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Abstract— In electroencephalography (EEG) classifica-
tion paradigms, data from a target subject is often difficult
to obtain, leading to difficulties in training a robust deep
learning network. Transfer learning and their variations are
effective tools in improving such models suffering from
lack of data. However, many of the proposed variations and
deep models often rely on a single assumed distribution
to represent the latent features which may not scale well
due to inter- and intra-subject variations in signals. This
leads to significant instability in individual subject de-
coding performances. The presence of non-trivial domain
differences between different sets of training or transfer
learning data causes poorer model generalization towards
the target subject. However, the detection of these domain
differences is often difficult to perform due to the ill-defined
nature of the EEG domain features. This study proposes a
novel inference model, the Joint Embedding Variational Au-
toencoder, that offers conditionally tighter approximation of
the estimated spatiotemporal feature distribution through
the use of jointly optimised variational autoencoders to
achieve optimizable data dependent inputs as an addi-
tional variable for improved overall model optimisation and
scaling without sacrificing model tightness. To learn the
variational bound, we show that maximising the marginal
log-likelihood of only the second embedding section is
required to achieve conditionally tighter lower bounds. Fur-
thermore, we show that this model provides state-of-the-art
EEG data reconstruction and deep feature extraction. The
extracted domains of the EEG signals across each subject
displays the rationale as to why there exists disparity be-
tween subjects’ adaptation efficacy.

Index Terms— Deep Representation Learning, Feature
Extraction, Signal Processing, Spatiotemporal Data

I. INTRODUCTION

To overcome the lack of data and poor subject-specific
performance in electroencephalography (EEG) classification
tasks, fine-tuning techniques such as transfer-learning [1]
are often applied. However, when conducting further fine-
tuning [2] or adaptation [3], the change in decoding accuracy
across different subjects is often non-uniform [1]. Furthermore,
improvement in classification accuracy due to adaptation in
offline studies [4] does not necessarily translate towards online
decoding scenarios [3]. Adaptation techniques that focus on
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subject-specific adaptation [5], [6] do not fully leverage upon
the data from other subjects which may be beneficial towards
improving decoding accuracy. Although the overall decoding
accuracy may increase with such fine-tuning techniques, closer
observations on individual subject performances show that a
number of individuals experience a large decrease in classi-
fication accuracy which plagues modern neural networks [1]
resulting in the difficulty in implementing such models for
real-world general usage.

A reason for the instability in the performance across
subjects may be due to the presence of ill-defined non-
stationary features that vary from subject to subject [7].
Although subject-specific transfer-learning [1], [5], [6] may be
utilized to overcome this instability by fine-tuning using the
target subject’s data, this is based on the assumption that the
adaptation data comes from the same continuous distribution
from the target evaluation data. However, this assumption may
not hold true across time due to the physiological changes of
the neural signals across time [8], resulting in intra-subject
variability [9]. In addition, recent studies showed the impor-
tance of taking into account the differences across different
sessions for each individual subject [10]. Using the proposed
methodology in this work, we further extend on representation
learning to reveal that even within subjects, there exists a non-
trivial intra-subject non-stationary domain differences (Fig. 9,
4) which are associated with the variations in EEG recording
phases.

In earlier methods such as the filter bank common spatial
pattern (FBCSP) [11], the EEG signals are processed by split-
ting the signal into separate bands corresponding to different
frequencies of the brain signals. The network is then able to
learn and pick up on the important features dependent on each
of the bands. In more recent works, this is further expanded
later in Filter-Bank Convolutional Networks (FBCNet) [12]
where multi-view data representation is utilized followed by
spatial filtering to extract spectro-spatially discriminative fea-
tures to train the network. These methods lay the foundation
of extracting vital spatial-temporal features of EEG data for
classification tasks, but still hold the disadvantage of not taking
into consideration the temporal variation within-subject across
time [8] which may lead to poorer outcomes in network
classification.

Representation learning [13] is an important area of research
that breaks down a given input into a set of features that
best represent the original data. When designing networks,
the number of features is usually predetermined [13]–[15]
and in some cases specifying the nature of the discriminative
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features can lead to better performance [14]. One such network
used is the Variational Autoencoder (VAE) [15], which is
used to break input data into encoded features that best
represent the original data. Features play a vital role towards
providing better understanding of the underlying common
attributes between the signals. By doing so, techniques such
as domain generalisation [16], [17] and/or adaptation [18] can
be applied to achieve robust training and performance in deep
neural networks. Although previous works on motor imagery
datasets [19] employ fuzzy representation learning methods of
comparing similarity and dissimilarity between sets of interval-
valued EEG data, the performance is still highly limited due
to its restrictive architecture.

Thus far, fewer work has been done on representation
learning on spatiotemporal signals [20] compared to more well
established datasets such as images [13], [21], [22] or natural
language [22], [23]. This is especially so for feature extraction
of common biophysical signals such as electroencephalogra-
phy (EEG), electromyography (EMG) and electrocardiography
(ECG). In the case of EEG signals, common methods in
training subject-independent models of EEG classifiers often
face significant variations in subject-to-subject performance.

Presently, traditional VAEs extracts features based on the
assumption that the best representation of the determined
latent features of any given data all falls under a similar or
identical distribution. Additionally, the VAE assumes that the
given model structure is best able to generalise and encode
all the latent spatiotemporal features concurrently. Given the
complexity of domains associated with spatiotemporal data
[24], there exist multiple possible paradigms that the features
encode for. In this study, we discover that one common
embedding model structure may not be ideal in computing
overall meaningful latent features.

Therefore, this study aims to provide an adaptive model
framework that leverages upon both subject-independent and
subject-specific data, while taking into consideration the intra-
and inter-subject variability of EEG signals. The main mo-
tivation behind this study is to construct a domain-agnostic
methodology that enables unsupervised detection of domain
differences in EEG signals via hidden features. This is vital
towards building robust networks for lifelong learning via ap-
plications of representation learning to perform data selection
as well as one/few-shot adaptation towards unseen test subject
data that may have significantly different underlying features
than the training dataset.

