41025641 42.30769231 57.69230769
34 61.53846154 71.79487179 47.43589744 51.28205128
35 64.1025641 87.17948718 42.30769231 83.33333333
36 56.41025641 58.97435897 51.28205128 55.12820513
37 51.28205128 75.64102564 48.71794872 71.79487179
38 60.25641026 56.41025641 60.25641026 61.53846154
39 67.08860759 83.5443038 64.55696203 82.27848101
40 53.84615385 61.53846154 61.53846154 64.1025641
41 50.63291139 56.96202532 70.88607595 60.75949367
42 49.36708861 77.21518987 75.94936709 83.5443038
43 50 75.64102564 50 65.38461538
44 67.08860759 77.21518987 63.29113924 78.48101266
45 59.49367089 60.75949367 49.36708861 62.02531646
46 64.1025641 74.35897436 51.28205128 67.94871795
47 53.16455696 45.56962025 67.08860759 65.82278481
48 50 64.1025641 44.87179487 70.51282051
49 56.96202532 78.48101266 58.2278481 77.21518987
50 53.84615385 89.74358974 60.25641026 80.76923077
51 48.10126582 67.08860759 63.29113924 67.08860759
52 58.97435897 84.61538462 56.41025641 82.05128205
53 60.75949367 51.89873418 59.49367089 70.88607595
54 54.43037975 65.82278481 46.83544304 68.35443038
55 60.25641026 74.35897436 55.12820513 58.97435897
56 78.20512821 89.74358974 74.35897436 89.74358974
57 62.82051282 64.1025641 48.71794872 56.41025641
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58 52.56410256 47.43589744 53.84615385 58.97435897
59 68.35443038 68.35443038 48.10126582 69.62025316
60 51.89873418 77.21518987 50.63291139 78.48101266
61 47.43589744 76.92307692 67.94871795 91.02564103
62 51.89873418 64.55696203 64.55696203 74.6835443
63 65.38461538 93.58974359 66.66666667 89.74358974
64 57.69230769 52.56410256 60.25641026 61.53846154
65 76.92307692 80.76923077 66.66666667 88.46153846
66 48.10126582 81.01265823 73.41772152 81.01265823
67 56.41025641 64.1025641 50 62.82051282
68 56.96202532 89.87341772 46.83544304 88.60759494
69 56.96202532 59.49367089 59.49367089 59.49367089
70 50 52.56410256 58.97435897 56.41025641
71 57.69230769 93.58974359 57.69230769 89.74358974

Mean 55.85±7.13_ 71.76±13.77^† 53.00±9.91_* 71.15±12.46^†

The S-to-S accuracies were obtained using the LOSO-CV method. The _^ (pă0.001) indicate that the accuracies are significantly
lower/higher than the subject-specific accuracy of FBCSP and Deep ConvNet (Table 3). The † (pă0.001) indicates that the accuracies with
(w) adaptation are significantly higher than the corresponding without (w/o) adaptation accuracy. The * (pă0.05) indicates significantly
lower performance compared to that of the corresponding S-to-S model.

The subject-independent accuracy of Deep ConvNet using stroke data is a second

baseline for comparison. The subject-independent classification was performed using

LOSO-CV analysis. The subject-independent models, also known as S-to-S models,

exhibited an average performance of 55.85%, which was found to be significantly lower

than the subject-specific performances of FBCSP and Deep ConvNet with a p-value

less than 0.001, however, not significantly different from the subject-specific accuracy of

CSP. To address disparities between the source and target domains, the study utilized

adaptation of S-to-S models, as outlined in Section 4.2.1. After adaptation, the average

subject-independent classification accuracy of Deep ConvNet using stroke data increased

by 15.91% to reach 71.76% (p ă 0.001). Moreover, the S-to-S transfer learned models

demonstrated significantly better average accuracy compared to the average subject-

specific classification accuracies of both Deep ConvNet and FBCSP (p ă 0.001). The

results of H-to-S and S-to-S transfer learning are presented in Table 4.

5.3. Subject-wise Classification Accuracies of Deep ConvNet using the Proposed

Healthy-to-Stroke Transfer Learning and the Baseline Methods

Figure 6 illustrates the accuracies of Deep ConvNet at the subject level, from hold-

out, S-to-S, and H-to-S analysis. The accuracies of S-to-S and H-to-S models prior to

adaptation are denoted by dotted lines, while the transfer learning performances of the

two models are depicted with solid lines. The x-axis denotes the subject ID, while the

y-axis shows the corresponding accuracies. The blue line represents the subject-specific

accuracies, and the subject IDs on the x-axis are arranged based on their corresponding

subject-specific performance. Tables 3 and 4 present a comprehensive list of subject-wise

classification accuracies obtained using the three methods.

The line plot in Figure 6 shows that the pre-adaptation performances of both S-

to-S and H-to-S models fall short of the subject-specific model performance of Deep

ConvNet for most subjects. Interestingly, for a few subjects, the H-to-S and S-to-S

models perform similarly or even better than the subject-specific performance without

the need for adaptation based transfer learning. After transfer learning, the H-to-S
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Figure 6: Subject-wise classification accuracies of Deep ConvNet using subject-specific,

stroke-to-stroke (S to S), and healthy-to-stroke models (H to S). The subjects are sorted

based on their subject-specific model performance.

and S-to-S models perform comparably to each other (p ą 0.05), however, significantly

better than the subject-specific models (p ă 0.001). These results indicate that models

pre-trained on data from healthy subjects may be a viable option for detecting MI in

stroke patients, obviating the need for subject-independent stroke models. Collecting

sufficient stroke data for training subject-independent stroke models is often challenging,

and using limited amounts of data can lead to suboptimal performance. Therefore,

the proposed H-to-S transfer, which utilizes abundantly available data from healthy

subjects, presents a practical alternative.

