

Abstract—NeuroComm is a platform to develop real time
Brain Computer Interface (BCI) applications. This paper
introduces the basic modules of this platform and discusses
some implementation issues. With a user management module,
our system is user friendly and suitable for multiple users.
Also, with flexible configuration files and signal processing
algorithm libraries, it is easier to integrate multiple BCI
applications into one system. The NeuroComm platform also
acts as a flexible tool for BCI research.

I. INTRODUCTION
RAIN Computer Interface (BCI) assists patients with
severe physical disabilities to communicate with the

outside world and to control assistive devices. In recent
years, there are increasing interests in the area of BCI
research and applications. Among them, BCI2000 [1]
provides a general purpose research and development
system. The Though Translation Device (TTD) [2] is
another system. However when building real time BCI
system, we realize that user friendliness is crucial for the
acceptance of the system by patients. Moreover, we also

found that a general-purpose platform is needed to facilitate
the building of various BCI applications. In this paper, with
reference to our previous works [3-9], we introduce
NeuroComm, a general BCI platform for building real-time
BCI applications.

II. SYSTEM DESIGN
The structure of NeuroComm is shown in Fig 1. There are

four main modules: application configuration, application
interface, data acquisition and signal processing. The
following sections will discuss all these modules.

A. Application Configuration
This module maintains a global configuration file which

defines system level configurations, such as the current user,
BCI applications in the system and the configuration data for
each application. The console window is shown in Fig 2.

1) User Management
The application console is responsible for registering new

user into the system with information such as name, gender,
age and other relevant information as required by the
respective BCI application. When a new user is enrolled, an
entry is created in the user database. Before starting a BCI

Introduction to NeuroComm: a Platform for Developing Real-Time
EEG-based Brain-Computer Interface Applications
Chaunchu Wang, Haihong Zhang, Kok Soon Phua, Tran Huy Dat, Cuntai Guan

Institute for Infocomm Research, Singapore 119613
E-mail: {ccwang, hhzhang, ksphua, hdtran, ctguan}@i2r.a-star.edu.sg

B

Fig. 1. NeuroComm structure. Four modules: the configuration
console module enrolls new users, maintains user database, and
manages system configurations for BCI applications. The application
interface module has an application-specific GUI, a system control
component to control the process flow and device control component
to convert process result into device control signal. The DAQ module
reads in EEG data. The signal processing module extracts features
from EEG data and classifies them.

 User
Management

 DAQ

EEG Acquisition

Storage

Event makers

EEG

Control data

Configuration Console

Application
Configuration

Configuration
Files

Signal Processing

Feature extraction

Classification

Application Interface

GUI Device
Control

System
Control

Event markers

Fig. 2. Application configuration console window. A toolbar displays
a list of buttons. The “SysConfig” button pops up the global
configuration window with functions to enroll new user and select
current user and amplifier. The rest of the buttons are BCI applications
that are included in the system. The message window under the menu
bar displays debugging and processing messages.

Proceedings of the 29th Annual International
Conference of the IEEE EMBS
Cité Internationale, Lyon, France
August 23-26, 2007.

SaP1D1.1

1-4244-0788-5/07/$20.00 ©2007 IEEE 4703

application, the system operator needs to select a current
user. When an application starts, the system will then loads
in all the specific configuration data for the selected user.
When the application ends, the user’s configuration data and
working environment settings are kept persistent in the
system and will not be affected by other users’ usage or
system restarting.

2) Configuration Files
NeuroComm has a set of various configuration files:
- EEG amplifier configurations consisting of amplifier-

specific parameters and other information needed to
create the amplifier objects.

- Application configurations consisting of application
specific parameters, such as task name, GUI settings
etc.

- Algorithm configurations consisting of signal
processing functions, such as filter design and
transform matrix etc.

3) Application Configuration
The global configuration file has an entry listing of all

BCI applications available in the system. These applications
are shown as buttons in the toolbar of the application
console. To configure an application into this system, follow
these steps:
- Adds an application name into the “AppNames” list;
- Creates a section with the name of the application;
- Adds a “TypeName” entry with a type in the system

type library as the value;
- Adds a “CfgFiles” entry with a value of a list of all

app-configuration files that the application needs;
- Adds one entry for each app-configuration file, with a

value of a list of consisting system configurations.
When the application starts for a new user, the system

creates a working environment for this user with the
necessary configurations. For an old user, if any
configuration file is missing, the system automatically
recreates a default one.