The contributions of the study are as follows. (1) We
propose a new framework based on sequential joint embedding
sections of VAEs utilising encoder-decoder pair networks.
(2) This new framework allows the splitting of latent fea-
tures into separate posterior distributions which enables better
representation of the true distribution. (3) In addition, this
framework further increases the flexibility of the model to
allow separate model structures to compute each separate
set of latent features. (4) Finally, a new loss function is
introduced which offers significantly better feature learning
and reconstruction accuracy through modelling the residual
loss of the network using a conditionally tighter lower bound
on the true log-likelihood.

II. BACKGROUND: VARIATIONAL AUTOENCODERS

Traditional VAEs consist of probabilistic encoder-decoder
pairs. For a given input x, the encoder is an inference model
with weights and biases θ which gives the hidden latent
variables as output z. The inference model is thus given by
qΘ(z|x), a Gaussian probability distribution. For the same
VAE, a decoder model with weights and biases ϕ is given by a
joint probability pΦ(x, z) = pΦ(x|z)p(z). During training, the
encoder and decoders are trained simultaneously by finding
the parameters that best optimise the variational lower bound
of the likelihood pϕ(x) =

∫
pϕ(x, z)dz.

Thus, the effectiveness of the VAE in reconstructing
the original input is given by the reconstruction log-
likelihood logpΦ(x|z). The reconstruction loss function is
therefore given by the expected negative log-likelihood
−EqΘ(z|x)[log pΦ(x|z)] computed with respect to the distri-
bution of the latent features by the encoder.

In addition to the reconstruction loss, VAEs also take into
account a regularisation term given by the Kullback-Leibler
(KL) divergence between two continuous distributions [25],
the encoder’s variational posterior qΘ(z|x) and the prior p(z)
where the latent variables are sampled from. The divergence
measures how close the two distributions q and p are to
each other and is given by KL(qΘ(z|x)||p(z)). Therefore, the
overall loss function Li for an input datapoint xi is:

Li = −EqΘ(z|xi)[log pΦ(xi|z)] +KL(qΘ(z|xi)||p(z)) (1)

The VAE loss function relies on mathematical convex
optimisation principles to ensure that there indeed exists an
evidence lower bound (ELBO) [26]. Logarithm functions are
strictly concave, since the negative of concave functions are
convex, the negative log-likelihood is convex. Expectation
preserves the convexity of the function and thus the expected
negative log-likelihood is a convex function. Using Jensen’s
inequality [27], we can also prove that the KL divergence
is a convex function with respect to a pair of probability
distributions p and q.

III. JOINT EMBEDDING VARIATIONAL AUTOENCODER

A. Model Overview

We propose a new model as shown in Figure 1 consisting
of two jointly connected encoder-decoder networks via a new
loss function that offers a tighter lower bound when certain
conditions are enforced. The intuition behind the proposed
framework lies in computing the residual loss of the initial
part of the network before systematically recovering the loss.
The first encoder-decoder pair is constructed identically to
a traditional VAE which takes in an input x and gives a
noisy output x′. We can form an equation for the discrepancy
between the original input and reconstructed output by the
initial VAE as x− x′:

Thus, the network embedding section of the JEVAE at-
tempts to construct the probability distribution for x with
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Fig. 1. Overall Joint Embedding Variational Autoencoder framework comprising of two connected encoder-decoder pairs. Takes in an input x and
gives a reconstructed output x′ + (x − x′)′. Note that the overall reconstruction accuracy of the input depends solely on the second embedding
section’s ability to reconstruct the residual reconstruction difference. Learnt joint embeddings z1 and z2 allow for separate dependent distributions
to be utilized to model the latent features, enabling greater flexibility and accuracy as compared to a single distribution. Generation capabilities are
retained while maximizing reconstruction accuracy.

respect to latent variables:

pϕ(z1) = pϕ(zFz1
)

Fz1−1∏
i=1

pϕ(zi|zi+1) ,

pϕ(z2) = pϕ(zFz2)

Fz2−1∏
j=1

pϕ(zj |zj+1)

(2)

where Fz1, Fz2 represents the dimensionality of the latent
space in the first and second network embedding section
respectively.

The second embedding section in JEVAE takes in the
discrepancy between the input to the previous decoder and the
reconstructed output that is based on the computation of the
intial VAE. This part of the framework thus aims to reconstruct
the information loss from the first VAE by taking in the input
x− x′ and giving an approximate output (x− x′)′.

The expected negative log-likelihood of only the second
network with respect to the first network is:

logp(x− x′) = EqΘ(z2|x−x′)[log pΦ(x− x′|z2)]
−KL(qΘ(z2|x− x′)||p(z2))

(3)

In this study, we mainly study biophysical signals such as
EEG which are well represented via Guassian distributions
[28]. Thus, assuming a continuous Gaussian distribution for
both latent spaces, each of the random hidden variables sets
z1 and z2 can be individually expressed as:

pϕ(zRi) = N (zRi|0, I), pϕ(zi|zi+1)

= N (zi|µi,p(zi+1), σ
2
i,p(zi+1)) for i = 1, 2

(4)

Since the second network aims to encode the information
that is not encoded in the initial network, the overall recon-
struction of the original input is now given by the sum of both
of the outputs of the two networks x′+(x−x′)′. Importantly,
both the first and second VAEs are trained simultaneously
with both parts of the framework being linked via the input to
the second network which depends on the output of the first
network, resembling a embedding section. Thus the overall
neural network is denoted as Joint Embedding Variational
Encoder (JEVAE).