5.4. Results from the Investigation on the Impact of Channel Swapping

As detailed in Section 4.3, we conducted additional experiments to examine the

importance of channel swapping in our proposed approach.

To explore this, two variations of the approach were developed that did not involve

channel swapping. The first variation employed all trials of healthy subjects to pre-

train a single model, while the second variation used unilateral MI data to pre-train two

separate models. The results of these experiments are presented in Table 5.

The results reveal that pre-training a single model on all trials without channel

swapping leads to a significant 2% reduction (p ă 0.05) in H-to-S classification

performance, highlighting the importance of implementing channel swapping when

combining two-class MI data from healthy subjects to pre-train models. Utilizing

two distinct models trained on unilateral MI data without channel swapping did not
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Table 5: Average Accuracy (in %) of Healthy-to-Stroke and Stroke-to-Stroke Models

Without Channel Swapping.

Healthy-to-Stroke (H-to-S) Stroke-to-Stroke (S-to-S)

One Pre-trained Model Two Distinct Pre-trained Models

51.00±6.54* 52.63±9.25 55.40±8.44
The * (pă0.05) indicates significantly lower performance compared to the corresponding performance using the proposed method.

differ significantly from our proposed approach, but exhibited a slight 0.37% decrease

in performance. Despite using only half the number of trials as our proposed approach,

this variant produced similar results, indicating the potential advantages of building

models specific to each limb using data from healthy individuals to enhance classification

accuracy in stroke patients.

Table 5 also includes the results of the baseline S-to-S classification approach

without channel swapping. In this analysis, all trials in the training set were used

to train the subject-independent stroke model, without implementing channel swapping

based on the target affected limb. The reported findings reveal that there were no

significant differences between the performance of this approach and that of the actual

baseline. This variant achieved an average accuracy of 55.40%, which is marginally lower

than the actual baseline S-to-S accuracy of 55.85%, but the difference is not significant.

These findings differ from those observed for H-to-S classification in a similar scenario,

and suggest that it may not be essential to implement channel swapping when combining

MI trials from stroke patients with different affected limbs to train subject-independent

stroke models.

5.5. Average Relevance Patterns in Stroke Patients Across Subject-Specific Stroke,

Stroke-to-Stroke and Healthy-to-Stroke Models

To elucidate the neurophysiological underpinnings of our transfer learning findings, we

employed the DeepLift XAI framework [46] to conduct an XAI analysis on the subject-

specific models as well as the H-to-S and S-to-S models using Deep ConvNet.

The average channel-wise relevances from various models were visualized as

topoplots in Figure 7 (a)-(e). In line with XAI conventions, we denote low relevance

as negative relevance and consider channels with positive relevance as having a positive

contribution to the decision for a particular class, while channels with negative relevance

are deemed to support the decision against a certain class.

In Figure 7(a), the relevance patterns identified via subject-specific classification

exhibit considerable diffusion, lacking localization around the motor area for the MI

class [70]. From a neurophysiological perspective, these patterns are not convincing.

In Figure 7(b), the S-to-S models reveal notable localization of high positive

relevance in the left and right motor areas, encompassing central and centro-parietal

channels C3, C4, CP3, and CP4, for the MI class. Additionally, frontal channel Fz

appears to positively impact MI detection. Conversely, the parietal area channels
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Figure 7: Average relevances of channels for MI vs Rest classes, using (a) subject-

specific, (b) stroke-to-stroke (S to S), (c) S to S adapted, (d) healthy-to-stroke (H to S)

and (e) H to S adapted models.

The channel relevance scores were obtained using DeepLift[46].

exhibit negative relevance for the MI class. For the rest-state, the relevance patterns

complement those for the MI class, meaning that the channels with positive relevance

for the MI class display negative relevance for the rest class and vice versa.

Following transfer learning, the S-to-S relevance patterns display similarities to

those present prior to transfer learning, albeit with some noteworthy differences, as

can be observed in Figure 7(c). Notably, the relevance localization remains in the

left and right central areas, although it is now more focused towards centro-parietal

channels than central channels. Furthermore, the positive relevance originating from

the frontal channel is more pronounced after adaptation. As for the rest-state, the

relevance patterns are complementary, with greater negative relevance observed in the

left and right centro-parietal channels, along with the frontal and parietal channels, Fz

and Pz, respectively.

In Figure 7(d), the pre-adaptation H-to-S classification models exhibit diffuse

relevance patterns for both the MI and rest classes. However, the middle parietal

electrode Pz displays strong positive relevance for the MI class, while exhibiting the

opposite effect for the rest class. Furthermore, the left and right parietal electrodes,

P3 and P4, show negative relevance for the MI class and positive relevance for the rest

state.

After adaptation-based transfer learning, the H-to-S models display average

relevance patterns that are more prominently localized around the left and right central

areas, akin to the S-to-S models (Figure 7(e)). Furthermore, the parietal channel Pz

exhibits a strong contribution, which was evident even before adaptation. Additionally,
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Figure 8: Group-wise average relevance topoplots, comparing the relevance patterns

between patient groups with left affected limb versus right affected limb, of (a) subject-

specific, (b) stroke-to-stroke (StoS), (c) stroke-to-stroke adapted (StoS Adpt), (d)

healthy-to-stroke (HtoS), and (e) healthy-to-stroke adapted (HtoS Adpt) models.

