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Introduction: Facial emotion recognition (FER) requires the integration of multi-

dimensional information across various brain regions. Autistic individuals commonly

experience difficulties in FER, a phenomenon often attributed to differences in brain

connectivity. The nature of task-induced functional brain networks could provide

insight into the neuromechanisms underlying FER difficulties in autism, however, to

date, these mechanisms remain poorly understood.

Methods: In this study, the task induced functional brain networks of 19 autistic

and 19 gender, age, and IQ matched non-autistic individuals were examined during

a complex FER task. Electroencephalogram (EEG)-based functional brain networks

were examined, including the investigation of differences in the time-varying whole-

brain functional networks and the exploration of the task induced small-world

properties.

Results: The results showed statistically significant differences in the task-induced

functional networks between autistic and non-autistic adults. Autistic adults

compared to non-autistic adults showed a significant shift in the connectivity-based

FER processing from the lower to the higher EEG frequency bands.

Discussion: These findings may provide evidence at a neural level for the notion

that autistic individuals have a preference for bottom-up lower-level processing,

or alterations in top-down global processing, potentially contributing to the FER

difficulties observed in this population. Results also suggest that functional brain

networks in autism show significantly altered task-induced whole-brain small-world

properties as compared to non-autistic individuals during complex FER. This study

motivates further investigation of the underlying networks-basis of altered emotion

processing in autism.

KEYWORDS

autism spectrum disorder, facial emotion recognition (FER), task-induced functional brain
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1. Introduction

Autism Spectrum Disorder (henceforth autism) is a
neurodevelopmental condition, manifesting in difficulties in
neurotypical communication and interaction, atypical sensory
processing, and focused interests and behaviors (1). Differences
in brain function are thought to underpin differences between
autistic and non-autistic ways of interacting with the world. While
differences in neuroanatomy and atypicalities in the structure of
particular brain regions in autistic and non-autistic adults have
been observed (2, 3), evidence suggests that differences in cortical
connectivity may account, at least in part, for differences between
autistic and non-autistic neurotypes (4–6).

Functional connectivity is therefore necessary to examine
when seeking to explore the neuromechanisms underlying
autism. Electroencephalography (EEG) provides a means to
explore functional connectivity underpinning neural functioning.
The frequency at which neural activity oscillates can inform an
understanding of different cognitive functions, with frequency bands
associated with different sensory, cognitive, and perceptual functions,
and can provide insights into the operation and communication
of brain networks (7). Differences in these frequency bands have
been observed in autistic individuals, potentially explaining the
mechanisms underlying key differences between autistic and non-
autistic individuals. For example, greater gamma synchrony has been
observed in autistic adults, which has been proposed to underlie
differences in sensory processing and interests (8). Studies have found
evidence for both over and under connectivity in autism compared
to non-autistic individuals (5, 9, 10), with a review of connectivity
as measured by EEG and Magnetoencephalography suggesting
that lower frequency bands (i.e., delta, theta, alpha) typically show
under-connectivity, while higher frequency bands (gamma, beta)
show both under- and over-connectivity (11). Expanding on this
work, some research has also investigated differences in local and
global network properties based on small-world principles based
on the notion that brain networks that demonstrate small-world
properties (short path length and high clustering) have efficient
information segregation and integration (12). This work has
identified that in resting state autistic individuals show loss of
small world parameters to random networks (13). Despite these prior
works, the majority of investigation examining the neuromechanisms
of autism have focused on resting-state paradigms, with less research
examining the nature of task-induced functional brain networks
as electrophysiological correlates of autism (10). Thus, we aim to
investigate the differences in task-induced functional connectivity
and whole-brain networks between autistic and non-autistic adults.

Facial emotion recognition (FER), or the ability to recognize
emotions from facial expressions, is a key component of the social-
emotional difficulties experienced by autistic individuals (14). Tasks
requiring FER are therefore of great relevance when examining
task-induced functional connectivity and whole-brain networks
between autistic and non-autistic adults. Emotion recognition
paradigms have been commonly used in literature examining the
neurological underpinning of autism, with previous neuroimaging
and electrophysiological research pointing toward the altered
function of areas in the social brain and limbic system contributing
to FER difficulties (14, 15). Most research to date examining the
neural basis of FER in autism has focused on Event Related Potentials
(ERP). Though varied, this research has identified differences in the

amplitude and latency of the N170 ERP (14), reflecting differences
in the early encoding of facial information (16). Relatively less
research has examined functional connectivity during FER in autism
(14). Research that has examined functional connectivity during
FER in autism has found altered connectivity in theta, alpha and
beta bands, proposed to be reflective of difficulties in automatic
emotion processing and greater voluntary control of emotion
processing (17, 18). In addition, some preliminary work has provided
supporting evidence to suggest that autistic adults show increased
short-range connectivity, alongside reduced long range connectivity
during FER (19).