Fig. 2. Overall VAE network architecture. The network architecture
utilizes spatial and temporal-level filters to identify latent features that
best represent the input EEG signals. The VAE network is sequentially
connected twice via the proposed method to achieve an end-to-end
dual-VAE network capable of extracting joint embeddings

Although there exists variations of the VAE such as the
Ladder VAE (LVAE) [29] that utilise the separation of latent
features, where the JEVAE differs is in how the subsequent
set of latent features is derived. Hierarchical methods rely on
directly applying a consecutive simple decoder or a series of
decoders [30]–[32] on the previous decoder output to achieve
deeper extraction of features. This is in direct contrast to
the horizontal method presented here whereby the input to
the subsequent decoder depends not only on the previous
decoder’s output but also the original input to the previous
decoder. Additionally, most of these state-of-the-art VAEs are
built for image sets and often do not support non-regular
datasets with different height to widths or take into account
the existence of temporal features within each image.

The architectural design of the VAE (Fig. 2) draws in-
spiration from the highly effective DeepConvNet utilized in
motor imagery classification as outlined by Schirrmeister et
al. [33]. The robust classification performance achieved by
this architecture suggests its ability to discern critical distin-
guishing features across various target classes. This capability
is facilitated by employing distinct temporal convolutions suc-
ceeded by spatial filters. In a similar vein, our proposed VAE
configuration incorporates temporal convolutions followed by
spatial filters, ultimately leading to effective dimensional re-
duction. Consequently, the VAE demonstrates proficiency in
minimizing reconstruction errors and capturing essential latent
features.

In summary, the study explores the concept of jointly
separated latent variables which are split into two sets, each
having its own probability distribution. The two probability
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distributions of the hidden representations are connected to
one another through the optimisation function given by the
maximisation of the variational lower bound.

B. Variational Lower Bound
To achieve better model generalisation, the KL loss is

applied to both embedding sections separately. The two sets
of features are represented as two separate individual distri-
butions. For the proposed framework, there exists multiple
possible loss functions that can optimise the overall network.
For instance, the most straightforward method would be to set
the loss function as the sum of the two KL divergence losses
and the individual network reconstruction loss.

ELBO =EqΘ(z1|x)[log pΦ(x|z1)]
−KL(qΘ(z1|x)||p(z1))
+ EqΘ(z2|x−x′)[log pΦ(x− x′|z2)]
−KL(qΘ(z2|x− x′)||p(z2))

(5)

Next, we further examine the reconstruction loss of the
JEVAE network. Equivalently, since we assume that the latent
space vectors follow a gaussian distribution, as the authors
of the original VAE [15] highlighted, the decoding term
log pΦ(x|z) is Gaussian Multi-Layer Perceptron (MLP) [34].
Thus, the maximising of the reconstruction log-likelihood can
also be achieved via the minimising of the mean squared error
(MSE) between the original input and the predicted output of
the decoder network.

Although the above equation 5 does have a variational lower
bound for the overall JEVAE network, it is not the most
ideal case. Consider an alternative loss function involving the
sum of the two KL divergence losses and the overall network
reconstruction loss. The overall reconstruction loss would be
given by EqΘ(z1,z2|x,x−x′)[log pΦ(x|z1, z2)] and ELBO of the
log-likelihood:

logp(x) ≥ ELBO =EqΘ(z1,z2|x,x−x′)[log pΦ(x|z1, z2)]
−KL(qΘ(z1|x)||p(z1))
−KL(qΘ(z2|x− x′)||p(z2))

(6)

Assuming a Gaussian distribution for both latent variables
z1 and z2, the mean squared error between the input and the
overall reconstructed output of the JEVAE is:

ReconLossJEVAE =
1

n

n∑
i=1

(xi − (x′
i + (xi − x′

i)
′))2 (7)

where n is the total number of datapoints, xi is the input for
the overall JEVAE model and
x′
i + (xi − x′

i)
′ is the reconstructed output.

Here, we prove that the overall network reconstruction loss
is therefore identical to the reconstruction loss of solely the
second network. The loss of the second network in the JEVAE
is given by:

ReconLoss2 =
1

n

n∑
i=1

((xi − x′
i)− (xi − x′

i)
′)2 (8)

where xi − x′
i is the input to the second network embedding

section and (xi − x′
i)

′ is the reconstruction of the second
network input.

By expanding Equation 7:

ReconLossJEVAE =
1

n

n∑
i=1

(xi − x′
i − (xi − x′

i)
′)2

=
1

n

n∑
i=1

((xi − x′
i)− (xi − x′

i)
′)2

== ReconLoss2

(9)

Therefore, maximising the overall log-likelihood
EqΘ(z1,z2|x,x−x′)[log pΦ(x|z1, z2)] is equvilant to maximising
the log-likelihood of the second embedding section
EqΘ(z2|x−x′)[log pΦ(x − x′|z2)]. When considering the
computation of the KL divergence for JEVAE, the summation
of two KL losses is likely to lead to an increase in the
weightage towards KL loss in JEVAE. This is due to how
KL divergence is calculated. Since the loss is computed such
that

∑
xϵX qΘ(z|xi) = 1, by including a summation of two

separate KL divergences, the possible range of the loss is
scaled by a factor of 2. Therefore, we propose that the loss
in JEVAE should be scaled back to prevent uneven weightage
towards the KL loss. This can be achieved by keeping∑

xϵX qΘ(z1|x) +
∑

xϵX qΘ(z2|x − x′) = 1. This can be
done by performing a similar implementation to Beta-VAEs
[35] whereby an adjustable hyperparameter is introduced
to balance the latent channel capacity and independence
constraints with the expected log-likelihood. In the case of
JEVAE, since there are two KL losses, we introduce two
hyperparameters α and β. Although these hyperparameters
can be adjusted, we introduce a formulation for the baseline
of these hyperparameters.

The variational lower bound function of the JEVAE can
therefore be simplified to:

ELBO = EqΘ(z2|x−x′)[log pΦ(x− x′|z2)]
− αKL(qΘ(z1|x)||p(z1))
− βKL(qΘ(z2|x− x′)||p(z2))

(10)

where given the number of features in the first embedding
section, Fz1 and the second embedding section, Fz2:

α =
Fz1

(Fz1 + Fz2)
, β =

Fz2

(Fz1 + Fz2)
(11)

Intuitively, we can observe that in the case whereby the
second embedding section is a perfect autoencoder, where (x−
x′)′ == x−x′. The reconstructed input by JEVAE is obtained
via the summation of the outputs of the individual sections,
x′+(x−x′)′. Since (x−x′)′ == x−x′, the reconstruction is
now given by x′+(x−x′) which is equivalent to the original
input x.

