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Abstract— Feature extraction is very important to EEG-
based brain computer interfaces (BCI) in helping achieve high
classification accuracy. Preprocessing of EEG signals plays
an important role, because an effective preprocessing method
will help enhance the efficiency of the feature extraction. In
this paper, sparse component analysis (SCA) is employed as
a preprocessing method for EEG based BCI. A combined
feature vector is constructed. This feature vector consists of
a dynamical power feature and a dynamical common spatial
pattern (CSP) feature. The dynamical power feature is extracted
from selected SCA components, while the dynamical CSP
feature is extracted from raw EEG data. Using the presented
preprocessing and feature extraction method, we analyze the
data for a cursor control BCI carried out at Wadsworth Center.
Our results show that SCA preprocessing is the most effective
in extracting a component which reflects the subject’s intention,
and demonstrate the validity of SCA preprocessing for the
enhancement of feature extraction.

I. INTRODUCTION

Brain-computer Interface (BCI) provides an alternative
communications and control method for those people with
severe motor disabilities. The core component in a BCI
system is an effective translation mechanism which converts
brain activities into commands. Particularly, as a non-invasive
BCI, EEG-based BCI measures specific EEG activities, ex-
tracts features and translates these features into command
signals to control cursor movement or devices (for instance,
robotic arm, wheelchair, etc.). Until now, researchers have
developed many effective approaches for EEG-based BCI
using different features, for example, event-related potential
(ERP), slow cortex potential (SCP), movement-related poten-
tial (MRP), event-related (de-)synchronization (ERD/ERS),
common spatial pattern (CSP), etc.

Preprocessing of EEG signals plays an important role in
EEG-based BCI. A good preprocessing method can improve
the performance of BCI (e.g., accuracy rate and speed, or
information transferring rate (ITR)). Until now, ones have
developed or used several preprocessing methods in EEG-
based BCI including Spatial filtering, temporal filtering,
Principle Component Analysis (PCA), Independent Com-
ponent Analysis (ICA), etc. Spatial filtering method is a
common preprocessing method, in which alternative spatial
filters include a standard ear-reference, a common average
reference (CAR), a small Laplacian reference (3 cm to set
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of surrounding electrodes), a large Laplacian reference (6 cm
to set of surrounding electrodes), a local average technique
[1], [2]. Many methods, e.g, low pass filter, time averaging,
downsampling, baseline correction, etc, belong to temporal
filtering methods [3]. PCA is a kind of de-correlation method,
which can be used as a signal preprocessing method in many
fields including BCI [14]. ICA is often used to find the
independent components in EEG [4], [5], which is also an
alternative preprocessing method in BCI [6].

In this paper, we introduce sparse component analysis
(SCA) or sparse factorization as a preprocessing method for
EEG-based BCI. EEG data matrix can be factorized into the
product of two matrices by SCA, one of which is the mixing
matrix, and the other is the source component matrix[9],
[10]. Based on the source component obtained from the
spare factorization, we define a dynamical feature vector
consisting of power and CSP features. In the extraction of
these dynamical features, time-bin selection is introduced.
The power feature is extracted from SCA components, and
the CSP feature is extracted from raw EEG data. We give
offline analysis on a cursor control BCI data set, which
was provided by Wadsworth Center for BCI competition
2003. We demonstrate the validity of SCA preprocessing and
feature extraction method by comparing with several other
methods in the literature.

The remainder of this paper is organized as follows. In
section 2, we present the SCA preprocessing method for
EEG-based BCI, and the feature extraction. In section 3, we
present off-line analysis results for the cursor control dataset
mentioned above. Discussions and conclusions are given in
Section 4.

II. METHODS

The method presented in this section consists three parts,
preprocessing, feature extraction and classification. The
processing method is SCA, the feature vectors consists of
dynamical power and CSP features, and classification method
is a standard SVM.

A. Data description

An EEG-based cursor control experiment was
carried out in Wadsworth Center. The recorded
data set was available from BCI Competition 2003,
which can be downloaded from the web site:
http://ida.first.fraunhofer.de/projects/bci/competition. The
details of the experiment can be found in the web. We give
a brief description as follws. During the experiment, the
subjects sat in a reclining chair facing a video screen. They
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used mu or beta rhythm amplitude (i.e., frequencies between
8-12 Hz or 18-24 Hz, respectively) to control vertical cursor
movement toward the vertical position of targets located at
the right edge of the video screen. There were four target
positions. The Data were collected from each subject for 10
sessions of 30 min each. Each session consisted of six runs,
separated by one-minute breaks, and each run consisted of
about 32 individual trials. Thus the total trial number was
192 in each session.