While this work has provided some potential insights into the
neural basis of FER difficulties in autism, there remains a need to
further examine how EEG-based functional connectivity and the
purported altered network functioning in autism may present during
functional tasks, particularly during tasks that represent difficulties
for many autistic individuals such as FER. In examining functional
connectivity underlying FER and building on previous work, the
investigation of small-world properties, previously only examined
in resting-state (13), may provide further insights into the into the
task-induced properties underpinning FER difficulties in autism.
For this reason, this study sought to investigate the properties of
time-varying EEG-based functional brain networks in 19 autistic
adults compared to 19 non-autistic adults when recognizing complex,
dynamic facial emotions through video stimuli. In doing so, this
study aimed to obtain insights into the altered neural mechanisms in
autistic individuals, potentially explaining the observed differences in
FER between autistic and non-autistic adults. As autistic individuals
often have different cognitive processing styles, likely resulting in
difficulties in tasks such as FER, but comparative strengths in
other areas such as focused attention (8), it was hypothesized that
corresponding explanatory neural signatures in the transient EEG-
based functional brain networks would be found. As noted above, the
literature remains inconclusive as to the nature of altered connections
in autism, as compared to non-autistic individuals, with evidence
being found for both increased and decreased connectivity (11).
Various factors may influence this observation, such as the exact
task being studied, the EEG frequency band under investigation, the
duration of time windows used and most importantly, the brain
regions analyzed in the study. Thus, we take a holistic approach, in
this study, to analyze the complete and widespread functional brain
networks that have significantly reduced or increased connectivity
in autism, as compared to non-autistic individuals. To account
for some of the aforementioned factors, we investigate the nature
of atypical time-varying functional connections in various EEG
frequency bands during the FER task. We also explore the differences
between functional segregation and functional integration properties
of the task-induced brain networks underpinning FER between
the autistic and non- autistic groups. Clustering coefficients (CC)
and characteristic path lengths (CPL), also known as “small world”
properties, have been used in prior studies (13), albeit on resting state
functional brain networks, to investigate the topological differences
between an autistic and non-autistic group. However, few studies
have investigated these properties in the task state, where they are
expected to vary over the course of the task period. Thus, this
study extends these indices to the expected time-varying nature of
functional brain networks that occur during the FER task.
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2. Materials and methods

2.1. Participants and clinical data

Ethical approval for these studies was obtained from the
Human Research Ethical Committee at Curtin University in Western
Australia (HR52/2012) and complied with the guidelines set by the
National Health and Medical Research Council, Australia, and the
Declaration of Helsinki. Participants were provided with information
outlining the aims and procedures of the study prior to providing
written informed consent, with their choice of two cinema tickets or
a $40 gift card as a token of appreciation for their involvement.

Participants examined were derived from a larger sample that
recruited a total of 33 autistic adults and 35 non-autistic adults.
Autistic adults with a self-reported clinical diagnosis of autism
according to the Diagnostic and Statistical Manual for Mental
Disorders 5th Edition (1) or equivalent diagnosis of autism, Asperger
Syndrome or Pervasive Developmental Disorder according to the
DSM-IV-TR (20). Non-autistic adults had no reported psychiatric
conditions and scored below the cut-off score of score 67 (T score 60)
on the Social Responsiveness Scale-2 (SRS-2) (21). Data from 11 non-
autistic participants were subsequently excluded due to comorbidities
(n = 2), high autistic-like traits as measured by the SRS-2 (n = 5)
or incomplete data (n = 2), while data from 8 autistic participants
were also excluded due to having no formal autism diagnosis (n = 4),
significant inattention during the trial (n = 1), and incomplete data
(n = 3). This resulted in a total sample of 24 non-autistic and 25
autistic adults. Eye-tracking and EEG data from sub-samples of this
larger sample have been reported elsewhere (19, 22). An additional
five non-autistic and six autistic adults were excluded from the
current study due to insufficient EEG quality for the analytic methods
employed. Therefore, the data obtained from 19 autistic and 19 non-
autistic adults was utilized in the present EEG and behavioral analysis.
Autistic and non-autistic adults were matched on age, gender, Verbal
Comprehension Index (VCI), Perceptual Reasoning Index (PRI),
and Full-Scale IQ (FSIQ) as measured by the Wechsler Abbreviated
Scale of Intelligence (23). Two subtests (map search and visual
elevator) of the Test of Everyday Attention (TEA) (24) were also
used to characterize the sample, providing measures of visual selective
attention and attention switching. Groups differed significantly on
the 2-min map search and visual elevator sub-tests indicating autistic
adults had poorer visual selective attention and attention switching.
Groups also differed on the SRS-2, indicating that autistic adults had
higher autistic-like traits. Demographic information for the study
sample is displayed in Table 1.