C. Optimisation Tightness of Overall Network
Next, we show that the JEVAE framework offers a con-

ditionally tighter ELBO. Through variational inference, a
tractable lower bound can be computed on the log-likelihood
which is also used as the training loss function as shown in
equation 1. For a traditional VAE, the ELBO on log-likelihood
logp(x) is given by:

logp(x) ≥ EqΘ(z|x)[log pΦ(x|z)]−KL(qΘ(z|x)||p(z)) (12)
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Since the performance of the JEVAE model depends entirely
on the second network’s reconstruction as shown in equation
7, from the JEVAE ELBO equation 10, the new ELBO on
JEVAE on the log-likelihood is:

logp(x− x′) ≥EqΘ(z2|x−x′)[log pΦ(x− x′|z2)]
− αKL(qΘ(z1|x)||p(z1))
− βKL(qΘ(z2|x− x′)||p(z2))

(13)

This differs from vanilla VAEs due to the difference in the
log-likelihood terms. Thus, the computation of the tightness
of the lower bound is different as well. The variational lower
bound for JEVAE is conditionally tighter than traditional
VAEs, subject to the following conditions:

logp(x− x′)− EqΘ(z2|x−x′)[log pΦ(x− x′|z2)] ≤
logp(x)− EqΘ(z|x)[log pΦ(x|z)]

(14)

αKL(qΘ(z1|x)||p(z1)) + βKL(qΘ(z2|x− x′)||p(z2)) ≤
KL(qΘ(z|x)||p(z))

(15)

The reason why the proposed JEVAE has conditionally
tighter lower bounds is due to the conditional equation 14
being non-guaranteed in nature. For equation 14, since the
number of latent features used to represent the data is reduced
to half, the second network embedding section is less able
to capture as much information compared to using a larger
feature size. However, the second network aims to approximate
the log-likelihood logp(x − x′), which has the variable input
x′. In the case whereby x′ > 0, the log-likelihood logp(x−x′)
will be less than logp(x) due to the strictly increasing nature
of logarithmic functions. This is beneficial since reduction in
the actual log-likelihood would reduce the difference from
the approximated log-likelihood. But in the case where x′ <
0, logp(x − x′) becomes greater than logp(x), causing the
difference to increase.

Finally, the degree of tightness depends on how great the
difference is between the JEVAE and VAE’s log-likelihood and
expectation for 14. One method to ensure equation 14 is to
set the number of latent variables for the second embedding
section z2 to be equal to the number of latent variables for
a similar counterpart traditional VAE z and restrict x′ ≥ 0.
However, this would result in greater dimensionality in JEVAE
compared to traditional VAE which is not desirable. It is
important to note having higher ELBOs does not always
necessarily indicate a better performing model and vice versa
[36].

The reconstruction log-likelihood log pΦ(x − x′|z2) is de-
pendent on z2, and z2 is represented by the Gaussian prob-
ability distribution qΘ(z2|x − x′), an optimal x′ probability
distribution can be obtained alongside the weights and biases
that maximises the reconstruction log-likelihood.

Immediately, we can observe that one of the benefits of
using the JEVAE is the ability to transform the input of the
maximisation problem into a variable rather than a static value
determined by the known samples. The maximisation of the
overall ELBO is therefore entirely dependent on a variable
input x−x′ rather than a static input x which introduces greater

Fig. 3. Overall dataset architecture of 54 subjects conducting bi-class
motor imagery.

flexibility to the network. Previous work done has shown the
value in introducing learnable inputs to VAEs [37]. In addition,
this results in only having to optimise for the second set of
latent variables z2 which again is dependent on the variable
input x − x′. This differs from the traditional VAE which
relies on the static input x to compute the optimal Gaussian
distribution of the latent vectors alongside the posterior and
likelihood distributions.

The separability of latent features has previously been
shown to benefit feature extraction performance [38], [39].
Thus, the loss function enables the model to split the encoding
work between the two embedding sections to find an optimal
balance.

IV. EXPERIMENTAL SETUP

A. Dataset

To evaluate the effectiveness of the proposed JEVAE com-
pared to traditional VAE in the context of multichannel
EEG signals, we utilise a well-established EEG dataset by
the Department of Brain and Cognitive Engineering, Korea
University [40]. The dataset consists of 54 healthy subjects
(ages 24–35) performing binary class motor imagery (MI)
tasks (Fig. 3), where their EEG signals were recorded us-
ing BrainAmp (Brain Products; Munich, Germany) with 62
Ag/AgCl electrodes at a sampling rate of 1000 Hz. All subjects
remain anonymous and the design of the experiments follows
the protocol set by Pfurtscheller and Neuper [41].

Further details about the data and protocols can be found in
[40]. Each subject participated in two data recording sessions
across two different days with a total of 400 trials. The first
session consists of offline training for recording data and
training a baseline classifier, and the second session involves
online testing where visual feedback is provided to the subject
by decoding live data via the classifier. Each session consists
of 200 trials, split into two phases of 100 trials. Pre-processing
of the data was done following similar work done on EEG data
by Zhang et al [1].

B. Model Training Details

In this study, we focus mainly on EEG signals. EEG signals
have both spatial and temporal features associated with the
relative electrode positions and the activation patterns of the
brain. Thus, when constructing the two network embedding
sections for the JEVAE, the JEVAE has both spatial and
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temporal convolutional layers to take into account the re-
lationships in both domains. After each convolutional layer,
batch normalisation [42] is applied. For some of the models,
a gradient clipping threshold of 0.25 is used.