The top 30% positively (red color font) and negatively (blue color font) relevant

channels for MI prediction are listed beside the corresponding models.

the areas that positively contribute to the MI class exhibit negative contribution to the

rest class, as anticipated.

5.6. Group-wise Average Relevance Patterns in Stroke Patients Across Subject-Specific

Stroke, Stroke-to-Stroke and Healthy-to-Stroke Models

To better understand the stroke relevance patterns specific to the affected limb, we

visualize the channel-wise average relevances by patient group, with left and right

affected limbs separately, in Figure 8. The figure illustrates the two-class relevance

patterns and the average accuracy for stroke patients with left and right affected limbs,

across subject-specific models, S-to-S, and H-to-S models of Deep ConvNet. In addition,

we investigated the top 30% of channels that had a positive or negative impact on the

MI class within each of the two groups, across various models. The combined stroke

dataset consists of 40 patients with an affected left limb and 31 with an affected right

limb. To facilitate the discussion of results, we have designated the group with the left

affected limb as LAL and the group with the right affected limb as RAL. Additionally,
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Table 6: Group-wise Average Classification Accuracies of Patients with Left Affected

Limb (LAL) and Right Affected Limb (RAL) Across Subject-specific, Stroke-to-Stroke

(S-to-S) and Healthy-to-Stroke (H-to-S) Models.

Subject-specific
S-to-S

w/o adaptation

S-to-S

w adaptation

H-to-S

w/o adaptation

H-to-S

w adaptation

LAL 63.03 55.69 71.98 53.81 72.00

RAL 64.13 56.06 71.48 51.97 70.31

we have employed the shortened forms LAL-MI/RAL-MI to denote patterns associated

with the MI class in each group.

The group-level relevance patterns of subject-specific models are visualized in

Figure 8(a). These patterns are distributed across various regions of the cortex,

irrespective of the group. We also note that there are non-complementary relevance

patterns between the two classes in both groups. The relevance patterns observed in

RAL are more distinct and also closely resemble the full average plots presented in

Figure 7(a).

The group-wise channel relevances in the S-to-S and H-to-S transfer models reveal

certain distinct patterns. Specifically, the S-to-S classification model demonstrates

very similar relevance patterns between LAL-MI and RAL-MI, indicating that specific

cortical areas are more active during stroke MI, regardless of the affected limb [72][44].

This can be observed in Figure 8(b). This differs from the observation in healthy

individuals, where brain activation areas are usually contralateral to the MI limb

due to ERD [56]. To clarify, for both LAL-MI and RAL-MI, the S-to-S models

receive predominant positive contributions from both hemispheres, indicating bilateral

impact during stroke MI. However, the ipsilateral (contralesional) contribution is more

pronounced than the contralateral influence in both groups. Furthermore, we observe

some influence from the frontal channel (Fz) on the classification of MI for both groups.

The negatively relevant channels in both groups are similar, although there are some

notable differences. The left and right parietal channels negatively contribute to MI

detection in both groups. However, the frontal channels contralateral to LAL (F4, F8)

negatively impact LAL-MI, whereas those contralateral to RAL (F7, F3) negatively

contribute to RAL-MI. The patterns for the rest class are complementary to those of

the MI class in both groups.

After applying transfer learning, there are notable updates in the relevance patterns

of S-to-S models, which are visualized in Figure 8(c). One main difference is the inclusion

of the central channel Cz as a top positively contributing channel for both LAL-MI and

RAL-MI. Additionally, after adaptation, the similarity in positively contributing areas

of the cortex for both groups becomes more evident. Despite the adaptation, stronger

positive contributions from the contralesional hemisphere are still present. Previously,

only the frontal and parietal channels were part of top negatively contributing channels

to MI in both groups. However, after adaptation, we also observed the influence of
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temporal channels on the classification against MI for both LAL and RAL. These

updated relevance patterns of S-to-S models, after transfer learning, form the basis

for significant improvement in classification performance.

In the H-to-S models, there are noticeable differences in the relevance patterns

between LAL and RAL, compared to the S-to-S models. Prior to transfer learning

(Figure 8(d)), Pz is the channel with the highest positive relevance in both LAL-MI

and RAL-MI, followed by several other areas predominantly on the respective ipsilateral

hemispheres. Negative contributions are also observed, primarily from the parietal area,

with P3 for LAL-MI and P4 for RAL-MI being the most pronounced. Furthermore,

some channels from the left hemisphere’s frontal and parietal areas exhibit negative

relevance towards LAL-MI, while the corresponding channels on the right hemisphere

have negative relevance towards RAL-MI. However, despite these contributions, the H-

to-S MI detection models did not achieve high performance, without transfer learning.

Following transfer learning, the positive relevance patterns of H-to-S models are

more localized on the motor region, with an ipsilateral (contralesional) predominance

corresponding to the affected limb, and the middle parietal region. Figure 8(e) illustrates

the aforementioned observation. The positive relevance patterns for LAL-MI in H-to-S

models are enhanced after transfer learning, with additional positive relevances observed

in the frontal channel Fz and the contralateral central channels, similar to those observed

in S-to-S models. The patterns of the rest class display negative relevances in most areas

of the cortex, which are more pronounced in the ipsilateral and middle parietal channels,

complementing the patterns observed in the respective MI classes of the two groups.

The average results obtained by LAL and RAL groups across subject-specific, S-

to-S and H-to-S models of Deep ConvNet are shown in Table 6. There are no notable

discrepancies in the average accuracies between the two groups for any of the models

examined in this study. However, it should be noted that we did not conduct a statistical

significance test for these values, owing to the dissimilarity in the sample size between

the two groups.