B. SCA preprocessing

First, we assume that EEG signals can be modelled by the
following linear model neglecting additive noise.

X = AS, (1)

where X = [x(1), · · · ,x(N)] = [xi(j)]n×N is a known EEG
data matrix of which each row is an EEG channel signal,
N is the number of samples, A = [a1 · · ·am] is a n × m
mixing constant matrix, S = [s(1), · · · , s(N)] = [si(j)]m×N

is a source components matrix, of which the rows represent
brain sources, artifacts, etc. If n is not too large, we assume
that m > n, which implies that the model is overcomplete.

In this paper, a SCA approach is used to find the mixing
matrix and source components. This approach contains two
parts: the first estimates the mixing matrix, the second
estimates source components. As our analysis shown in [10],
sparsity of source components plays a key role in this ap-
proach. Although EEG signals and their source components
are not sparse in the time domain, they are sparse in the
time frequency domain. The following discussion mainly
deals with the time frequency domain. To obtain sparser time
frequency representation, we apply wavelet packets transfor-
mation to (1) instead of a general wavelet transformation.
Noting that the wavelet packets transformation is a linear
transformation, we can obtain

X̃ = AS̃, (2)

where each row of X̃ is a time-frequency representation of
a corresponding EEG channel signal in X, each row of S̃
is a time-frequency representation of corresponding source
components in S.

Algorithm outline 1: Estimating the mixing matrix
Step 1. De-noise by deleting the columns in X̃ with their

2-norm less than a positive constant e.g. M
3 , where M is the

maximum of 2-norms of all the columns, a submatrix of X̃
is obtained denoted as X̄;

Step 2. Normalize the data column vectors of X̄ to length
one;

Step 3. Set a source number m and begin a K−means
clustering iteration followed by normalization to estimate the
mixing matrix denoted as Ā.

Since the estimated mixing matrix Ā is not a square matrix
with its column number being larger than its row number,
the source component matrix can not be obtained by solving
linear equations. In this paper, we first estimate the time
frequency representation matrix S̃ in (2) by solving a opti-
mization problem, and then calculate the source component

matrix S using an inverse wavelet packets transformation.
That is, for the estimated mixing matrix Ā in (1), the time
frequency representation matrix S̃ of the source component
matrix can be found by solving the following optimization
problem:

min
m∑

i=1

N∑

j=1

|s̃i(j)|, subject to ĀS̃ = X̃. (3)

Thus we have
Algorithm outline 2:
Step 1. Transform the n time course signals (n rows

of X) into n time-frequency signals by a wavelet packets
transformation, a time frequency matrix X̃ is obtained.

Step 2. Estimate the mixing matrix Ā ∈ Rn×m′
using the

Algorithm 1.
Step 3. Use the estimated mixing matrix Ā and the matrix

X̃, estimate the time frequency representation matrix S̃ in
(2) by solving the optimization problem (3).

Step 4. Reconstruct source component matrix S in (1)
using the inverse wavelet packets transformation. End.

C. Power feature extraction

Before extracting features, we define ten time bins for each
trial which are partially overlapped. Each time bin contains
120 samples, and every two neighboring bins are overlapped
by 92 samples. Hence the total number of the used samples
is 372. In this section and section 2.4, we extract power and
CSP features based on these ten time bins.

Through SCA preprocessing, we obtain m components
(m = 15 in this paper). For every components, we extract
two power features in each time bin as follows, one is from
µ rhythm, the other is from β rhythm,

PFµ
i =

∑

f∈[11,14]

Pi(f), PF β
i =

∑

f∈[22,26]

Pi(f), (4)

where Pi(f) is the power spectral of the component in the
i − th time bin, i = 1, · · · , 10.

In this paper, we also implement ICA and PCA methods
to compare with SCA for preprocessing. The power feature
extraction of ICA and PCA components is similar to what is
described above. However, the number of ICA components
is equal to n (n = 9 in this paper), so is the number of PCA
components.

Until now, we have extracted two power feature vectors
based on µ sand β rhythm, respectively. Their entries are
defined in 10 time bins. In the following, we perform a
selection of time bins.

We only use the features of 5 time bins and construct the
power feature vectors.