2.1.1. Group behavioral analysis
Statistical analyses of demographic and behavioral data were

undertaken using SPSS Statistics Version 26. Demographic
variables were evaluated to determine if the autistic and groups
were comparable. Continuous demographic variables (age,
IQ, TEA scores) were assessed for normality by employing
Kolmogorov Smirnov tests and were subsequently submitted to
Mann-Whitney U or Independent Samples T-tests. Categorical
data (gender) were submitted to Chi-Square tests. Accuracy of
responses was calculated as a proportion of correct responses,
with each participant receiving a total accuracy score. A Repeated
Measures ANOVA (RmANOVA) was conducted to investigate
differences between groups based on emotion recognition

accuracy. The RmANOVA included Group (autism, non-
autistic) as a between-subject factor, with valence (Positive,
Negative) specified as a within-subject factor. As autistic and
non-autistic groups differed significantly on sub-tests of the TEA,
a secondary analysis was also conducted including these attention
scores as covariates.

2.2. Experimental protocol

The experimental design is the same as reported elsewhere (19,
22). Video stimuli from the Cambridge Mind Reading Face-Voice
Battery (25) of actors expressing complex emotions were used in this
study to evaluate FER. Participants were shown the video stimuli
for a total of 5 s per stimuli. A total of 15 complex emotions
were shown to each participant which consisted of nine negative
(resentful, stern, grave, subservient, insincere, and mortified), four
positive (exonerated, empathic, vibrant, and intimate), and two
neutral emotions (lured and appealing). After the 5 s period,
four words appeared on the screen from which the participant
selected the emotion portrayed. In this study, only positive and
negative emotions were analyzed. A pictorial representation of the
experimental protocol has been shown in Figure 1. EEG data was
collected using 40-channel Compumedics Neuroscan EEG Quik Cap
with Ag/AgCl electrodes at 1,000 Hz. Electrooculogram (EOG) was
collected using four electrodes to record horizontal and vertical eye
movements.

2.3. EEG pre-processing and source
localization

All pre-processing steps were performed using the EEGLAB
toolbox in MATLAB (26). EEG data were downsampled to 250 Hz,
bandpass filtered between 0.1 and 40 Hz and re-referenced to
the common average of all EEG channels. Data were epoched
from -1 to 5 s with respect to the onset of video stimulus.
Noisy channels were identified after visual inspection and re-
interpolated. Independent Component Analysis (ICA) using the
Infomax criterion was subsequently employed for ocular and muscle
artifact removal followed by detrending of each epoch (27). Cleaned
EEG data were used to estimate cortical source signals to reduce the
effect of volume conduction and spatial smearing which affect the
reliability of connectivity estimates. The forward model for source
localization was built using the International Consortium for Brain
Mapping (ICBM-152) template, co-registered in the MNI (Montreal
Neurological Institute) space and a 3-layer boundary element method
(BEM) model using the OpenMEEG toolbox (28). Cortical current
densities were then computed from EEG at 15,002 tessellated
vertices using standardized low-resolution brain electromagnetic
tomography (sLORETA) (29) using standard protocols in the
Brainstorm toolbox (30) in MATLAB, following earlier studies to
investigate cortical dynamics (31).

2.4. Investigation of altered functional
networks

In this analysis, we perform the investigation of significantly
altered functional brain networks at the cortical source level to
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TABLE 1 Participant demographiycs.

Non-autistic Autistic Test of
significance

(n = 19) (n = 19)

Mean SDa Mean SD

Age years 25.76 1.48 25.56 2.49 0.06

Gender (male: female) 13: 6 16: 3 0.25

SRS-2b 48.47 1.41 66.13 2.40 0.00

WASI-2c

VCId 103.53 2.76 101.88 3.21 0.61

PRIe 113.06 3.41 111.19 3.56 0.63

FSIQf 109.06 2.36 107.06 2.52 0.46

TEAg

Map search 1 min 9.88 0.73 7.31 0.77 0.02

Map search 2 min 8.82 0.79 5.88 0.88 0.21

Visual elevator 12.29 0.59 11.00 0.77 0.18

Timed visual elevator 10.71 0.92 9.19 1.19 0.05

aStandard deviation.
bSocial responsiveness scale – 2.
cWechsler abbreviated scale of intelligence.
dVerbal comprehension index.
ePerceptual reasoning index.
fFull scale IQ.
gTest of everyday attention.

FIGURE 1

Experiment Procedure. Experimental stimuli derived from the
Cambridge Mind Reading Face-Voice Battery were presented in a
randomized order. Each trial consisted of a fixation cross presented in
the center of the screen for 1 s. A stimulus video was then displayed
for 5 s. Following the presentation of the stimulus, four word options
were presented. Participants were then required to choose one of
these four options, using a keyboard, that corresponded to the
correct emotion that was portrayed by the actor.