All models in this study were trained end-to-end using the
Adam [43] optimiser with a mini-batch size of 16, utilising
the ELBO computation equation as shown in 10. For each of
the 54 subjects, we report the test approximated log-likelihood
scores. The EEG data is split into a subject specific 80-10-10
train-validation-test split. The models receive a 62x1000 input
and were trained for 100 epochs per subject with a learning
rate of 0.0005 and a weight decay of 0.00025.

V. RESULTS

A. Model Performance: Extraction of EEG Domain

Since the log-likelihood of the overall network is no longer
dependent on solely on variable x, but is changed to the
log-likelihood logp(x − x′) . Thus, it would not be a fair
comparison to compare the variational ELBOs between the
traditional VAE and the proposed JEVAE. However, we still
display that the approximated negative log-likelihood of JE-
VAE is still on average lower than the conventional VAE. As
most current state-of-the-art VAEs [29] only support regular
image datasets, for fair comparison we only compare against
known VAEs that are tuned towards spatiotemporal data. It
is noted that there is high standard deviation associated with
the negative log-likelihood scores due to presence of outlier
trials and outlier subjects. Subjects with significant deviation
across trials from the overall learnt distribution would face
larger scores, further revealing the presence of intra-subject
variations in the EEG paradigm which may negatively affect
data quality and subsequent classifier training.

In Table I, for the EEG data, the results shows that the
JEVAE consistently outperforms the VAE counterparts with
16 features, significantly improving the performance reaching
L = −74.8. This is significantly higher compared to the best
VAE score of L = −87.2 with a traditional VAE with 8
latent features. At lower numbers of feature levels, JEVAE
performed worse with the exception of the β−JEVAE. At
a lower number of features, the JEVAE might be under-
parameterised due to the splitting of the latent features and as a
result performs poorer compared to the VAE counterparts. As
expected, adding features generally improved the performance
of the JEVAE models compared to the vanilla VAE. This
suggests that JEVAE may scale better with the adding of
features due to the splitting of features between two separate
distributions for better representation generalisation. Using
α and β hyperparameters provide significant performance
benefits. The addition of a gradient clip yielded poorer results
with the exception of the VAE at 16 features, suggesting that
exploding gradients is not an issue when training VAEs in this
context and may even be detrimental towards optimal learning
of the models.

Although it is generally recognized that the addition of a
greater number of features would generally lead to an increase
in the VAE reconstruction performance [38], we note that
the effects plateau off past 16 features. In addition, overly

paramaterizing the VAE network may even become detrimen-
tal for the model’s performance on the evaluation set while
concurrently increasing the overall computational cost [44] of
training the network. This may be explained by the effect of
intra-subject and inter-subject variations on the dataset. The
VAE while attempting to learn a large amount of latent features
would overfit towards the features relating to the training
set. This is due to the training method of the VAE which
encourages reconstruction of the input, causing the network
to learn parameters that best reconstruct what it has already
seen, losing generalizability to the unseen evaluation set due to
inter-subject domain differences. Furthermore, too many latent
features will result in categorical redundancy [45], whereby
the features learnt are not useful towards classification of the
motor imagery signal. This causes many of the latent feature
points to contain noisy data which results in poorer-defined
latent representations.

We also show that the loss function proposed in this study
achieves the best model performance across both datasets
as shown in table II achieving L = −74.8 for the EEG
dataset. When using the conventional reconstruction loss and
the sum of individual network reconstruction losses, the model
performed worse in the EEG dataset achieving L = −84.2 and
L = −101.9 respectively. The individual sum loss performed
worst, suggesting that for data with low signal-to-noise ratio it
is not ideal to separate the embedding section losses. Overall,
this indicates that we do not face performance loss when
optimising solely the second embedding section even for high
signal-to-noise ratio data. We can therefore strongly infer
that the best optimisation strategy would be to optimise the
reconstruction ability of solely the second network embedding
section as shown in the earlier equation 10. Finally, we
compare the proposed method against other common and state-
of-the-art methods used to perform representation learning on
time-series related data (Table III).

Common methods to train VAEs to learn representations
of time-series data include the use of flow-based VAEs [46]–
[48]. Typically, most flow-based VAEs leverage on the use
of normalizing flows [46] in order to perform a density
approximation of p(x). This is achieved via the transformation
of the simple distribution obtained in a normal VAE into a
complex distribution through the implementation of a series
of invertible transformation functions on the distribution [49].
In the work proposed, the simple distribution is similarly
transformed into a complex distribution to better reflect the
true distribution of the input signals. However, rather than
applying functions to transform a single distribution to a
different complex distribution, the proposed method aims
to approximate the true complex distribution via estimated
decomposition of the original distribution into that of simple
distributions that best reflect the true distribution. Low median
and range scores in comparison against flow-based methods
(Table III) further display the methods ability to generalize
across different subjects despite physiological differences.

The main benefit behind this approach is that the features
learnt by the model can be separated into different distributions
rather than constrained into a single complex distribution.
Additionally, normalizing flows tend to focus on low-level fea-
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TABLE I
APPROXIMATED TEST LOG-LIKELIHOOD SCORES FOR MODELS TRAINED ON EEG. LOWER SCORES INDICATE STRONGER MODEL PERFORMANCE IN

RECONSTRUCTING INPUT DATA.

Number of Features VAE VAE + Clip JEVAE β-JEVAE β-JEVAE + Clip
8 -87.2 (±120.94) -90.1 (±122.10) -100.8 (±205.32) -78.6 (±102.46) -135.2 (±400.39)
16 -91.2 (±126.00) -89.0 (±128.84) -82.5 (±105.43) -74.8 (±91.56) -84.0 (±117.75)
32 -104.5 (±130.00) -87.3 (±122.38) -90.5 (±117.33) -78.4 (±98.76) -88.4 (±103.59)

TABLE II
APPROXIMATED TEST LOG-LIKELIHOOD SCORES FOR JEVAE USING DIFFERENT LOSS FUNCTIONS. Default LOSS FUNCTION IS AS PROPOSED IN

EQUATION 10 . THE full LOSS FUNCTION USES THE CONVENTIONAL INPUT RECONSTRUCTION LOSS. Indiv USES THE SUM OF

RECONSTRUCTION LOSSES FOR EACH INDIVIDUAL SECTION.