Finally, we also explored the subject-level patterns of a selected number of stroke

patients from each group, using only the adapted transfer models. The subject-level

patterns emphasize the commonalities as well as notable differences in the relevances

between the S-to-S and H-to-S transfer models. These representative patterns also

depict the impact of bilateral motor areas, frontal and parietal areas of the cortex for

MI detection. Visualization of feature distributions using t-SNE, shows discriminative

and well-separable features between the MI versus rest classes, more so in the transfer

models. More details on the relevance analysis of selected patients are provided in

Appendix A, Figures A1 and A2.
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Figure 9: Comparison of (a) adaptation efficiency and (b) adaptation speed between

stroke-to-stroke (StoS) and healthy-to-stroke (HtoS) models. The * and ** indicate

significant differences between the two types of transfer learning, where * is for p ă 0.05

and ** is for p ă 0.001

5.7. Comparison of Adaptation Efficiency and Adaptation Speed in Stroke-to-Stroke

versus Healthy-to-Stroke Models

In order to compare the S-to-S and H-to-S transfer models, we performed additional

experiments to gather information about their speed and efficiency of transfer learning.

The results of these adaptation experiments, which included varying amounts of

adaptation data (adaptation efficiency) and different number of training epochs

(adaptation speed), are presented in Figure 9, with Figure 9(a) showing the former

and Figure 9(b) showing the latter.

The efficiency plot in Figure 9(a) indicates that the S-to-S and H-to-S transfer

learning exhibit comparable levels of performance when the adaptation data is varied

from 10% to 60% of the total data. After this point, the S-to-S model outperforms

the H-to-S model significantly (p ă 0.05) when the adaptation data size is 70%, 80%,

and 90% of the total amount. However, there is no significant difference between the

two models when the entire adaptation set is used for transfer learning. For the S-to-S

transfer model, a minimum of 90% of the total data is required to achieve an accuracy

comparable to that obtained using the entire adaptation data. In contrast, the H-to-S

model requires the full adaptation set to achieve optimal accuracy.

Figure 9(b) shows the results of the adaptation speed experiment, and indicates

that the S-to-S models outperformed the H-to-S models (p ă 0.05) when using fewer

epochs for transfer learning, ranging from 20 to 80 epochs. However, for 100 or more

epochs, there are no significant differences in accuracies between the two models. These

findings suggest that S-to-S models can adapt faster than H-to-S models. Specifically,

S-to-S transfer learning can achieve similar accuracy in just 20 epochs compared to H-

to-S transfer learning, which requires at least 140 epochs to achieve an accuracy that is

not significantly different from that obtained using 200 epochs.
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6. Discussion

In this section, we summarize the noteworthy findings stemming from our research and

emphasize the innovative components and comparative benefits of the concept of transfer

learning from the healthy to the stroke. Our study aimed to assess the feasibility of using

an MI-BCI model pre-trained with data from healthy individuals to detect MI in stroke

patients. This approach was explored as a potential remedy for the inadequate stroke

data availability that hinders the implementation of effective cross-subject models for

stroke patients [41] [54].

Our initial experiments using Deep ConvNet involving the baseline subject-specific

and S-to-S classification approaches, as well as the proposed H-to-S classification

method, yielded modest outcomes of 63.51%, 55.85%, and 53.00%, respectively. It

is to be noted here that the ML-based subject-specific model using FBCSP+LDA

achieved the highest average subject-specific performance of 65.60%. Nevertheless, the

performance of subject-specific Deep ConvNet was not significantly different from that

of FBCSP. The S-to-S transfer demonstrated some superiority over H-to-S transfer,

prior to adaptation, by achieving a 2.85% higher accuracy (p ă 0.05). Nevertheless,

both S-to-S and H-to-S transfer techniques exhibited significantly lower accuracy than

the corresponding subject-specific average of Deep ConvNet, with a p-value of less than

0.001. These findings underscored the necessity of domain adaptation-based transfer

learning for the S-to-S and H-to-S models, to tackle the problem of feature distributional

differences between the source and target domains. The suboptimal results of these

transfer models prior to domain adaptation are in line with the findings from BCI

literature pertaining to cross-subject classification using stroke data [41] [54].

After applying domain adaptation-based transfer learning, we noted that the

performance of our H-to-S transfer approach was 71.15%, which is at par with the

result of S-to-S transfer, which is 71.76%, with no significant difference. Both S-to-

S and H-to-S transfer models demonstrated average accuracies that were significantly

superior to the average subject-specific performance, and their respective accuracies

before adaptation, as reported in Tables 3 and 4. In both instances, the p-value was less

than 0.001. Our S-to-S and H-to-S transfer learning, applied across 71 stroke patients,

exhibit superior performance compared to the transfer learning outcomes reported in [53]

and [54]. As discussed in Section 2, Cao et al. [53] utilized ML techniques for transfer

calibration with data from seven stroke patients and achieved an average accuracy of

59.16% in inter-subject transfer, while Xu et al. [54] employed EEGNet for transfer

learning with a combination of data from eleven healthy individuals and five stroke

patients to obtain an average accuracy of 66.36%. Moreover, the comparable results of

H-to-S and S-to-S transfer learning are instrumental in emphasizing the feasibility and

effectiveness of transferring a motor imagery detection model developed with data from

healthy individuals to stroke patients.