retain as many edges as possible. The source signals of the trials
corresponding to the correct emotion recognition responses were
used. EEG epochs from each participant were grouped into two
conditions of positive and negative valence and averaged. To control
for computational requirements, the EEG source space of 15,002
sources was downsampled to 500 sources spread across the cortex.
As mentioned earlier, the literature contains inconclusive accounts of
the nature of altered functional brain networks in autism, possibly
due to the influence of various factors. This study attempted to
account for some of these factors to obtain a more comprehensive
picture of the nature of altered functional brain networks in autism
during FER tasks. Signals from each source were filtered using a zero-
phase Type II Chebyshev FIR filter into the classical EEG frequency
bands of theta (4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz), and

gamma (31–40 Hz). Signals were also filtered into narrower beta sub-
bands, namely, lower beta (13–18 Hz), middle beta (19–24 Hz), and
upper beta (25–30 Hz). To account for non-linear coupling between
sources, the Synchronization Likelihood (SL) between all pairs of
sources was estimated (32) as the measure of functional connectivity
using the HERMES toolbox in MATLAB (33). Since estimating SL
requires a large number of samples, a duration of 2 s time windows
with 1 s overlap were used. Since higher frequency bands (classical
beta, beta sub-bands, and gamma bands) may also require shorter
durations of time windows to identify significant differences in
functional connectivity, SL was also computed for these frequency
bands in smaller non-overlapping time windows of 1 s. The various
parameters of SL for every frequency band were computed using
the framework provided elsewhere (34). With the goal of mitigating
spurious interactions at the source level, all connections between
pairs of sources ≤ 40 mm apart were removed as done in prior studies
using a similar statistical model on EEG-based dynamic functional
connectivity (35, 36). This was done to prevent over-estimating the
spatial resolution that is typically expected from EEG.

We then used the Network-based Statistics (NBS) toolbox to
identify functional networks that had significantly increased or
decreased connectivity in the autistic group as compared to non-
autistic, for each EEG frequency band. NBS is a statistical tool to
identify the brain networks with significantly altered connection
strengths between groups (37). This method is based on the
assumption that any significant treatment effect (for instance, the
experimental conditions being investigated) would manifest in terms
of mutually connected nodes showing significant differences in
connection strengths instead of randomly occurring connections
between different nodes. The tool first fits a mass univariate statistic to
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each edge to assess the difference of its connection strength between
the two groups, endowing each edge with a test statistic. One-sided
Student’s t-tests were used to create two types of mass-univariate
models testing for significantly decreased (autistic < non-autistic)
and increased (autistic > non-autistic) connectivity in the autistic
group compared to the non-autistic group. A hyperparameter in
terms of a statistical threshold was then used to identify the edges
with suprathreshold test-statistics, which were then submitted to a
permutation-based testing to control for the family-wise error rate
(FWER). Within each permutation, the membership labels of the
connectivity matrices were randomly shuffled, the test-statistics of
each edge recomputed for each permutation and submitted to the
same statistical thresholding. Permutations were repeated 5,000 times
and at each permutation, the size of a significantly altered network
was estimated as the number of mutually connected edges within
that altered network. Significance values were then estimated as the
proportion of randomly permuted networks that were larger than
the original network in favor of the null hypothesis and checked
for a significance level of α = 0.05. The only hyperparameter in this
method was the aforementioned statistical threshold. It is therefore
recommended that different levels of statistical threshold be tested
(37). In this study, both models were evaluated at three thresholds,
namely, T = 2.5, 3.1, and 3.5, that were empirically observed to
result in reasonable amounts of variation in the network sizes of
the identified significant networks at each threshold. To make the
results more immune to the choice of any particular value of this
hyperparameter, we report the combined results obtained across all
the three thresholds.

2.5. Investigation of task induced
small-world topology

From the results obtained from the above study in section “2.4.
Investigation of altered functional networks,” it was determined
that graph-theoretical indices quantifying the topology of the whole
brain networks were required to effectively compare the differences
between the two groups. Human brain networks have been reported
to exhibit small-world properties that encode a balance between
functional segregation and functional integration (12, 38). This study
explored the hypothesis that an altered cognitive style of complex
FER in autistic adults would manifest as an altered trend in the
transient small-world properties of their functional brain networks
as compared to non-autistic adults. For this purpose, the task-
induced, transient functional brain networks were estimated using
the following steps.

Instead of a pairwise source-level analysis as done previously, for
estimating topological metrics from the functional brain networks,
we estimated the pairwise region-level functional connectivity which
also helped in reducing the impact of potential localization errors at
the source level and reducing the complexity of the overall analysis.
Moreover, it provides a global perspective of the (time-varying)
topology of the task-induced functional brain networks. For this
purpose, the Desikan-Killiany (DK) atlas (39) was used to define
68 cortical regions of interest (ROIs) which served as nodes for
subsequent graph-theoretical analyses. The mean time series of all
the voxels within an ROI (hereon referred to as “node”) was used
to estimate its representative signal in time windows of 2 s with 1 s
overlap. Functional connectivity was then estimated as described in

section “2.4. Investigation of altered functional networks” using SL in
the various EEG frequency bands mentioned above.