Loss Function β-JEVAE - default β-JEVAE - full β-JEVAE - indiv
JEVAE (16 Features) -74.8 (±91.56) -84.2 (±110.93) -101.9 (±173.47)

TABLE III
COMPARISON OF AVERAGE PERFORMANCE (NEGATIVE LOG-LIKELIHOOD) ACROSS DIFFERENT METHODS ON EEG DATA.

Methodology Mean (SD) Median Range
VAE (2014) 87.17 (±120.94) 38.69 747.73 (11.15-758.88)
Normalising Flow VAE (2015) [46] 89.19 (±123.09) 43.50 750.11 (8.50-758.61)
beta-VAE (2016) [35] 86.21 (±114.90) 34.83 649.18 (10.15-659.33)
Conditional Planar Flow VAE (2020) [47] 99.01 (±139.00) 43.93 858.49 (11.23-869.72)
Planar Flow VAE-LSTM (2022) [48] 126.22 (±201.88) 55.96 1357.98 (16.64-1374.62)
β-JEVAE (Ours) 74.83 (±91.56) 33.94 478.96 (10.35-489.91)

tures compared to generalizing towards the broader semantic
contents of the input [50], which leads to poorer detection of
anomalies and worse generalization towards new target trials
with different latent domains. By keeping the decomposed dis-
tributions in JEVAE as simple distributions, the decomposed
features learnt are able to improve generalization towards
learning overall features that capture the underlying signal
domains (Table III), which in this case would be defined by
the offline and online learning phases, as well as the motor
imagery classes of left against right (Fig. 8).

B. Feature-Informed Transfer Learning
Given the insights obtained from the extracted features,

we showcase the effectiveness of the proposed JEVAE by
utilizing the features to perform feature-informed transfer
learning (Table IV). We implement feature-informed transfer
learning via utilizing JEVAE as follows. The JEVAE first learn
model parameters that extract the features of the known trials
as well as the portion of data to be used for transfer learning.
Following which, the first 10 evaluation trials are utilized
as an input query to compute the negative log-likelihood of
JEVAE via equation 10. A threshold is then used to determine
the maximum allowable distance between the evaluation trials
against the transfer learning set. Subjects below the allowable
threshold would therefore be hypothesized to benefit more
from transfer learning and fine-tuning will be executed, while
those above the threshold are excluded from fine-tuning. The
evaluation of the resultant classifier with or without transfer
learning is then determined via the remaining 90 held-out trials
from the test set.

From the results (Table IV), the proposed methodology
when used in conjunction with transfer learning is able to
achieve state-of-the-art performance over other methods which

uses adaptive models [1], [17], [52], [55], [57], [58], with
significant improvements to the mean accuracy across subjects
and an overall higher median. The minimum classification
accuracy of the fine-tuned classifier is raised significantly as
well. This strongly indicates the usefulness of the proposed
JEVAE in minimizing the effect of negative post-adaptation
outcomes, which has not been addressed by previous methods
on motor imagery classification (Table IV).

VI. FOUR-CLASS MOTOR IMAGERY

We further validate the effectiveness of the proposed JEVAE
on the BCI Competition IV 2a dataset [59]. The dataset
consists of EEG recordings from nine healthy participants,
including five males and four females. The participants were
instructed to perform four different motor imagery tasks as
follows, left hand (class 1), right hand (class 2), both feet (class
3), and tongue (class 4). The EEG signals were recorded using
a 22-channel EEG amplifier. Two sessions on different days
were recorded for each subject. Each participant performed
288 trials across the four classes for each session. The EEG
signals were recorded at a sampling rate of 250 Hz, and each
trial lasted for 4 seconds. The signals were bandpass filtered
between 0.5 and 100 Hz and notch filtered at 50 Hz. For
this study, we consider the left and right motor imagery trials
across both sessions, removing invalid trials for each subject.

As with the Korea University dataset [40], this dataset
consists of separate EEG signal collection sessions, making
it an appropriate dataset for further validation of the proposed
JEVAE. As such, it is expected that there will be instances in
subjects that display higherly inter-session signal variability
as a result of time variation [8]. We further showcase using
the dataset [59] that even between subjects, the presence
of inter-session variability is highly subject dependent and
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TABLE IV
COMPARISON BETWEEN AVERAGE CLASSIFICATION ACCURACY (%) AND STANDARD DEVIATION OF DIFFERENT METHODS. THE PROPOSED

METHODOLOGY ACHIEVES STATE-OF-THE-ART WITHOUT THE NEED FOR TARGET SUBJECT ADAPTATION AS COMPARED TO PREVIOUS METHODS.

Methodology Mean (SD) Median Range (Max-Min)
MIN2Net (2022) [51] 72.03 (±14.04) 72.00 55.50 (100.00-44.50)
Mutual Inference (2021) [52] 73.32 (±13.55) 74.00 51.00 (98.00-47.00)
Spectral-Spatial CNN (2019) [53] 74.15 (±15.83) 75.00 60.00 (100.00-40.00)
TSMNet (2022) [54] 74.60 (±14.22) 73.00 53.00 (99.00-46.00)
EEG-GAN (2018) [55] 81.03 (±9.97) 81.85 41.73 (98.77-57.04)
DCGAN (2020) [56] 81.85 (±9.85) 81.40 39.84 (98.52-58.68)
Cycle-GAN (2022) [57] 82.34 (±8.98) 81.52 34.05 (99.08-65.03)
Deep CNN (2017) [33] 84.19 (±9.98) 84.50 47.50 (99.50-52.00)
EEGSym (2022) [58] 84.72 (±11.73) 82.50 40.00 (100.00-60.00)
Deep Subject-Adaptive CNN (2021) [1] 86.89 (±11.41) 88.50 44.00 (100.00-56.00)
JEVAE Feature-Informed Transfer Learning (Ours) 87.54 (±10.21) 89.00 37.00 (100.00-63.00)

therefore difficult for current conventional neural network
training paradigms to consider and circumvent this complexity.