We also analyzed the individual accuracies of stroke patients utilizing the three

types of motor imagery versus rest classification models of Deep ConvNet. Our objective
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was to highlight the fact that even at the subject level, the performances of the S-to-

S and H-to-S transfer learned models were similar and significantly better than the

corresponding subject-specific accuracies. Figure 6 depicts these findings in a line

graph. Although healthy individuals and stroke patients may exhibit variations in neural

oscillations during MI [73][74][75], we demonstrated that through transfer learning, one

can obtain a comparable level of motor imagery classification accuracy using the H-

to-S transfer model as with the S-to-S transfer model for most patients. We observed

that in few patients, the accuracy obtained using the adapted H-to-S model was better

compared to that of the adapted S-to-S model, and vice versa.

We conducted additional experiments to validate the necessity of channel swapping

in H-to-S and S-to-S classification. The results of these experiments are presented in

Table 5. We observed that, in the case of S-to-S transfer, the subject-independent stroke

models showed little change in average performance when no channel swapping was

performed. In contrast, for our proposed method, we observed a significant 2% reduction

in average accuracy (p ă 0.05) when bilateral MI trials were combined and used for

training without any channel swapping. The results obtained using two distinct models

pre-trained with unilateral MI data were not significantly different, but marginally lower

than that of our proposed method.

From the additional analyses, we can infer several important insights. Firstly, the

lack of significant differences in the results of S-to-S analysis without channel swapping

of mismatched trials may be attributed to the fact that stroke patients exhibit bilateral

brain activations during MI regardless of the affected limb, as identified in our relevance

analysis. These observations are consistent with prior reports in the BCI literature

[72][44]. Consequently, there may be low variation in features with respect to the MI

limb. Nevertheless, the H-to-S analyses results emphasize the importance of producing

a model pre-trained using healthy subject trials specific to the affected limb of the

target stroke patient, with or without channel swapping. Contrasting neural oscillatory

patterns observed during two-class MI tasks in healthy individuals may underlie the

observed effects [56]. However, performing channel swapping allows us to utilize all

the trials available in the dataset for training, which can result in better accuracies.

Nevertheless, for a comprehensive understanding, it is imperative to delve into the

effectiveness of channel swapping in further studies. This is particularly important

considering the observed comparable, and in some cases superior, performance of

the H-to-S models trained with unilateral trials and the S-to-S models without the

incorporation of channel swapping, in comparison to their counterparts that do employ

channel swapping.

We further aimed to deduce the neurophysiological interpretations of our transfer

learning results using stroke data. To achieve this, we performed an XAI analysis to

examine the subject-specific and transfer models, the results of which are presented in

Figures 7 and 8. Our XAI analysis, performed using DeepLift, revealed interesting

insights into the similarities and differences between the relevance patterns derived

from S-to-S and H-to-S transfer models. Through our average relevance plots across
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all patients, we observed the diffusive nature of relevance patterns in subject-specific

models. This observation may be indicative of their suboptimal performance, likely

due to the limited amount of training data used in their construction. Moreover, we

found that S-to-S models showed bilateral MI activations before and after adaptation

[44][72][42]. We also observed more pronounced relevance in the centro-parietal area

of the contralateral (ipsilesional) hemisphere, post transfer learning in S-to-S models.

Furthermore, the S-to-S models showed a strong influence of the middle frontal and a

mild one from the middle parietal area of the cortex towards stroke MI. A previous

study by Lee et al. [76] reported a similar finding of MI-related neural activity located

primarily in the frontal and sensorimotor cortices among stroke patients. Notably, they

detected this activity in the beta frequency band and predominantly in the ipsilesional

hemisphere. The H-to-S transfer models, on the other hand, showed distributed channel

contributions prior to transfer learning, except for the high positive relevance seen in the

middle parietal electrode Pz, and negative relevance in bilateral parietal electrodes, for

MI detection. Post transfer learning, H-to-S models exhibited clear bilateral localization

around the central and centro-parietal areas of the cortex, similar to the S-to-S models,

with continued emphasis in the middle parietal electrode and some positive relevance

also found in the frontal region. These relevance patterns are aligned with findings

reported in BCI literature between the healthy and the stroke groups. For example, in

[42], Ang et al. identified similar spatial patterns in healthy subjects and stroke patients,

with focused activity appearing on both ipsilateral and contralateral hemispheres with

respect to the limb involved in MI. In the study by Lee et al. [76], the authors observed

a pattern of neural activity over the frontal, motor, and parietal areas of the cortex

in healthy controls during MI performance. More recently, in a cross-subject channel

selection study using OpenBMI dataset, Nagarajan et al. [27] identified the influence of

motor, parietal, and occipital channels in MI-EEG classification among healthy subjects.

However, the bilateral nature of MI relevance found in both S-to-S and H-to-S transfer

models raised questions regarding how these average patterns are influenced by the

respective relevances pertaining to stroke MI of the LAL versus the RAL.

We analyzed relevance patterns in stroke patients with LAL versus RAL to further

strengthen the insights derived from average relevance patterns. We did not observe any

notable differences in average accuracy between the LAL and the RAL groups, consisting

of 40 patients and 31 patients respectively, for all models considered. The findings

discussed for the group-wise relevance analysis are visualized in Figure 8. In both

groups, the subject-specific models continued to show distributed relevance patterns

across different cortical regions. Both S-to-S and H-to-S models demonstrate bilateral

influence from the central motor region, impact of the frontal channel Fz, and the middle

parietal channel Pz for MI detection in stroke patients. These are in line with the findings

from [44], [72], and [76]. In both LAL and RAL groups, S-to-S transfer models showed

ipsilateral localization around both central and centro-parietal areas and contralateral

localization in the centro-parietal area of the cortex (Figure 8(b)), which was consistently

observed even after adaptation (Figure 8(c)). However, we observed that adaptation-
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based transfer learning further strengthened the emphasis on the frontal channel Fz

and middle central channel Cz. It is notable that the bilateral influence is seen mainly

on the centro-parietal area of the cortex. This is similar to the observation from the

corresponding average relevance plot in Figure 7(c). Before transfer learning, H-to-S

models showed positive localization in the middle parietal electrode Pz and negative

relevances in the bilateral parietal electrodes, along with some positive relevance seen in

the ipsilateral central and frontal regions, for both LAL-MI and RAL-MI (Figure 8(d)).