Binary graph-theoretical techniques were then used to extract
indicators of functional segregation and functional integration for all
participants. The conversion of weighted to binary graphs requires
thresholding the edges, however, the same threshold when applied
to both groups would typically result in different levels of sparsity
which might then bias the results of graph-theoretical measures (13).
Therefore small-world parameters, namely CC and CPL (40, 41),
were estimated for the same sparsity level across all participants from
0.05 to 0.85 with increments of 0.05, similar to previous studies (13).
CC values were first computed for each node as the fraction of the
node’s neighbors which were also mutual neighbors of each other
(40, 41). The mean CC values for a network was then computed
as the average of the CC values across all the nodes. CPL values
were computed as the average shortest path length between all pairs
of nodes in the network, where the shortest path length between
a pair of nodes was computed as the shortest number of hops
or edges between them (40, 41). Since the absolute values of the
above metrics can be quite arbitrary and difficult to compare across
individuals, each value obtained was then normalized with those
computed from randomized surrogate models. The randomized
surrogate models were created using the Maslov-Sneppen rewiring
algorithm which has the advantage of retaining the same edge
density in the randomized networks as in the original network (42).
An ensemble of 100 randomized surrogate models were computed
for every binary graph obtained above and used to normalize CC
and CPL values. The above steps were performed using Brain
Connectivity Toolbox in MATLAB (40). Lastly, the CC and CPL
values were integrated across all the levels of sparsity to get a single
representative statistic.

The normalized and integrated CC and CPL values were
subsequently analyzed using a series of RmANOVAs. As different
frequency bands were hypothesized to serve different neural
functions, separate RmANOVAs were conducted within each
frequency band (theta, alpha, beta, gamma, lower beta, middle
beta, and upper beta). Each RmANOVA included GROUP (autistic,
non-autistic), VALENCE (Positive, Negative), and TIME WINDOW
(time windows one through four). Repeated measures were
conducted on the latter two factors with GROUP specified as the
between-subject factor. As autistic and non-autistic participants
differed significantly on two sub-tests of the TEA, all analyses
were conducted including these two measures as covariates
to account for these differences. For all RmANOVA analyses,
Mauchly’s Test of Sphericity was conducted to test for assumptions
of sphericity. Where assumptions of sphericity were violated
Greenhouse Geisser (when ε is less than 0.75) or Huyhn-
Feldt (when ε is greater than 0.75) corrections were applied.
Where effects were significant, Bonferroni corrected pairwise
comparisons were conducted. Partial eta squares are provided as the
measure of effect size.

3. Results

3.1. Behavioral analysis

Univariate analysis using independent samples t-tests showed
autistic adults had lower accuracy to positive emotions [t(36) = 2.40,
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TABLE 2 Summary statistics of the identified networks with statistically significantly altered connectivity strengths identified in task 3.2 Investigation of
Altered Functional Networks.

Valence Decreased connectivity autistic Increased connectivity autistic

Theta (4–7 Hz) Positive Altered networks found No altered networks found

Negative Altered networks found No altered networks found

Alpha (8–12 Hz) Positive Altered networks found No altered networks found

Negative Altered networks found No altered networks found

Beta (13–30 Hz) Positive Altered networks found No altered networks found

Negative No altered networks found Altered networks found

Lower beta (13–18 Hz) Positive Altered networks found No altered networks found

Negative No altered networks found No altered networks found

Middle beta (19–24 Hz) Positive Altered networks found No altered networks found

Negative Altered networks found Altered networks found

Upper beta (25–30 Hz) Positive Altered networks found No altered networks found

Negative No altered networks found No altered networks found

Gamma (31–40 Hz) Positive No altered networks found Altered networks found

Negative No altered networks found Altered networks found

This table summarizes significant between group differences in each frequency band. Emotions which did not result in any significantly altered networks are marked with “No altered networks
found.”

p = 0.02], but not negative emotions [t(36) = 0.23, p = 0.82]
compared to non-autistic adults. When controlling for the effect
of attention using multivariate analysis a similar, although, non-
significant, effect was found, with a non-significant trend for
an interaction between group and valence [F(1, 33) = 3.78,
p = 0.06, η2

p = 0.10], showing that autistic adults had a lower
accuracy to positive emotions compared to non-autistic adults
(p = 0.03). No main-effect of group [F(1, 33) = 3.01, p = 0.09,
η2

p = 0.08] was found.

3.2. Investigation of altered functional
networks

The results of this study are tabulated in Table 2. The lower
frequency bands, theta and alpha, both dominantly had altered
networks with significantly decreased connectivity in autistic adults
compared to non-autistic adults for both emotions. The beta
band consisted of altered networks with significantly decreased
connectivity in the positive emotion but increased connectivity for
negative emotions. The lower-beta band showed altered networks
with only significantly decreased connectivity for positive emotions.
For the middle beta band, altered networks with reduced connectivity
for the autistic group, compared to the non-autistic group, were
found for both emotions. Negative emotions also showed networks
with increased connectivity for the autistic group compared to the
non-autistic cohort. For the upper beta band, only altered networks
with reduced connectivity for positive emotions were observed.
The gamma band showed altered networks with only increased
connectivity for both emotions in autistic adults as compared to non-
autistic adults. The full set of results obtained have been tabulated in
Supplementary material 1.