B. Application Interface Module
This module consists of three components listed below:
1) GUI component: It displays the application specific

graphic interface, such as visual stimulus, graphic feedback
etc., to the user.

2) System control component: It controls the application
process flow, such as starting, initialization, checking
processing results and stopping the system’s execution, etc.

3) Device control component: It translates the signal
processing result into control signal and controls outside
devices. Here is a list of such controls:
- Cursor movement on the display screen;
- Input of a letter into a word speller window;
- Selection of TV channel;
- Switching on and off an electrical device.

C. Data Acquisition
This module reads EEG data from the EEG amplifier and

passes them to the signal processing module. It also receives
stimulus codes from the application module to construct
event markers in the EEG data. It saves both the EEG data
and event markers to the hard disk for off-line analysis.

There are many different types of EEG amplifiers with
different specifications. Some of them are listed in Table 1.
A common interface has been designed, with each type of
amplifier having its own implementation and
communication mechanism with the hardware. Fig 3 shows
two configuration systems, each one having its own
advantages. The selection of amplifier depends on the
requirements of the application.

 Two virtual amplifiers are built in this module: one is the
Simulator which simulates a real amplifier by reading data
from hard disk file; another one is the Live-Simulator, which
is similar to the Simulator except that it follows the speed of
the real amplifier when reading EEG data. With virtual
amplifiers, we can repeat the application execution offline,
which is useful for offline debug and study.

D. Signal Processing
This module processes the EEG data, extracts signal

features, classifies these features using pattern recognition
and machine learning algorithms ([4-9]) and passes the
processing results to the application module to be translated
into device control signal.

TABLE I: SOME EEG AMPLIFIERS USED BY NEUROCOMM

Amplifier Specifications

Nuamps 40 channels, portable, power on USB, USB and
Scan4.3 for DAQ, QuickCap, trigger input,
www.neuroscan.com

SynAmps2 66 channels, separate power unit, USB and
Scan4.3 for DAQ, Quickcap, trigger input,
www.neuroscan.com

BioRadio150 8 channels, wireless, USB and c++ API for DAQ,
no trigger input, www.clevemed.com

g.USBamp 16 channels, power on AC, USB and c++ API for
DAQ. No trigger input, www.gtec.at

All information here can be found from the manufacturer’s webpage.

System A System B

Fig. 3. Two EEG configuration systems. System A uses Nuamps, an
EEG cap and a computer; while system B uses BioRadio150, and
head band with electrodes attached and a computer. The advantage of
system B is that the user is not bound to the computer, he/she can
move freely because the user unit is separated from the computer unit,
and they communicate with each other through wireless radio. On the
other hand, system A has more EEG channels with higher resolution.

4704

1) Preprocessing
A set of preprocessing algorithms has been used to the

raw EEG data, different for particular BCI applications.
They are: filtering both in frequency domain and in space
domain, down sampling, PCA, etc. Filter-Bank technology
has also been used in some applications [7].

2) Feature extraction
Different features for different application have been

extracted for different classifier. For example, in the P300
based speller system [8], the down-sampled EEG data
together with delta transform results have been used as
feature in a SVM classifier. In [7] the entropies of selected
frequency bands are used as the feature in the motor imagery
detection.

3) Classifiers
Classifier can be simple or complicated depending on the

specific BCI applications. In a mu-beta rhythm based cursor
control system, the mu and/or beta frequency bank energy
power from different EEG channels are used to calculate the
steps of the cursor movement, with a calibration program
training all the parameters. For a P300 based speller system,
we have used SVM as the classifier. For asynchronous
applications, the idle state where the user is not doing
specified tasks should also been identified. In [4] a statistics
model is proposed for an asynchronous speller. We are still
working on asynchronous motor imagery tasks.

III. SOME IMPLEMENTATION ISSUES
The system is implemented in C++ and C#. The DAQ

module and the signal processing module are written in
C++, because most EEG amplifiers are bundled with
Windows drivers and C++ interfaces, and most signal
processing algorithms are written in C++. On the other hand,
the interface module is written in C# because of its easiness
and richness in GUI design. In this section, we will discuss
some of the problems we faced and the methods we used to
solve them. In [3], we have already discussed the
implementation issues on the synchronization between
different modules and the accurate timing problems. As
such, this paper will concentrate on other problems.

A. Event markers
Event markers are used to mark special events such as

user responses and system cues (visual or auditory) during
data collection. They are integer values forming a special
channel in the EEG data. At the signal processing stage the
EEG data can be segmented and labeled using these event
markers.