These patterns were further strengthened with adaptation-based transfer learning, as

can be noticed in Figure 8(e). Additionally, we observed bilateral patterns in the central

region, especially in LAL-MI, similar to those observed in S-to-S models. The influence

of the middle parietal region observed in H-to-S transfer contrasts with the middle

frontal influence seen during S-to-S transfer. The parietal influence specific to transfer

from models pre-trained using data from healthy subjects is in line with findings from

the literature reported for healthy subjects during MI performance [27][76].

The aforementioned points suggest that the relevance patterns observed in H-

to-S transfer models show similarity to those observed in S-to-S transfer models, in

terms of contribution from bilateral motor region, thus justifying the comparable

performance of the two types of transfer for stroke patients. However, we also found

that for certain stroke patients, H-to-S transfer models provide better accuracy, possibly

due to additional neurophysiological attributions provided by the model that are not

present in S-to-S models. Our proposed H-to-S transfer learning reveals interesting

neurophysiological interactions and associations, derived using knowledge from both

healthy and stroke MI-EEG, that can otherwise remain unknown. The identified

associative patterns also underlie the good MI detection performance in stroke patients

achieved through our proposed method. Our analysis of both types of transfer suggests

that the bilateral motor, middle frontal, and middle parietal regions are highly relevant

for MI detection in stroke patients [76][72][44][27].

Finally, our analyses comparing the efficiency and speed of adaptation between

the two transfer models indicate similarities between the H-to-S and S-to-S transfer

learning with respect to adaptation data requirements. However, S-to-S transfer learning

outperformed H-to-S transfer learning in terms of adaptation speed. The S-to-S transfer

learning can achieve similar adaptation performance as using the entire adaptation set

with 90% of the data, which is not the case for H-to-S transfer. However, the difference

in data size is only 10% and further improvements to the adaptation efficiency of the

proposed method will be explored in future investigations. The S-to-S transfer learning

requires only 20 epochs to achieve a similar performance as that obtained using 200

epochs. On the other hand, H-to-S transfer models need at least 140 epochs to achieve

a similar accuracy. The slower adaptation speed of H-to-S transfer models can be

addressed by enhancing the availability of computing resources.

Limitations and Future Work: Our study on transfer learning from healthy to

stroke patients has demonstrated promising results, with comparable performance

to subject-independent stroke models and high interpretability. However, there are
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also some limitations that need to be addressed. Our method utilizes the model

adaptation approach to address feature distribution differences between the source and

target domains. However, it relies on labelled data from the target domain, making

it a supervised domain adaptation technique. In our future work, we will explore

unsupervised domain adaptation methods to improve the robustness and efficiency of

H-to-S transfer learning. Additionally, online domain adaptation is a critical concept to

consider for clinical applications of BCI for stroke rehabilitation.

In this transfer learning study, we utilized the OpenBMI dataset [45] which includes

two-class MI-EEG data from 54 healthy subjects, and stroke datasets [11] and [12] which

together consist of MI versus rest data from 71 stroke patients. However, to gather

more generalizable insights on transfer learning from healthy to stroke, it is essential

to conduct evaluations of the proposed method using multiple datasets in future work.

Additionally, it is crucial to validate our transfer learning method using other DL-

based BCI models. Furthermore, real-time evaluations of our proposed method will be

conducted in the future. Exploring the viability of transferring models from healthy to

stroke populations in the context of MI-BCI using alternative neural data modalities

like ECoG, MEG, or fNIRS presents an interesting avenue for future investigation.

7. Conclusion

The objective of this research was to suggest and examine the practicality of transfer

learning from healthy individuals to stroke patients, which is crucial for tackling the

obstacle of scarce stroke data for building EEG-BCI for stroke rehabilitation. Deep

learning techniques were employed to assess and explain our proposed transfer learning

approach from healthy subjects to stroke patients. To pre-train models for a stroke

patient with a specific affected limb, we introduced a new channel swapping method.

Domain adaptation-based transfer learning was executed to enhance the MI detection

performance in stroke patients. Furthermore, the results are compared with subject-

specific classification accuracies obtained using Deep ConvNet and SOA ML classifiers.

The key findings obtained from our transfer learning experiments that employed

Deep ConvNet, evaluated on OpenBMI and stroke datasets, are as follows: (i) the

average accuracies of MI detection of both healthy-to-stroke and stroke-to-stroke models,

without transfer learning, were found to be close to the chance level in our study.