PFµ(i1, · · · , i5) = [PFµ
i1

, · · · , PFµ
i5

], (5)

PFβ(i1, · · · , i5) = [PF β
i1

, · · · , PF β
i5

]. (6)

We now perform time bin selection using nearest neigh-
borhood classifier with Euclidean distance (described in the
next subsection) based on the data of training sessions 1-
6. Noting that we have total C5

10 combinations of five time



bins when we choose 5 from 10 ten time bins. We chose
the combination of five time bins which corresponding to
the highest classification rate. Denote the indices of the five
selected time bins as Iµ

1 , · · · , Iµ
5 corresponding to the power

of µ band. Similarly, considering β rhythm based power
feature, we can also choose five time bins with their indices
denoted as Iβ

1 , · · · , Iβ
5 . The power feature vectors with time

bin selection PFµ(Iµ
1 , · · · , Iµ

5 ) and PFβ(Iβ
1 , · · · , Iβ

5 ) will be
used in our combined features.

D. CSP feature extraction

Since using power feature alone cannot give us satisfying
result in offline analysis, we combine it with CSP feature.

First, we extract CSP feature based on µ rhythm. We
perform a spatial filtering with common average reference to
raw EEG signals of 64 channels, then apply temporal filtering
to get µ frequency band (11 − 14Hz) signal. The following
CSP feature extraction is based on the filtered signals.

For each trial, we have defined 10 overlapped time bins
in the previous subsection. For each time bin, we calculate
a CSP feature vector as follows.

The CSP analysis in the ith time bin consists of calcu-
lating a matrix Wi and diagonal matrix Di through a joint
diagonalization method (i = 1, · · · , 10):

WiΣ1
i W

T
i = Di, WiΣ4

i W
T
i = 1 − Di, (7)

where Σ1
i and Σ4

i are 64 by 64 dimensional normalized
covariance matrix derived from EEG data matrices E1

i and
E4

i . Using all trials with target code 1 of the training
sessions (sessions 1-6), we construct the matrix E1

i by trial-
concatenating the filtered EEG data in the ith time bins of
every trial. E4

i is obtained similarly except that it corresponds
to the trials with target code 4. The reason why we use data
from the trials with target code 1 and 4 is that these two
targets are at the top and bottom position of the screen, so
they are most separable.

After obtaining the transformation matrix Wi, we now
extract CSP feature in the ith time bin of a trial (i =
1, · · · , 10). We first calculate a covariance matrix using the
filtered EEG signals in the ith time bin, then normalize it.
We take the first 2 and the last 2 main diagonal elements of
the transformed (by Wi) and normalized covariance matrix.
Note that the first 2 diagonal elements correspond to 2 largest
eigenvalues in the diagonal matrix Di above, the other 2
correspond to its 2 smallest eigenvalues. Thus we obtain a 4
dimensional CSP feature for each time bin.

Until now, we have described CSP feature based on µ
rhythm in each time bin. The CSP feature in the ith bin is
denoted as CFµ(i) ∈ R4, where i = 1, · · · , 10.

We also extract CSP feature based on β rhythm (22 −
26Hz) In the similar way as above. The extracted CSP feature
in the ith time bin is denoted as CFβ

i .
Similarly as in the previous section, we perform two

selection of 5 time bins for µ rhythm based and β rhythm
based CSP features, respectively. The indices of selected 5
time bins are denoted as Jµ

1 , · · · , Jµ
5 for µ rhythm based

CSP feature, the corresponding CSP feature vector is de-
noted as CFµ(Jµ

1 , · · · , Jµ
5 ). For β rhythm based CSP fea-

ture, the indices of selected 5 time bins are denoted as
Jβ

1 , · · · , Jβ
5 , the corresponding CSP feature vector is denoted

as CFβ(Jβ
1 , · · · , Jβ

5 ).

E. Construction of feature vector

In this subsection, we combine power feature and CSP
feature to construct the final feature vector for each trial.

As stated in Subsection 2.3, we extracted power feature
for every SCA components. However, we use only one
component’s power feature in the combined feature vector.
The selection of component is carried out by using an nearest
neighborhood classifier with Euclidean distance to perform
cross validation to the data of the training sessions 1-6. The
component with the highest accuracy is chosen.