Figure 2 shows exemplary plots for functional networks found
to have significantly altered connectivity for the autistic adults as
compared to the non-autistic adults for the various EEG frequency
bands. All plots were obtained using BrainNet Viewer toolbox (43).

The plots only show binary connections representing the edges with
significantly altered connection strengths in various time windows
within the 5 s FER task period. The exemplary plots show some of the
altered networks in the autistic group as compared to the non-autistic
group with decreased connectivity in the theta, alpha, beta, middle
beta, and upper beta bands for the positive emotions. The gamma and
lower beta bands show some of the altered networks with increased
connectivity in the autistic group as compared to the non-autistic
cohort for positive emotions. It is evident from the figure that the
altered connections are spread out across the entire brain and contain
many long-range and short-range connections. This could imply an
altered task induced topology resulting in the observed differences in
the time-varying functional brain networks. Thus, in further analysis,
we highlight the importance of aggregating the topological properties
of the altered connections to get a better summary of the nature
of altered brain networks seen during FER in the autistic group as
compared to non-autistic individuals.

3.3. Investigation of task induced
small-world topology

For CC values, no main effects of group or time window were
found in any frequency band. Similarly, no main effects of valence
were observed for theta, middle beta, upper beta or gamma bands.
Main effects of valence were found in the beta [F(1, 33) = 4.22,
p = 0.048, η2

p = 0.11], and lower beta [F(1, 33) = 6.31, p = 0.017,
η2

p = 0.16] bands. Bonferroni corrected comparisons for this effect
in the beta band found no significant differences between CC values
of positive and negative emotions. However, in the lower beta
band, Bonferroni corrected pairwise comparisons showed that CC
values were larger for positive emotions than compared to negative
emotions (p < 0.01). A main effect of valence was also found in the
alpha band [F(1, 33) = 7.53, p = 0.010, η2

p = 0.19], as well as an
interaction between group and valence [F(1, 33) = 7.41, p = 0.010,
η2

p = 0.18], with Bonferroni corrected comparisons revealing that
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FIGURE 2

Significantly altered brain networks in the autistic (autistic) group
compared to the non-autistic group. The figure shows exemplary
plots of networks with significantly altered functional connection
strengths from various time windows during the FER task for positive
emotions in the various EEG frequency bands for task 3.2 Investigation
of Altered Functional Networks. The plots contain altered brain
networks found for the theta band in 1–3 s time window with
decreased connectivity (p = 0.035); with decreased connectivity in the
alpha band in 3–5 s time window (p = 0.023); with decreased
connectivity in the beta band during 1–2 s (p = 0.029) and with
increased connectivity in the gamma band in the 3–5 s time window
(p = 0.040). Also shown are examples of altered networks in the beta
sub-bands with decreased connectivity in the autistic group
compared to the non-autistic cohort in the lower beta band
(p = 0.025) in 1–2 s time window, decreased connectivity in the
middle beta band (p = 0.015) during 1–3 s time window and
decreased connectivity in the upper beta band (p = 0.036) during
1–3 s time window. The plots only show binary connections on the
axial plane, connecting nodes lying in varying depths. The sizes of the
nodes are proportional to the number of nodes connecting them. All
plots were obtained using BrainNet Viewer toolbox (43).

autistic adults had greater alpha CC values than non-autistic adults
when responding to positive emotions (p = 0.025). A significant
interaction between group and time window [F(2.84, 93.84) = 3.00,
p = 0.037, η2

p = 0.08], and a three-way interaction between valence,
time-window and group [F(3, 99) = 3.96, p = 0.010, η2

p = 0.01],
was found in the middle beta band. Autistic adults had higher CC
values in the second time window (1–3 s) compared to non-autistic
adults (p = 0.031) for negative emotions, and for positive emotions
had lower CC values in the third time window (2–4 s) compared
to non-autistic adults. A significant interaction between group and
valence was found in the upper beta band [F(1, 33) = 6.18, p = 0.018,
η2

p = 0.16], indicating that autistic adults had greater upper beta
CC values during positive emotions than compared to non-autistic
adults. A significant interaction between valence and time window
was also found in the lower beta band [F(3, 99) = 2.77, p = 0.046,
η2

p = 0.07], with Bonferroni corrected comparisons showing that
CC values in the lower beta band were higher for positive emotions
compared to negative in time windows three (p = 0.010) (2–4 s) and
four (p = 0.006) (3–5 s). Figure 3 shows box plots comparing the
normalized and integrated CC values for the autistic and non-autistic
groups for all time windows, frequency bands, and valence.