The distribution of the learnt features across trials display
the proposed method’s capability in identifying subjects with
higher time-to-time variations with respect to their EEG sig-
nals (Fig. 4). As is expected, certain subjects faced larger
variations when comparing the EEG signal features between
the two separate sessions which may be attributed to the non-
stationary shifts in the individual subject’s neurophysiological
state [60] which may arise due to neuromodulation [61]. While
within each of the sessions, we show that the features learnt
remained relatively stable since we do not expect to see a
significant shift in the subject’s state within the same recording
sitting, lending further credibility to the efficacy of the pro-
posed method. Observing the Savitzsky-Golay moving average
euclidean distance of the second session trials as compared to
the first session, the trials show a significant deviation across
majority of the trials while largely maintaining consistency
within the sessions (Fig. 5).

On the other hand, subjects with high stability in EEG
signals show less variations in their features across different
sessions (Fig. 6. In these subjects, the Savitzsky-Golay moving
average show that the variations of majority of session 2 trials
follow closely to those in session 2 (Fig. 7), with the exception
of the final few trials which the extracted feature values show
a large deviation from.

TABLE V
COMPARISON BETWEEN AVERAGE CLASSIFICATION ACCURACY (%) ON

THE BCI COMPETITION IV 2A DATASET FOR EEG-BASED FOUR-CLASS

MOTOR IMAGERY.

Methodology Accuracy (%)
FBCSP (2008) [11] 66.13
Interval-Valued Aggregate Functions (2021) [19] 69.43
FBCNet (2021) [12] 71.53
EEGNet (2018) [62] 72.32
Tensor-CSPNet (2022) [63] 73.61
Feature-Informed Domain Extraction (Ours) 74.42

Comparing against previous methods on the dataset (Table
V), using the proposed feature-informed domain extraction
methodology outperforms previous methods. Earlier methods
such as FBCSP [11] and interval-valued aggregate functions

[19] rely on traditional algorithms which lack the computa-
tional leverage that modern neural networks offers. Newer
methods based on convolutional neural networks [12], [63]
find greater success in integrating the strengths of the previous
algorithms into the network architecture. Finally, we show
that implementing subject-adaptive ideology by utilizing rep-
resentation learning can achieve superior results. State-of-the-
art performance may be achieved by fine-tuning the network
model without the need for any target labels. As such, the
network learns spatial-temporal domain features which are
specific to the evaluation subject compared to generic features,
enabling the classification capabilities of the network on the
subject to be increased.

VII. DISCUSSION

A. Understanding Poor Adaptation Performance in
Subjects

A qualitative study is done by plotting out the principal
component analysis (PCA) and t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) [64] plots as shown in Figure 9. The
true class labels were used to indicate the left and right motor
imagery trials. Since JEVAE splits the features between the
two individual network models, to obtain the overall features
the two sets of features are concatenated to give the same
feature representation size as the traditional VAE counterpart.

Observing the PCA plots in Figure 8(b) between the tra-
ditional VAE against the JEVAE, it can be seen that the
JEVAE offers a clearer split between the features’ classes.
This is further corroborated by the t-SNE plots in Figure 8(a),
whereby the JEVAE is able to show clear separation between
the left and right motor imagery features. The JEVAE is even
able to capture the features that represent the offline or online
domain during the data collection phase. This is shown via
the clear distinct separation of two separate clusters with equal
number of left and right label classes. Thus, this gives a strong
indication that JEVAE is able to learn better distinguishable
features among the trials.

B. Intra-Subject Inter-Session Variation in Key Features
Finally, we study the features of zi∼q(zi|·) learned across

400 trials for a single chosen subject. Figure 9 and 10 shows an
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Fig. 4. Learned latent features from a specific subject. Differing trends
in the features between the first and second sessions indicate strong
inter-session variability and potentially poor adaptation results. Each
color represents a single feature variable.

Fig. 5. Savitzsky-Golay moving average of the euclidean distance
between session 2 trials against the trials in session 2. A higher distance
indicates further deviation from session 1.

observable difference in the general features between each data
recording phase. Between each of the recording phases, there
are noticeable changes to the general pattern of the learned fea-
tures for every 100 trials. As expected, the largest observable
change can be seen when comparing the features in the offline
phase to the online phase. The changes within the sessions
are likely to be smaller due to the same recording setup used,
however across sessions, users are likely to experience vastly
different feedback leading to a large change.

In the context of brain-computer interface (BCI), The JE-
VAE’s ability to extract the features of the EEG signals further
corroborate with previous research that the non-stationary
features play an important role in defining EEG motor imagery
signals [65]. From phase to phase, the features unrelated to
motor imagery show clear differentiation. Thus, this study
sheds light as to why training a discriminator on different data

Fig. 6. Learned latent features from a specific subject. Similar trends
in the features between the first and second sessions indicate better
generalizability between session trials. Each color represents a single
feature variable.

Fig. 7. Savitzsky-Golay moving average of the euclidean distance
between session 2 trials against the trials in session 2. A higher distance
indicates further deviation from session 1.

splits or subjects may result in vastly different results.
Subjects with similar non-stationary features across signal

recording phases (Fig. 11) would show better performance
compared to subjects with widely varying features [1]. In such
cases, the latent domain shift between trials is smaller and
thus earlier trials form a closer approximation to the current
target trial. Considering that the validation trials come from the
same session as the evaluation set, subjects whose variations
of latent features in the online session remain small would
thus have a higher likelihood of reaching better convergence
and generalizability towards the target. Compared to subjects
whose features vary greatly within the online session (Fig. 9),
the fine-tuning would mistakenly converge towards the latent
domain of the validation trial which does not generalize well
towards the target domain. Therefore, when training motor
imagery discriminators [1], [66], [67], it is vital to take into
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Fig. 8. (a) t-SNE and (b) PCA qualitative comparison between vanilla
VAE and Joint Embedding VAE trained on EEG data. The colors indicate
the true class label. Separate clusters of the t-SNE and PCA plots by
JEVAE display its ability to detect differences in latent domain features
of offline and online recordings.

