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Abstract

This paper presents a novel method for signal localiza-
tion for building high-performance brain-computer inter-
faces using Near-Infrared Spectroscopy. It first proposes
a kernel-based model to represent haemodynamic signals
of interest under parameterized transformations. A math-
ematical solution is therefore derived to locate the signals
by estimating the parameters. We employ a support vec-
tor machine to classify the located signals into left/right
hand movements. We evaluate the method on both simu-
lated and real world data, with positive results suggesting
the method’s high efficacy. This work can be extended to
other systems using e.g. fMRI and EEG.

1. Introduction

Brain-computer interface (BCI) is an emerging technol-
ogy which aims to convey people’s intentions to the outside
world directly from their thoughts [1]. It is especially ap-
pealing to severely paralyzed patients, since motor ability is
no longer a prerequisite for this communication.

In the past, a number of non-invasive BCI systems have
been demonstrated (e.g. [2, 3]), mostly using surface elec-
troencephalogram (EEG). However, it is well-known that
surface EEG has limited anatomical specificity when com-
pared with other functional brain imaging techniques.

Recently, an optical method called near-infrared spec-
troscopy (NIRS) has emerged as an alternative and direct
way of brain functional imaging through the intact skull.
In this method, the optical response of near-infrared rays
is associated with regional brain activations in terms of
e.g. oxygenated hemoglobin (Oxy-HB) or deoxygenated
hemoglobin (deoxy-HB). As stated in [4], NIRS has a
few merits like high degree of flexibility, high biochemical
specificity and high sensitivity in detecting small substance
concentrations. It is suggested [5, 6] that NIRS is promis-
ing for next-generation BCI systems by characterizing the
haemodynamic responses to imaginary movements.

The study on NIRS signals for BCI, however, is still in
its infancy. In particular, the variations among the haemo-
dynamic signals in response to specific motor imaginations
have yet to be addressed well in previous works. It is a crit-
ical problem since the variations will naturally occur due to
the inevitable inconsistency in the execution of motor imag-
inations. For example, a subject may actually start an imag-
ination at different start point and tempo in different mental
state in each trial, bringing considerable difficulties to the
recognition of the haemodynamic signals.

This work is our first attempt to address the variations
among the NIRS haemodynamic signals for BCI. The ob-
jective here is to locate the haemodynamic signals in re-
sponse to motor imaginations that are subject to a few types
of variations. To this end, we first propose a kernel-based
representation model in a statistical framework for the sig-
nals under parameterized variations. Furthermore, a mathe-
matical solution is derived to locate the signals. Finally, we
use support vector machines on located signals to differen-
tiate imaginary movements.

We have conducted both computer simulation and real
experimental study to examine the proposed method. The
simulation uses computer-generated data to evaluate the ro-
bustness of the localization method against additive noises.
The experimental study involves five healthy subjects per-
forming real motor imaginations. The results suggest that
the proposed method is effective in dealing with the vari-
ations, giving rise to a BCI system with significantly en-
hanced performance.

2. Problem Formulation

Let’s first consider a multi-dimensional NIRS signal
y(t), obtained with sensors above the motor cortex region.
In our NIRS-BCI setting, the signal is acquired in a proto-
col as illustrated in Fig. 1. Each trial will start with a beep
sound; at 2 seconds, the subject will be asked to perform
imaginations of left/right hand movements for 10 seconds;
the last 8-second time is for the subject to rest.

Many factors may affect the execution of an imagination,
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Figure 1. Single Trial Timing

yielding variable NIRS signals. Here we consider three ma-
jor factors. Firstly, the subject may perform imaginations
at different speed, resulting in tempo changes in the NIRS
signals. Secondly, actual imaginations may start at different
time point in each trial. Finally, varying mental state will
cause changes in base level of the signals.