For CPL values, a main effect of group was observed for the
theta band [F(1, 33) = 8.66, p = 0.006, η2

p = 0.21], indicating that
regardless of emotion valence, autistic adults had lower theta CPL
values than non-autistic adults. For the gamma band, a significant

interaction between valence and time window [F(3, 99) = 2.83,
p = 0.043, η2

p = 0.08], and a three-way interaction between valence,
time window and group was also found in the gamma band [F(3,
99) = 3.32, p = 0.023, η2

p = 0.09], with Bonferroni corrected
comparisons showing that this was driven by autistic adults having
higher CPL values at time window one (0–2 s) compared to non-
autistic adults (p = 0.021). A non-significant interaction between
group and valence was also found in the upper beta band [F(1,
33) = 3.59, p = 0.067, η2

p = 0.10], this interaction showed that while
non-autistic adults had greater upper beta CPL values during positive
emotions compared to negative (p = 0.007). Also, this same pattern
was not observed in autistic adults (p = 0.927). The full set of results
have been tabulated in Supplementary material 2. Figure 4 shows
box plots comparing the normalized and integrated CPL values for
the autistic and non-autistic groups for all time windows, frequency
bands, and valence.

It is also important to note that no significant effect of
attention scores or any interactions between attention scores and
group were found for any of the CC or CPL values across all
frequency bands. Thus, even though there was a difference in

FIGURE 3

Plots of normalized and integrated CC values for the autistic and
non-autistic groups. The figure shows the normalized and integrated
CC values plotted for all frequency bands, time windows and
emotions (negative and positive) as box plots for the autistic and
non-autistic groups.
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attention scores seen between the two groups as measured by
the TEA scores, there is reasonable evidence to suggest that the
networks-based differences observed in this study are attributable
to differences in emotion processing rather than attention. Thus,
in the next section, interpretations of the differences in network
topologies between the two groups seen in this section are
discussed assuming that differences in emotion processing was a
significant contributing factor to the different neurophysiological
mechanisms underlying FER.

4. Discussion

Given that differences in brain function are thought to underly
differences in cognitive neurotypes, it was hypothesized that
functional brain networks in autistic adults would show altered
properties which are widespread across the brain, as compared
to non-autistic adults. A suitable and rigorous statistical method
was used to analyze such significantly altered brain networks
in autistic compared to non-autistic adults using SL as a non-
linear method of estimating functional connections. Based on the
observations of widespread altered functional networks across the
entire brain, a second analysis was undertaken to quantify the
differences in the time-varying network topology between the two
groups using graph-theoretical indices of functional segregation and
functional integration.

4.1. Shift in emotional processing to
higher frequency bands in autism

There remains considerable heterogeneity across studies with
regards to the altered strength of functional connections between
autistic and non-autistic individuals, with previous research finding
evidence for both decreased and increased connectivity across various
EEG frequency bands (9, 10). The observations in this study
clearly showed evidence of widespread altered transient networks
which could imply differences in underlying brain network topology
between autistic and non-autistic adults. This gives more evidence
to the hypothesis that widespread altered underlying networks
may be a significant contributor to differences in cognitive styles
and hence to FER.

Overall, altered transient networks with reduced connectivity in
the lower frequencies were observed, while the higher frequency
bands such as the beta and beta sub-bands showing altered
networks with both increased and decreased connectivity. The
highest frequency band, gamma, showed altered networks with only
increased functional strengths in the autistic group as compared
to the non-autistic group. We postulate that these observations
could reflect a shift in emotion processing in the autistic group
from the lower frequency bands to the higher frequency bands.
The latter showed finer and more varied differences depending on
the frequency bands which could possibly indicate complementary
neural mechanisms in autism to account for the networks with
reduced connectivity in the lower frequency bands.

An explanation for this observation may be drawn from
recent developments in cognitive frameworks in autism. Cognitive
alterations regarding what has been called weak central coherence
(44), local processing bias, or enhanced perceptual functioning

FIGURE 4

Plots of normalized and integrated CPL values for the autistic and
non-autistic groups. The figure shows the normalized and integrated
CPL values plotted for all frequency bands, time windows and
emotions (negative and positive) as box plots for the autistic and
non-autistic groups.

(45) are today rather understood as a cognitive style, possibly
being associated with impairment, but surely being associated with
strengths (46). This cognitive style entails a privileged access to parts
and details through hypersensitivity, and a default for enhanced local
processing of stimuli. It has been observed that while non-autistic
individuals show a default top-down or global processing mechanism
(47), the balance between local and global visual processing seems
to be different for autistic individuals, i.e., autistic individuals show
preference to local information processing and typically slower
global processing (48). The gamma band has been shown to encode
the perception of facial features and facial orientation as well as
emotional perception (49–51). Thus, it is reasonable to argue that
the observed shift indicates that autistic adults may rely more on
emotional perception using lower-level features instead of more
abstract emotional experience which seems to be a property of lower
frequency bands.