Fig. 9. Learned features across 400 trials. First 200 trials represent the
offline session and the last 200 trials represent the online session. Each
session consists of two 100 trial phases. Each color represents a single
feature variable.

consideration these features to ensure that the discriminator is
trained with a homogeneous domain (Fig. 11) so that it does
not get confused by the unrelated features leading to poorer
performance.

In previous studies, the distribution of the data across trials
for a subject was assumed to be from the same continuous dis-
tribution [1], [66], [67]. Based on this assumption, a transfer-
learning model that uses earlier trials of the target subject for
fine-tuning was proposed [1]. However, the proposed method
in this study reveals that this assumption does not hold true
across all subjects (Fig. 9) and may even be detrimental
towards subject decoding performance. The features extracted
using the proposed methodology shows that across offline and
online trials, there is a significant difference between the latent
features. This strongly indicates that the trials from the offline

phase have latent domains that do not coincide with the online
phase, which would lead to worse decoding performance if the
model is trained upon offline data and evaluated on online data.

Additionally, even adaptation by using the same session data
may not necessarily yield improved results. When inspecting
the learnt latent features within each offline and online session
(Fig. 9, 4), it can be deduced that there still exists strong
intra-session variability. In the case of the online session
from Figure 9, the learnt latent features vary greatly from
the trials at the start of the session compared to the trials
towards the end of the session. This reflects the significance
behind the non-stationary variations of feature domains in
time series signals such as EEG [68]. When building an
adaptive framework for online neural decoding, simply blanket
choosing earlier trials for fine-tuning towards later target trials
would therefore have negative effects on model performance
for subjects displaying such time-to-time variations. Therefore,
the feature extraction method proposed in this study serves
as an important guide towards detecting these latent domain
shifts in EEG signals, enabling models to become more robust
against such variability.

JEVAE is therefore a useful tool in discriminating between
trials that follow closely to the earlier trials, whether across
sessions or even within the session itself. JEVAE enables the
specific identification of individual subjects that have high
EEG signal variability and therefore may not benefit from
adaptation using earlier trials. This ability is useful in common
instances whereby neural networks may rely on the assumption
that the EEG signal data used for training or fine-tuning
are drawn from the same continuous distribution, therefore
allowing for the training data of the networks to be curated
via feature-informed methodologies such as JEVAE.

C. Potential Implications

Besides having the ability to detect potentially poor adapta-
tion outcomes, the proposed JEVAE also has an added benefit
of detecting anomalous trials. Anomalous trials in EEG motor
imagery classification tasks arise when the signals collected
in such trials either contain high amounts of signal artefacts
or incorrect execution of instructions [69]. In such cases, the
EEG signals collected from these trials would form an outlier
against the overall distribution of trials. However, due to the
abstract nature of biophysical signals, such outliers may be
difficult to detect when there is no obvious outward sign. This
differs from conventional image datasets such as MNIST [70]
or OMNIGLOT [71] where it is a simple task to visually
check for any errors. Variational autoencoders such as JEVAE
are useful for these types of data as they offer an additional
benefit in having the ability to identify anomalous data [72].
Thus, JEVAE through learning the general representation of
the signals across all trials would be able to serve as a good
indicator of when a trial within the subject stands out from
among the rest (Fig. 12).

Beyond motor imagery classification, JEVAE may poten-
tially be applied towards other areas of EEG signal classi-
fication tasks such as emotion classification [73], imagined
speech intent classification [74], and inner speech decoding
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Fig. 10. (a) t-SNE and (b) PCA comparison between vanilla VAE and JEVAE on classifying EEG collection settings. The colors indicate the true
class label.

Fig. 11. Learned latent feature representation of a subject. Similar
patterns in features across the different EEG recording phases indicate
the subject’s data is highly homogeneous. The convergence of the fine-
tuned model will be closer towards the target.

[75]. As JEVAE proposes a model framework that encourages
better latent feature extraction by additionally focusing on
reducing the lossy nature of the general VAE architecture,
we hypothesize that JEVAE will perform exceptionally well in
tasks that heavily involve reconstructing the original input. For
instance in inner speech decoding [75], the network may be
trained to reconstruct the original true sentence that the user is
tasked to read or imagine. As such, the network’s functional
loss may be replaced towards the reconstruction loss between
the original sentence and the decoded sentence given the EEG
signal input. The loss function in such a case would be able to
leverage against the architecture of the JEVAE which is highly
suitable towards minimizing reconstruction loss without the
need for labels.

VIII. CONCLUSION

In summary, this study introduces JEVAE, a novel Varia-
tional Autoencoder (VAE) framework, designed to enhance
lower bounds and improve log-likelihood approximations.
JEVAE employs a secondary autoencoder network to optimize

Fig. 12. Learned latent feature representation of a subject. Spikes
across the trials indicate the presence of anomalous trial data which
does not belong to the same distribution as the overall trials learned.

reconstruction ability based on a tailored input probability
distribution x′. The loss function is simplified to optimize
the latest embedding section. Additionally, the partitioning
of latent variables across two networks grants flexibility in
network design. By representing variables in separate spaces,
JEVAE enhances the learning of probability distributions in
the latent space, presenting a model-agnostic approach that
can extend to other variational inference-based networks [76].
This advancement enables state-of-the-art performance and
opens new possibilities for feature-informed Brain-Computer
Interface (BCI) applications.

However, JEVAE inherits limitations from VAE networks
and their variants, lacking a definitive methodology for deter-
mining the ideal network structure for each embedding section.
Achieving optimal JEVAE performance requires individual
optimization of embedding section structures, considering the
interplay of each section on the entire algorithm. Hence, archi-
tectural optimization often necessitates an empirical approach.
Future research could delve into understanding the dependency
of the first autoencoder network in JEVAE on the second,
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laying a foundational framework for creating an overarching
network structure adaptable to various paradigms.
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