The healthy-to-stroke model exhibited an accuracy that was 2.85% lower (p ă 0.05)

than that of the stroke-to-stroke model (ii) the healthy-to-stroke model achieved an

average accuracy of 71.15% after transfer learning, which was significantly higher than

its corresponding pre-adaptation accuracy (p ă 0.001) as well as the subject-specific

classification accuracy (p ă 0.001) (iii) the performance of the proposed healthy-to-

stroke transfer learning approach was comparable to that of the stroke-to-stroke transfer

learning method, with no significant difference observed (p ą 0.05) (iv) according to

the XAI-based channel relevance analysis, the detection of MI in stroke patients is

influenced by the bilateral motor, frontal, and parietal regions of the cortex (v) finally,

Page 36 of 47AUTHOR SUBMITTED MANUSCRIPT - JNE-106539.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Transferring a DL Model from Healthy Subjects to Stroke Patients in a MI-BCI 37

the adaptation experiments demonstrated comparable adaptation efficiency of both

types of transfer. However, the proposed healthy-to-stroke transfer learning exhibited

a slower adaptation rate when compared to stroke-to-stroke transfer. The outcomes

underscore the importance of our investigation in evaluating the viability of utilizing

MI-BCI models pre-trained with data from healthy individuals for stroke patients. This

approach holds the potential for addressing the scarcity of stroke data in the development

of BCIs for upper limb stroke rehabilitation, as well as in achieving subject-independent

deep learning models for stroke patients that are robust, interpretable, and efficient.
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Appendix A. Analysis of Relevance Patterns and Feature Distributions for

Selected Stroke Patients Across Subject-Specific Stroke, Stroke-to-Stroke,

and Healthy-to-Stroke Models

In addition to conducting group-wise relevance pattern analyses, we also explored the

subject-level patterns of a selected number of stroke patients who demonstrated good

performance using our proposed H-to-S transfer learning. We also used t-SNE [77], an

unsupervised visualization algorithm that reduces dimensionality to visualize the feature

distribution of the respective model. Well-separated groups of data points, associated

with different classes, indicate that the model has good classification efficacy. Figure

A1 displays the relevance topoplots of these selected stroke patients, which are labelled

with their corresponding subject ID and affected limb. Furthermore, the accuracies for

these individual subjects using the three models are also provided. Figure A2 contains

t-SNE feature distribution plots for the same set of subjects, across all three models. We

would like to note that only the adapted or transfer learned models were used to visualize

these selected patient patterns, as they outperformed their corresponding non-adapted

counterparts in stroke MI detection.

Appendix A.0.1. Subject 3: Subject 3, a stroke patient with left affected limb, obtained

high accuracies of 87.18%, 92.31%, and 93.59%, respectively, in the subject-specific, S-

to-S, and H-to-S classification. Nonetheless, the relevance patterns observed from the

subject-specific model were found to lack neurophysiological plausibility compared to

the transfer models.

The S-to-S transfer learned model shows higher MI contributions in motor

electrodes in the ipsilateral hemisphere (C3 and CP3) and parietal electrode in the

contralateral hemisphere (P8), along with mild positive relevances seen in the frontal

channel Fz and contralateral motor channels. On the other hand, the H-to-S adapted

model achieved a similar, in fact slightly higher accuracy compared to the S-to-S model,

but indicates high positive relevance for MI mainly on parietal electrodes, P7, P8, and

Pz, with a mild positive relevance observed on the ipsilateral central channel C3.

These differences in channel relevances between the two transfer models, along with

their high performances, suggest that the H-to-S models can consider cortical areas

different from those of S-to-S transfer models as relevant for MI detection, yet achieve

a similarly high performance. However, it is worth noting that P8 was identified as

one of the strongest positively contributing electrodes for MI detection by both S-to-S

and H-to-S models, highlighting the influence of the parietal region of the brain during

stroke MI. Furthermore, we cannot deny the impact of the frontal area of the cortex, as

is evident from the relevance and the accuracy observed in the subject-specific model.

Furthermore, the corresponding t-SNE feature distributions for subject 3 in all three

models show highly discriminative and well-separable features between the MI versus

rest classes. The separability is especially more pronounced in the transfer models.
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Figure A1: Relevance patterns in selected representative stroke patients, across subject-

specific, stroke-to-stroke, and healthy-to-stroke models. Only the transfer learned

stroke-to-stroke and healthy-to-stroke models were used in this analysis.

Appendix A.0.2. Subject 8: Subject 8, who had a stroke affecting the right limb,

achieved impressive accuracies of 93.59%, 94.87%, and 91.03% using the subject-specific,

S-to-S, and H-to-S classification models. The subject-specific model reveals positive

relevance for MI in the central motor channel Cz, frontal-central channels FC4 and

FC3, frontal channel F8, and the parietal channel P4.

The S-to-S transfer learned model exhibits greater MI contributions in the motor

electrodes of both hemispheres (CP3, CP4, C4, Cz) and frontal electrodes Fz, F8, and

FC4. The H-to-S model attained an accuracy that was 3.84% lower than that of the

S-to-S model, and demonstrates high positive relevance for MI on the central electrode

Cz and the ipsilateral frontal electrode F8.

The subject-specific and S-to-S models achieved higher accuracies compared to

H-to-S model, likely due to their attribution of positive relevance to channels from

bilateral hemispheres, albeit from different regions. It is noteworthy that all three
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models identified F8 and Cz as positively contributing electrodes for MI detection in

subject 8.

Additionally, the t-SNE feature distributions for subject 8 across all three models

display a clear separation of features between the MI and rest classes.

Appendix A.0.3. Subject 56: Subject 56, a stroke patient with left affected limb,

achieved accuracies of 67.95%, 89.74%, and 89.74% in subject-specific, S-to-S, and H-to-

S classification, respectively. The relevance patterns observed from the subject-specific

model are diffuse, with positive relevance for MI being more pronounced in the parietal

and frontal areas. However, the S-to-S model exhibits clearly localized positive relevance

for MI in the contralateral centro-parietal electrode CP4. On the other hand, the H-

to-S model achieved the same accuracy as the S-to-S model but displays high positive

relevance not only in CP4 but also in the middle and contralateral parietal electrodes, Pz

and P8, with mild positive relevance also observed in the ipsilateral central channel C3.

