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Abstract— This paper presents the first working prototype
of a brain controlled wheelchair able to navigate inside a
typical office or hospital environment. This Brain Controlled
Wheelchair (BCW) is based on a slow but safe P300 interface.
To circumvent the problem caused by the low information rate
of the EEG signal, we propose a motion guidance strategy
providing safe and efficient control without complex sensors
or sensor processing. Experiments demonstrated that healthy
subjects could safely control the wheelchair in an office like
environment, without any training.

Index Terms— wheelchair; BCI; P300; path following

Fig. 1. Photographs of the acquisition devices and brain controlled
wheelchair during experiments in a typical office environment. Note the
compact portable system including signal amplifier, filter and acquisition
device.

I. INTRODUCTION

Controlling objects or machines by thought is a dream
which is currently moving from science fiction to science
and technology. This paper introduces the first working
prototype of a Brain-Controlled Wheelchair (BCW) able

to maneuver in a typical office or flat building, designed
for people who are not able to use other interfaces such as a
hand joystick or gaze tracking, and in particular for patients
suffering from Amyotrophic Lateral Sclerosis (ALS)1. Our
goal is to develop a system usable in hospitals and homes
with minimal infrastructure modifications in order to help
these people regain some autonomy. Such a system has to
be safe and easily set up at a relatively low-cost.

Development of brain machine interface (BMI) or brain
computer interface (BCI) has flourished in past years. It has
been recently demonstrated that neural implants placed in
the brain of animals or humans could be interfaced to move
simple mechanisms [1]–[4]. Since such invasive techniques
are still risky, research in human BCI mainly focused on
non-invasive methods for monitoring brain activity, such as
electroencephalography (EEG), magnetoencephalography
(MEG), near-infrared reflectance spectroscopy (NIRS) and
functional magnetic resonance imaging (fMRI).

EEG is the most common recording method used in BCI,
providing a continuous time measurement with a simple
portable system. In EEG, a set of electrodes are applied on
the scalp and wired to an amplifying-filtering-digitalizing
device, which transfers the signal to a computer for further
analysis specific to the paradigm and application. The
electronic equipment needed is currently smaller than a
laptop and less than one kilogram. Various techniques have
been developed in the last years to enable the utilization of
an EEG as a communication mean between a human and
a machine [5].

Section II gives an overview of the different techniques
based on EEG that have been developed to read the mind,
in particular the P300 technique we are using for our
wheelchair. As it will be seen, the main problem is that
the signal is noisy and the information transfer rate is
low, thus a-priori not well compatible with the continu-
ous control of a machine2. A solution to achieve brain

1ALS is a degenerative disease of the motor neuron which, in the latest
stage, leads to complete paralysis of every single muscle in the body. More
information about ALS can be found online at http://www.alsa.org.

2Published results suggest that invasive techniques using neural im-
plants have to deal with similar problems at present.



control of a machine may be to endow the machine with
some autonomy, such that the user only needs to provide
directives from time to time. The last twenty years have
seen the development of autonomous robots equipped with
sensors, which can move in complex environments. Such
autonomous robot systems may be used for a wheelchair.

Hence Del Millan et al. [6] utilized a neural network
classifier for recognizing mental states in a eight-channels
EEG in order to achieve real-time control of a mobile robot.
These mental states determine the commands to a Khepera
robot. A mental state is the brain wave pattern produced
while performing a specific task such as relaxing, imagin-
ing movements of the left or right hand, performing cube
rotations, arithmetical operations or word associations. The
main assumption is that these mental states do not change
over time and remain associated with these tasks. After two
hours of training per (healthy) subject, the classifier is able
to discriminate three mental states within 0.5 seconds with
an accuracy of 70%. Similarly, Tanaka et al. [7] recently
used thirteen-channels EEG with right and left states to
decide upon the next move of a wheelchair. However
the number of repetitions necessary to complete even a
simple movement may exhaust the subject. In particular
we experienced that disabled get easily tired.

In [6], subjects use mental states to control the trajectory
of a Khepera robot in a small office-like environment (see
figure 2a) by relying on the robot’s sensors and autonomous
behaviors. To cope with classification errors, the Khepera
is equipped with autonomous behaviors such as corridor
following and obstacle avoidance hence providing time for
the user to focus and quickly correct his or her mental state.
However this will still require him or her to be constantly
alert, and hence may cause stress. Furthermore, the motion
depends on the sensors and complex sensor-processing with
which the robot must be equipped, and these are costly and
not foolproof. Therefore, this type of control may be too
risky for a wheelchair on which the user is seated.