Now we define a mathematical model to describe these
variation factors. Assume there is a model signal ym(t),
and each observed signal y(t) is a transformed instance.
The first factor above implies a time shift (t); the second im-
plies a change of tempo factor (a); and the last one would
lead to difference (c) in the signal’s base level. In other
words, each instance takes a form of ym(at+b)+c. Hence,
the localization of the signal turns out to be a searching
problem whose objective is to find particular {a, b, c} by

argmin{a,b,c}{||y(t) − (ym(at + b) + c)||2} (1)

We will derive a mathematical solution to the problem in
the following sections.

3. The Localization Method

3.1 The Kernel-based Signal Model

Given a signal consisting of a few samples at a sequence
of time-point, e.g. Ω : {yi, ti} i = 1 · · ·N , we use the den-
sity function f(y, t) as a representation of the signal since
it precisely characterizes the joint probability distribution
of the samples. Real NIRS signals usually have shear com-
plexity that makes it hard to describe the density functions
with generic parametric methods. Thus, a non-parametric
method called kernel density estimate is favored [7] here:

f(y, t) =
α

N

N∑

i=1

ky(||y − yi||2)kt(||t − ti||2) (2)

where k is the kernel function and takes a Gaussian form in
this paper.

Therefore, the similarity between two signals, say Ωp

and Ωq , can be defined by

D0(p, q) = −
∫

||fp − fq||2dydt (3)

It follows mathematical manipulations that
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(4)

Now let’s take into account the variation factors (see Sec-
tion 2). For clarity, henceforth we note the model signal
with Ωp and its transformed instance with Ωq . The Ωp un-
dergoes the transformation T will have

(t̂)i = T (t)i = ati + b and y(t̂) = y(t) + c (5)

To reduce the complexity, we tentatively remove the DC
components from both y(t̂) and y(t) and thus the factor c
can be cancelled. Note that in subsection 3.3 we will show
how to handle c in the final program.

Furthermore, by substituting ti with t̂i in Eq. 4 and af-
ter some manipulations we have the similarity between two
signals with respect to transformation T :
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∆
= −I1 + I2 − I3

(6)

Since the term I3 is not a function on {a, b}, we exclude
them from the expression and define D(pT , q) = −I1 + I2.

The formulated localization problem (Section 2) thus
turns out to be an optimization problem: to search for the
parameter T which yields the maximal similarity D(pT , q).
Thanks to the smoothness of the Gaussian kernel based sim-
ilarity measure, the maximal point will be reached at

∇D(pT , q) =
∂D

∂a
∆a +

∂D

∂b
∆b = 0 (7)

which implies ∂D
∂a = 0 and ∂D

∂b = 0. In the next sections
we will derive a mathematical solution to Eq. 7.

3.2. The Iterative Equations

As in (Eq. 6) I1 in D() is independent of b, we have

∇bD(pT , q) = ∇bI2 =
∑

i,j

wij(at(p)
i + b − t(q)j ) (8)
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2
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And gt here is the derivative function of kt. Set D(pT , q) =
0 and we have the update function for b:

b =
∑

i,j −wij(at(p)
i − t(q)j )

∑
i,j wij

(10)

which is actually an iterative function for b which is present
on both sides (note wij is a function of b).

Let’s now consider ∇aD(pT , q). For I1 and I2 there is

∇aI1(pT , q) =
∑

i,j

βija (11)
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∑

i,j

wijt
(p)
i (at(p)

i + b − t(q)j )

where βij = ||t(p)
i −t(p)

j ||2

N2
p

ky( ||y
(p)
i −y(p)

j ||2

2 )gt(
a2||t(p)

i −t(p)
j ||2

2 ).
Set ∇a(−I1 + I2) = 0 and we have

a =
∑

i,j wijt
(p)
i (b − t(p)

i )
∑
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∑
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(p)
i )2

(12)

3.3. The Iterative Localization Algorithm

In real NIRS-BCI situations, we will be given a trial sig-
nal Ωq0, which normally includes not only the transformed
model signal Ωq but also some irrelevant signals in the ac-
tual pre-motor-imagery and post-motor-imagery time peri-
ods. Thus the desired observation Ωq may not be available
directly. We address this problem with a practical algorithm
shown below using the above mathematical solution.