These findings restate the impact of bilateral motor channels and the middle parietal

electrode, Pz, on MI detection in stroke patients.

The observed differences in channel relevances between the S-to-S and H-to-S

transfer models, despite their equal accuracies, reiterate the fact that the H-to-S models

may identify cortical regions not considered relevant by the S-to-S models for MI

detection. Nonetheless, both transfer models identified the contralateral central channel

C4 as the most relevant for MI detection, consistent with typical observations during MI

in healthy individuals. Additionally, the importance of the parietal region of the cortex

cannot be disregarded, as evidenced by the relevance patterns in the subject-specific

and H-to-S models.

Moreover, the t-SNE feature distribution for subject 56 is less distinguishable in the

subject-specific model compared to the two transfer models, reflecting the performance

disparity in MI detection among them.

Appendix A.0.4. Subject 63: Subject 63, who had a stroke affecting the right limb,

achieved high accuracies of 82.05%, 93.59%, and 89.74% in subject-specific, S-to-

S, and H-to-S classifications, respectively. However, the relevance patterns observed

in the subject-specific model are distributed across various cortical areas and lack

neurophysiological plausibility compared to the transfer models.

The S-to-S model exhibits greater MI contributions in the motor electrodes of the

bilateral hemispheres, C3, C4, CP3, and CP4. However, the H-to-S model obtained

an accuracy 3.85% lower than the S-to-S model and identifies positive relevance for MI

primarily on the ipsilateral central electrodes C4 and CP4, with some mild relevance

from the contralateral central electrodes C3 and CP3.

The differences in channel relevances observed between the two transfer models,

along with their respective performances, once again emphasize the importance of motor

areas in both hemispheres for MI detection in stroke patients. It is noteworthy that the
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Figure A2: Feature distribution plots for selected representative stroke patients using

t-SNE [77]. Only the adapted stroke-to-stroke and healthy-to-stroke models were used

in this analysis.

relevance patterns of the subject-specific model highlight contributions from the parietal

areas, as observed typically in H-to-S models.

Subject 63’s t-SNE feature distribution in the subject-specific model reveals a fair

separation of features between MI and rest classes, although the transfer models exhibit

greater separability.

Appendix A.0.5. Subject 53: Subject 53, who had a left affected limb, achieved

accuracies of 62.03%, 51.90%, and 70.89% using subject-specific, S-to-S, and H-to-S

models, respectively. The relevance patterns observed from the subject-specific model
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did not exhibit any substantial positive contribution for MI detection from any cortical

region.

In contrast, the S-to-S adapted model shows strong MI contributions in bilateral

motor electrodes, C3, CP3, C4, and CP4, particularly in the centro-parietal electrodes

CP3 and CP4, with some positive relevance observed in the middle frontal and the

middle parietal areas of the cortex (Fz and Pz). Additionally, the rest class patterns

complement the MI class patterns. Despite this, the S-to-S model was unsuccessful in

detecting MI for subject 53 and only achieved chance-level accuracy.

On the other hand, the H-to-S transfer learned model achieved good performance

compared to the S-to-S model, with high positive relevance for MI coming from bilateral

central channels, particularly the ipsilateral central channel C3 and contralateral centro-

parietal channel CP4, as well as central channel Cz, bilateral parietal channels P7, P3,

P4, and P8, and frontal channels Fz, F4, and F8. Thus, H-to-S classification once

again highlights the bilateral influence during MI performance in stroke patients, in

both motor and parietal areas of the cortex.

Interestingly, unlike subject 56, who also had a left affected limb, subject 53 shows a

pronounced negative relevance in the parietal channel Pz. Furthermore, the localization

pattern shows that while the ipsilateral relevance is from both central and centro-parietal

channels, in the contralateral hemisphere, the relevance is mostly from the centro-

parietal electrode CP4 than the central electrode C4. This observation is similar to

what was noticed in the S-to-S group-wise average relevance patterns shown in Figure

8.

The performance differences and channel relevances observed in the two transfer

models suggest that the parietal influence identified by the H-to-S model could be a

significant factor contributing to the superior MI detection performance of our proposed

method in subject 53. Furthermore, the t-SNE feature distributions for subject 53 reveal

good separability of MI versus rest class features in both the subject-specific and H-to-S

adapted models, when compared to the S-to-S adapted model.

Appendix A.0.6. Subject 5: Subject 5, who had a right affected limb due to stroke,

achieved accuracies of 62.82%, 73.08%, and 76.92% in the subject-specific, S-to-S, and

H-to-S classification scenarios, respectively. The relevance patterns observed in the

subject-specific model are not well-defined.

In contrast, the S-to-S model shows high MI relevances in the contralateral centro-

parietal electrode CP3, along with mild positive relevances in frontal channels Fz and F4,

and temporal channel T8. Meanwhile, the H-to-S model demonstrated a 3.84% higher

accuracy than the S-to-S model, with negative relevance for MI in bilateral central

channels and positive relevances from bilateral frontal channels. The model also shows

a strong positive contribution from the parietal electrode Pz, which was also observed

for other stroke patients evaluated using the H-to-S model.

The varied perspectives of the two transfer models in determining the

neurophysiological basis for MI detection in stroke patients are highlighted by the
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differences in channel relevances. The t-SNE feature distribution plots, in Figure A2,

illustrate comparatively better class separability using the H-to-S transfer model for

subject 5.
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