The strategy we propose to control a wheelchair relies on
a slow but safe and accurate brain interface. We use a P300
based BCI which is characterized by typical error rates of
3% [8] with a response time up to several seconds. In order
to simplify motion control, the wheelchair is constrained to
move along paths predefined in software joining registered
locations (see section III-A). The guiding paths can be
entered into the system using a simple and efficient path
editor presented in section III-B, which also enable helpers
to adapt it to changing environmental conditions. The user’s
task then only consists of selecting the destination and
dealing with unexpected situations through a dialog scheme
that is described in section III-C. Thus the system requires a
minimum of input and concentration from the user. Section
IV reports the experiments performed in order to adapt the
P300 for this particular application and to test the overall
system.

II. P300 BASED BRAIN INTERFACE

Various signals can be extracted from the EEG to de-
velop BCIs [5], including the slow cortical potential [9],

Fig. 2. Related previous systems. a) With the system of [6] the user
can control a Khepera robot through a small office like environment by
issuing high-level commands such as turn right at next occasion or follow
left wall. b) The system of [7] detects left and right intentions of the user
to decide upon the next move of the wheelchair.

µ and β rhythms [10], motor imagery [11], P300 evoked
potential [12], and static-state visually evoked potentials
[13].

P300 potential is a well studied and stable potential dif-
ference at the central or parietal sites of EEG measurements
corresponding to rare or infrequent events. A set of items
are displayed on a screen and flashed one by one in a
random order, with only one of them – the target – being
relevant for the subject. The subject is instructed to focus
his or her attention on the target. One simple way for
focussing is, for example, to count the number of times
the target is flashed. The subject does not need to gaze
at this object, but only to concentrate on it. The P300 is
a measure of surprise, and not a direct visual signal. A
positive potential typically occurs around 300 milliseconds
after a rare event, from which the target can be determined.
After several presentations of the items the target can be
recognized with almost 100% confidence.

This setup has the advantage of requiring no training
from the user and only a few minutes to train the P300
detecting system. This is noteworthy since most of the other
BCI techniques require a very long training phase, up to
several months in the case of slow cortical potential devices
[9].

In our prototype of the Brain-Controlled Wheelchair,
we used the single display paradigm P300 system (SD-
P300) [8] developed by the A∗STAR Institute for Info-
comm Research, Singapore. The system has the following
characteristics:

• Use of 15 EEG channels.
• Noise and artefact suppression using principal com-

ponent analysis.
• P300 detection with a Support Vector Machine (SVM)

algorithm.
• Statistical model for P300 verification and non-target

signal rejection [14]: the SVM margin score is con-
verted into a probability and the ratio of probabilities
of signal containing/non containing a P300 is com-
pared to a threshold.

Setting the threshold has a direct influence on the ac-
curacy and latency of the system: with a low threshold
the system is fast but may commit classification errors,



which might be a desirable setting for a speller. On the
other hand, if the threshold is high, the system will make
very few errors but the response time will be long. To
control our wheelchair we need a very safe BCI thus we
set the threshold to a high value, even if it results in a
long response time. Section IV-A reports evaluation of the
SD-P300.

III. SAFE AND SIMPLE CONTROL

To cope with the low information transfer rate of the
P300 based BCI we need to provide sufficient autonomy
to the robot. It must be able to navigate safely in its
environment and deal with basic situations. The user input
should limit to destination selection.

A conventional approach to autonomous mobile robotics
would be to equip the vehicle with sensors and sensor pro-
cessing as necessary to perform localization and obstacle
detection, and to give the robot sufficient cognitive ability
to react appropriately: i.e. generate a suitable trajectory that
will achieve the objective of the mission (eventually reach
a goal) while insuring safety. However this has a heavy
cost (both financially and computationally) and the decision
taken by the system might seem awkward to a human
observer. For instance autonomous wheelchairs have been
observed to refuse to move forward due to some obstacles
[15], while a living organism would easily move its way
through. This type of behavior is highly undesirable for a
robot conceived to transport persons, as the users, generally
equipped with superior sensory and inference abilities to
the artificial system, will become frustrated. At this stage,
because autonomous vehicles often lack sufficient cognitive
abilities, their designer, for safety sake, usually make them
over cautious, which often lead to dead-lock situations in
uncontrolled environments.

A. Path Guidance Strategy

In our approach, we propose to rely on the user’s
perception and cognition as much as possible in order to
solve the maneuvering problem. The user makes the motion
decisions, while the vehicle is in charge of realizing these
decisions. With such an approach, the robot is no longer
trying to replace the human user but to collaborate with
him or her, such that both the human and its robot are used
to the best of their respective abilities to produce safe and
efficient motion.

We simplify motion control by using a set of safe
pre-defined guiding paths between the different relevant
locations. When a path is selected, the robot drives it along
the path using a dedicated path controller based on the con-
troller in [16], [17]. This circumvents the need for complex
sensor processing and for dynamic trajectory computation
that is otherwise required to reach the destination without
hitting obstacles.