These results are supported by previous studies which have
shown that autistic individuals may employ atypical methods to
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process emotional face stimuli and a bias toward processing of local
facial features (14). Similarly, a preference for high-pass frequency
features has been found in FER studies previously (52), with this
preference consistent with altered cognitive style hypotheses (44).
Decreased connectivity in the lower EEG frequency bands was
also reported earlier on a similar sample using imaginary part of
coherency (19), and a recent review found that lower connectivity
seemed to be dominant in the lower frequencies while higher
and lower connectivity appeared to be dominant in the higher
frequency bands (11). An absence of the modulation of theta-band
coherence during an emotion recognition task in autistic children
compared to non-autistic children was found (53), with the severity
of social impairment found to be related to the absence of cortical
connectivity modulation of the theta band. These prior studies seem
to support the hypothesis of an altered style in FER in autism.
If this is true, then at least at the group level, evidence can be
found to support theories in clinical psychology in the brain’s
dynamic task-based reconfiguration of neural resources using the
EEG cortical source space.

4.2. Altered small world topology in autism

To the best of our knowledge, this is the first study showing
altered small world dynamics during a complex FER task in
autistic individuals using video stimuli which may have increased
ecological validity (54). As widespread altered networks in the
autistic group were observed compared to the non-autistic group,
in the preceding analysis, graph-theoretic indices summarizing
the time-varying topology of the functional brain networks were
further analyzed. The significant interaction effects of time window
with other co-factors such as group and valence for both CC
and CPL values observed in the frequency bands demonstrate
that FER is indeed a dynamic cognitive process. There was no
common temporal trend of altered small world dynamics across
the various EEG frequency bands in the autistic group compared
to the non-autistic group observed. Our results on CC values only
showed interaction effects of GROUP including observations for
transiently increased and decreased CC values in autistic adults.
Thus, given the absence of any main effects of GROUP in CC
values but the presence of various interaction effects, it is more
likely that this cohort could be employing non-trivial and possibly
diverse complementary neuromechanisms that are atypical when
compared to non-autistic individuals. In CPL values, a main effect
of GROUP was observed in the theta band, wherein autistic adults
were seen to have lower CPL values than non-autistic adults,
possibly alluding a loss in global integration dynamics to random
networks, similar to previous findings in resting state studies (13).
However, interaction effects of GROUP were also found with
other factors, where transiently increased CPL values were also
observed. This could indicate a possibility of complex and diverse
altered neural mechanisms employed by the autistic individuals
which needs further investigation with more sophisticated tools.
Overall, the findings based on altered small world dynamics,
show that the time-varying brain network topology employed
by autistic adults seemed to differ significantly from the non-
autistic cohort, across multiple EEG frequency bands—possibly
encoding different spatio-temporal pathways for different underlying
neuromechanisms.

4.3. Limitations and future work

Several factors must be considered when interpreting the
findings of this study. Firstly, the sample was modest and
future investigation should seek to investigate these findings
in a large sample. Autistic and non-autistic participants also
differed significantly on attention as measured by the TEA.
Differences in attention in autism are well documented (55),
therefore it is perhaps not surprising that these differences
were observed. While analyses accounted for these differences
and did not appear to influence the results, the reader should
interpret the results with caution. Future research may benefit
from accounting for potential attentional differences in autism.
A small selection of complex emotional stimuli was utilized,
limiting generalizability of the findings. Future efforts should
therefore contain a larger sample size of complex facial emotions.
Graph-theoretical indices between the groups for positive and
negative emotions were explored in the current study. Future
efforts will also compare these mechanisms with those derived
from neutral emotions for further distinguishing between neutral
and other emotions. A few methodological limitations need to
be considered. The selection of the length of the time window
used to analyze the dynamics of functional brain networks could
influence the results obtained, especially in the investigation of
dynamic functional connectivity as well as small world analysis.
Attempts were made to address this limitation in our work by
aggregating the results across time windows of varying lengths,
especially for the higher EEG frequency bands in section “3.2.
Investigation of altered functional networks.” The results of the
small world dynamics analysis presented should be treated with
caution, as it is quite possible that these results were highly
dependent on the choice of atlas used to define the nodes, node
signals and the measure of functional connectivity and small-
world properties. Future studies should therefore also consider
evaluating the small-world dynamics using different atlases and
other estimators of functional networks, functional segregation and
functional integration. Lastly, to further investigate the relationship
between network-based biomarkers and behavioral differences
between autistic and non-autistic individuals, the correlation between
the individual measures should be studied. This would involve
collecting sufficient EEG data for each individual as EEG-based
connectivity measures need a large amount of data for a more
reliable estimate.

5. Conclusion

This study explored the altered nature of transient functional
brain networks involved in FER in autistic and non-autistic adults.
The neuromechanisms involved in FER in autistic adults seem to
be altered. In accordance with previous resting-state research, our
findings could be taken to suggest a shift in connectivity-based
emotion processing from lower to higher frequency bands and a loss
of small world parameters, especially global integration, to random
networks during FER. Findings also suggest that autistic adults
may have a less efficient transfer of information required for FER,
with a preference for bottom-up lower-level processing which may
contribute to observed FER difficulties.
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