1. Initialize the estimations of a and b.

2. Do the following steps.

3. With estimated a, b, extract from Ωq0 the hypothesized
signal segment Ωq and remove DC component;

4. Compute b and a according to Eq. 10 and Eq. 12;

5. If both changes in a and b are smaller than respective
preset thresholds ϵb and ϵa, proceed to Step 6; other-
wise go back to Step 4;

6. Check the change of the similarity measurement by
Eq. 6. If it is larger than a preset threshold ϵs, go back
to Step 2; otherwise stop.

In real situations, usually there is no model signal di-
rectly available. To estimate the model signal from a set of
observed samples, we devise the following procedure: 1)
Average all the signals in a pre-selected time segment and
use the output (with DC removed) as the initial estimation
of the model signal Ωp; 2) Use Ωp and the above localiza-
tion algorithm to find the transformed signal in each trial; 3)
Compute the inverse-transformed observed signals and use
their average as the new estimation for the model. Go to
Step 2 until convergence on Ωp occurs.

4. Evaluation with Computer Simulations

In this section we examine the proposed localization
method in terms of robustness against additive noises. We
use a segment of sinusoid as the model signal and transform
it by a = 1.65 and b = 14. We have conducted a series of
tests, with different levels of additive zero-mean Gaussian
noises. Each test has 16 instances of transformed signals
(with lead-in and lead-out segments for simulating pre and
post motor imagination periods in real NIRS BCI trials).
Fig. 2 gives an example where the noise level is σ = 0.6.
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Figure 2. Simulation signals

The proposed method were applied to locate the trans-
formed model signal in the random trials. The results in
terms of means and deviations are plotted in Fig. 3.

The figure shows that the proposed method can accu-
rately locate the signals even under severe noise corruptions
(e.g. under σ = 0.6) plus considerable transformations.

5. Application to Motor-Imagery Classification

We developed a BCI system using a multi-channel
NIRS instrument (OMM-1000 from Shimadzu Corporation,
Japan) for measuring Oxy-Hb and Deoxy-Hb concentration
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Figure 3. Results of Simulation

changes during a subject’s mental activity. The sampling
rate is 14Hz, and totally 20 channels are recorded to cover
the main motor cortex. The Oxy-Hb and Deoxy-Hb sig-
nals are then processed to distinguish between two types of
mental activities: imaginary left/right hand movements.

In order to evaluate the method in real situations, we
have conducted a study that involves five healthy subjects,
each subject performing 40/40 trials of left/right motor im-
agery tasks (see Fig. 1). We use the data during the imagi-
nation period (10 seconds) to do classification. The classi-
fication consists of three major steps of processing:

1. Preprocess by low-pass filtering (with cutoff frequency
at 0.7Hz and stop frequency at 1.0Hz to remove arti-
facts from heart beat and high frequency noises);

2. Empirically select channels, and apply common spatial
filtering [8] to stress discriminative information;

3. Find and recover the transformed signal in each trial
using the proposed localization method;

4. Classify the signal with a support vector machine.

In the offline evaluation, we have run 8 rounds of 5-fold
cross-validation on each subject, and compared the average
accuracies with those by not using localization in Table 1.

6. Dicussions

Table 1 shows that, the kernel localization can enhance
the system performance in most cases while the accuracy on
average turns considerably better (with 13.82% error reduc-
tion) . It is thus suggested that the proposed method is ef-
fective and is useful for building high-performance BCI sys-
tems. It should also be mentioned that the proposed method

Subject w/o localization w/ localization Err. Redu.
1 88.92 7.79 92.23 7.24 29.87%
2 64.04 10.11 63.74 9.55 -0.83%
3 66.63 11.90 74.60 9.87 23.88%
4 71.37 10.78 74.38 9.41 10.51%
5 63.49 10.28 65.56 9.54 5.67%

Average 70.89 74.10 13.82%

Table 1. Comparative Classification Accuracy
for Motor Imagery.

may also be extended to other signals, e.g. functional MRI
which detects the same physiological phenomenon, or sur-
face EEG using event-related potentials such as P300.
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