An important issue when using software-defined paths is
localization: the position of the wheelchair must be known
with a precision in the order of a few centimeters. To
keep the system simple and cost-effective, the wheelchair
is equipped with a simple global localization module [18]

using fusion of local information from odometry and global
position information from a simple bar-code reader. A set
of bar-codes are placed on the floor at key positions such
as near doors or narrow corridors. When the vehicle passes
over a bar code, global position is provided to the system to
update the position. This system has proven to be simple
to set up and sufficiently accurate for our purposes. The
maximum positioning error is always less than 10cm when
bar codes are placed about every 10m.

A library of guiding paths can be built up automatically
if a reliable plan of the building is available. Alternatively
such a library can be formed by a helper pushing the
wheelchair to link various rooms as is necessary for the
wheelchair user. As described in the next section, the
helper has various ways to adapt the paths to permanent
modifications in the environment such as changes in the
furniture locations. Also, paths corresponding to a building,
an office or an apartment can easily be extended to include
paths leading to further space such as a neighboring office.

B. Ergonomic Guiding Paths Editor

The path editor contains several tools which enable a
helper to design guiding paths suitable to the environment
and satisfying the wishes of the wheelchair user [19]. The
first tool is the Walk Through Programming or WTP, which
works as follows: the helper pushes the wheelchair through
the environment along a suitable trajectory. While driving
along this path, the wheelchair is automatically recording
the sequence of positions. The traced path is then least-
squares approximated with cubic B-splines, and used as
a guiding path for subsequent motions. If the wheelchair
user is not satisfied with this path, the helper can use a
dedicated graphical user interface (GUI), the second tool,
to modify it off-line (Fig. 3), or retrace it altogether.

Fig. 3. (a) Off-line modification of a guiding path by moving a control
point with a mouse and (b) the resultant modified path.

One major advantage of these design tools is their great
simplicity. They require no environment model and no
complex operator procedures. When building a network of
paths it is possible to reduce the amount of WTP tracing by
concatenating chunks of paths using our GUI. These tools
also enable the helper to modify a path for a modified
environment (e.g. if there is a new obstacle) or to optimize
a path as desired by the wheelchair user.



C. Selection of context dependents paths

The only task for the user is to select a path among a list
of paths that depart from the current location proposed on
the GUI (figure 4). Once a path is selected the movement
is performed automatically until the end of the path is
reached, and the user is asked again where to go. The menu
shown on the GUI is context dependent, i.e. only possible
destinations from the current position are presented.

Fig. 4. The brain wheelchair commands displayed to the subject. These
items are flashed (i.e. office and level 7) in a random sequence on the
screen, the user is focusing his or her attention on one of them, and a
particular signal is produced about 300ms after this target command was
flashed, which is detected by the program. The number of commands is
not limited to nine and commands are context dependent. For example,
the top menu corresponds to the wheelchair navigating at one floor, the
bottom menu to the lift situation (wheelchair is currently at level 5 thus
it is not displayed).

Typical context dependent menus include all the rooms
available on the current floor, and the lift. When the
wheelchair is at the lift, the GUI shows the list of lev-
els. When a level is selected, the lift is controlling the
wheelchair in the lift, bringing it at the selected level and
also controlling its exit. We assume a smart lift able to
communicate wirelessly with the wheelchair computer, and
equipped with sensors to control the wheelchair.

Note that in contrast to EEG interfaces such as used
in [6], [7], in which only two or three mental states
can be selected from, with our interface it is possible to
select between twenty or more buttons. Therefore, choosing
between ten levels at a lift can be done in one step with
a P300 (while it would require three or more successive
decisions with the systems of [6], [7]) and thus seems
particularly adapted to motion planning in an office-like
building or in a hospital.

Our P300 BCI is very reliable to choose a destination
and start the wheelchair. However, since it has a response

time up to several seconds, it is not suitable to stop the
wheelchair in emergency. To circumvent this problem we
will add simple sensors in front of the wheelchair, which
will detect any obstacle in the vicinities and immediately
stop the wheelchair. Once stopped, the user will be asked
what action to perform: resume movement along the guide
after the obstacle has disappeared (passing by obstacle),
avoid it using the elastic mode [18] by the left or right side
or call for assistance. Because of the variety of possible
situations (some of them being represented on figure 5),
we choose to rely on the user’s cognitive abilities rather
than to let the artificial system compute a solution based
on its generally poorer sensory function.

Fig. 5. Typical situations while encountering an obstacle on the way.
On the situation sketched on the left, it is possible to deviate from the
path on both left and right sides while on the situation depicted in the
middle scheme only the left side is possible because of the wall on the
right side. In the case depicted on the right it is not possible to avoid the
obstacle, the user would then have the choice to go back to take another
route, change the destination or call for assistance. The system relies on
the user to take a decision, thus avoiding any mistake of the system.