In the combination of power and CSP features, we only
use the features of 5 time bins (the method for time bin
selection stated in the two previous subsections). First, we
combine power and CSP features from µ and β bands as
follows, respectively,

Fµ = [PFµ(Iµ
1 , · · · , Iµ

5 ),CFµ(Jµ
1 , · · · , Jµ

5 )], (8)

Fβ = [PFβ(Iβ
1 , · · · , Iβ

5 ),CFβ(Jβ
1 , · · · , Jβ

5 )]. (9)

Then, we combine the above two feature vectors and obtain,

Fµ,β = [Fµ,Fβ ]. (10)

Again, we perform the selection of the three types of
feature vectors above. The selection method is similar to that
of time bin selection, which is also carried out using nearest
neighborhood classifier with Euclidean distance.

In this paper, two classifiers, nearest neighborhood clas-
sifier with Euclidean distance and support vector machine
(SVM) classifier with RBF kernel are used. The first clas-
sifier is mainly used for three feature selections, that is, the
selection of components, the selection of time bins and the
selection of the three types of feature vectors (defined in the
previous subsection). A combined feature vector for each
subject is obtained. After constructing the feature vector, we
use SVM for classification to obtain the final results.

III. RESULTS

In this section, we present our offline analysis results for
three subjects (”A”, ”B” and ”C”) in the Wadsworth Center
dataset. Before applying SCA preprocessing, we constructed
a data matrix X using EEG data from 9 selected EEG chan-
nels with channel umbers {8, 9, 10, 15, 16, 17, 48, 49, 50}.
The locations of the 9 electrodes covers left sensorimotor
area. After setting the number of source components 15,
we estimated the mixing matrix and 15 components using
Algorithms 1 and 2.

We then constructed the combined feature vectors and
use SVM for classification. As explained in Subsection 2.5,
we selected the best SCA component for power feature
extraction. For three subjects, the selected components are:
component 8 for Subject A, component 5 for Subject B,
component 8 for Subject C.



Subsequently, we extracted CSP feature using the method
in Subsection 2.4. Using dynamical power and CSP features,
we constructed the feature vectors as in Subsection 2.5.
After we obtained the combined feature vectors for all trials
in training sessions and test sessions (session 7 to 10),
we then trained a SVM using training set, and performed
classification for the test sessions. Comparing with the target
codes of the 4 test sessions, we calculated the average
classification rates (averaged across the 4 test sessions).

In comparison with the SCA preprocessing, we also eval-
uated prevailing ICA and PCA methods by plugging them
in to replace SCA preprocessing. The average classification
rates for these two methods were obtained by using the
combined feature vectors and SVM classifier. The three
average classification rates for Subject ”A” are shown in the
second row of Table 1, while the offline analysis results for
the data sets of subjects ”B” and ”C” are shown in the last
two rows of Table 1. The online results are also listed in the
last column of this table for comparison.

TABLE I

CLASSIFICATION RATES (%) WITH DIFFERENT PREPROCESSING

METHODS AVERAGED ACROSS TESTING SESSIONS 7-10

Subjects SCA ICA PCA Online result
A 73.04 70.81 69.90 73.4
B 64.01 65.71 65.84 77.2
C 72.44 68.85 67.18 69.00

IV. CONCLUSION

From Table 1, we can see that for subjects ”A” and ”C”,
the average classification rates obtained by SCA preprocess-
ing are the highest, which are very close to or better than the
online results. For Subject ”B”, the results obtained by three
preprocessing methods are much lower than the online result.
This could be due to the reason that subject ”B” varied his
brain wave during training sessions more than other subjects.
The online model could be well trained with more data or
better adapted with online adaptation. In fact, all reported
offline analysis results in the literature are much poorer than
the online result [14]. Because of the nonstationarity of the
EEG data for the subject, the offline analysis method without
adaptation does not work well for the subject.

It is well known that ICA is based on the assumption
of independent sources. In recent years, ICA has been
widely used in EEG signals, for example, to reveal source
components, to remove artifacts, to preprocess for event-
related potential based BCI, etc. Many promising results
were obtained from it. However, it is reasonable to assume
that not all EEG sources are mutually independent. Similarly,
it is also reasonable to assume that not all brain source com-
ponents are mutually uncorrelated, which is the basis of PCA
preprocessing. Compared to ICA and PCA, SCA has the
following important advantages: 1) sources are not assumed
to be mutually independent or uncorrelated; actually, sources
can even be non-stationary; 2) the number of sources can be
greater than the number of sensors. We believe that SCA

is an alternative and very promising approach for analyzing
EEG, especially as a preprocessing method for EEG-based
BCI systems.
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