IV. EXPERIMENTS AND RESULTS

A. SD-P300 evaluation

While the P300 BCI has been tested when used with a
spelling system [8], the task of controlling a wheelchair
has distinct features. This BCI may fail in controlling the
BCW or require adaptation. In particular, when spelling
the subject is normally focussing on only this task, while
he or she may think to other tasks when controlling the
wheelchair. Therefore we first analyzed the performance of
the SD-P300 in terms of response time and accuracy with
five young healthy subjects focusing on selecting buttons
or performing other mental tasks.

In these experiments the interface displayed nine buttons.
At each epoch all buttons were flashed with a duration of
100ms each, in a random sequence. We collected three sets
of data:

The first set was used to train the classifier. The subject
was instructed to count the number of time a given button
was flashed (i.e. 8 times). Half of the set was used to train
the SVM to detect a P300 signal, the other half is used for
the evaluation of statistical parameters [14].

The second set was used to evaluate the response time
for different values of the threshold. The method for data
collection was the same as for the first set but with 50
epochs. For each target we measured the time required for



the score to reach the threshold. Figure 6 shows the average
response time curve.

The third set was used to evaluate the false acceptance
rate: while the system makes no mistake when the user is
trying to select a button, it is sometime wrongly selecting
a button by itself while the user does not intend to do
so. We experienced that this happened in particular when
the user is relaxing or concentrating heavily, thus may be
due to interference of α-waves (8-12Hz) and β-waves (18-
24Hz) with the pattern the SVM was trained to recognize.
To prevent this to affect the performance of the BCW, we
decided to tune the threshold in order to increase specificity.
We collected 50 epochs data as in the second set, with
the subject not looking at the screen and performing one
of the following tasks: multiplying two numbers of four
digits (heavy mental task), reading (light mental task) and
relaxing with eyes closed.

The lower panel of figure 6 shows the resulting false
acceptance rate curves averaged over the five subjects.
From the results of figure 6 it can be seen that for a value
of the threshold that keeps the false acceptance rate low
the response time is acceptable.

B. Tests in an Office Environment

The BCW was tested in an office environment with five
young healthy subjects. This environment included several
floors connected by a lift but only two floors were used
for the experiments. At one floor, four destinations were
interconnected by six guiding paths (Fig.7). The other
floor also contains four destinations and six paths. The
paths were designed prior to the experiment using the walk
through programming method as explained in section III-B.

Subjects were asked to move from one location to
another, eventually on the other floor. The lift was manually
operated as well as the entrance and exit. Subjects reported
that they found it very easy to activate the commands. All
subjects succeeded at their first trial to reach the desired
locations as they wished, taking approximately ten seconds
to issue a command.

V. CONCLUSION

This paper presented the first working prototype of a
brain controlled wheelchair able to move in flats or office-
like environment or in a hospital. It relies on a path
following strategy that provides simple control of necessary
movements while avoiding costly and potentially unsafe
complex sensor processing, and on a slow but safe Brain
Computer Interface used to generate simple commands.
The performed tests showed that this system is easy to
use and also easy to set up since only a few modifications
of the environment are required (placement of a few
bar codes). The system also provides tools for users to
optimize the guiding paths to the their satisfaction and to
adapt to changes in the environment. Finally, because the
movements along the same guiding paths are repeated other
time, the wheelchair’s motion is predictable, so that the user
can relax during the movement.

Fig. 6. Characteristics of the P300 when other tasks are performed in
parallel to the selection. The curves corresponds to data averaged over five
subjects. Top panels: the response time increases rapidly with the selection
threshold. Bottom panel: However the false acceptance rate decreases
quicker. Therefore it is possible to select a threshold preventing most
false acceptance with acceptable response time.

Fig. 7. Testing environment: a lift hall, and the six guiding paths between
the four destinations.



Our current BCI may appear to suffer from the slow
response time, however one must replace this in the context
of potential users. The system is intended for people who
are unable to move and normally stuck in bed; their notion
of time is different from ours and being able to move
independently within their environment represents a big
improvement for their quality of life, whether it takes time
or not. In this context, safety and reliability are much more
important than speed.

One concern with the slow response time of our BCI,
however, is that it prevents fast reaction to any unexpected
event such as an obstacle suddenly appearing on the path.
As mentioned in section III-C, we are currently working
to add simple sensors to stop in front of any obstacle. The
motion control simplification brought by the guiding paths
enables the use of simple sensors and stop reflexes, which
are reliable and safe.

Faster BCI that are expected to appear in the near future
will also profit from the significant simplification brought
by path guidance and the path editor described in this paper.
This will significantly contribute to safety and simplify
control without the need of complex sensory processing.

We would like to emphasize that one main next step is
to conduct experiments with disabled who really need our
brain controlled wheelchair. It is well known that there are
significant differences in responses between healthy and
disabled individuals, and our future work will depend on
experiments with the real end users.
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