We note that some EEG amplifier has hardware triggering
mechanism to generate event markers. For example,
Nuamps and SynAmp2 have trigger input ports which
interface with a PC with a 25-pin parallel port. However, in
Nuamps, we found that when the stimulus is sent at a
frequency of 40Hz or higher, some event markers are lost.
For other amplifiers, such as BioRadio150 and g.USBamp,

do not have hardware trigger inputs. As such, we need to
either modify one EEG channel for trigger input, or use
software to generate these event markers. The following are
some of the solutions.

1) Detection and recovery of lost hardware event
markers

For amplifiers with hardware trigger input ports, a
mechanism has been implemented to detect and recover lost
event markers. By keeping a queue of stimulus codes
received from amplifier module, the system will check the
event markers read from the EEG amplifier. Whenever a
mismatch occurs, a lost event mark is identified. An error
processing program is designed to recover this type of error
by inserting the lost stimulus code or report an error and
interrupt the system execution based on to the system
configuration.

2) Software generation of event markers
For EEG amplifiers without trigger input, an algorithm

has been designed to generate these event markers. One
implementation is that when a stimulus code is received, the
system inserts it into the event marker’s queue. This method
may encounter problem if accurate timing of triggering is
required, because the EEG data is read in blocks; each block
usually consists of multiple samples. For example, for an
amplifier with 250Hz sampling rates and block size of 10
samples, one block will be 40 milliseconds. If the stimulus
codes are sent every 30 milliseconds, the generated event
marker queue will not be accurate (see Fig 4).

A more accurate algorithm is to use the time duration

between consecutive stimulus codes to determine the
number of samples between the relevant event markers.

B. Communication between modules
1) C# calls C++ functions

We have created a dynamic link library to export C++
functions of modules written in C++ which was later
imported into C#. Two steps are to be followed as the
following:
- Create proxy classes in C# to represent modules

written in C++, defining all the interfaces that C# to
call.

- Create unmanaged C++ dynamic link library to

Stimulus code queue

Event markers queue

30 60 90 120 150 …

40 80 120 160 … Time (ms)

Time (ms)

Fig. 4. Simple event markers generation algorithm could have
problem. Stimulus codes are sent every 30 ms, amplifier sampling rate
is 250Hz, and EEG data reading block size is 10 samples. The
resulting event marker queue will not be accurate, and at point of
160ms, there will be two event markers.

4705

implement and expert all the C++ functions that are
to be called by C#.

2) C++ calls C# functions
An operation scenario whereby such C++ calls is needed

is when the application operator needs to check the
intermediate results in order to adjust the parameters in the
system configuration. This adjustment will require modules
written in C++ to pass data to C# for display. It is not
practical for C# to call C++ functions to get the data because
the application interface does not know when the data will
be ready; chances are that it may miss some data.
Fortunately C# has a delegate type which can be passed to
C++ as a function pointer.
- C# defines a new delegate type according to the

function to be called by the C++, creates an object
and passes it to C++ as a function pointer;

- C++ calls the function referenced by the pointer to
pass data to application interface in C#;

- C# displays intermediate results.

C. Debugging message and system logs
In fig 2, there is a message window that displays system

message such as debugging information and processing
statuses. Such messages are saved onto a system log file for
offline inspection. Our mechanism makes this display
window transparent to all modules. In other words, these
modules only need to write the debug and process messages
to the standard output stream which will subsequently be
displayed on the message window. We have used the C++
pipeline and file redirection methods to capture standard
outputs both from C++ and C# modules and redirected to the
message window and the log file. This mechanism helps to
achieve the independences of different modules.

IV. CONCLUSION
NeuroComm is platform that is flexible for many BCI

applications to be included into one single system using
configuration files. With this platform, we have created a
number of applications. Fig 4 shows four BCI applications
with the configuration console which shown as Fig 2.
a) A soccer game based on the mu-beta rhythm from the

subject’s raw EEG data. System moved the soccer
upwards automatically while the user coordinates the
mu-beta rhythms to control the movement of the soccer
in the horizontal direction so that it can hit the goal.

b) Maze game. User controls the movement of a bird to eat
the seeds (pink dots) along the paths. Three eagles
(blue, yellow and brown) walk in the maze and choose
path randomly. The bird should avoid the eagles so that
it will not be eaten by them. User will be awarded if
he/she has successfully controlled the bird to eat all of
the seeds with limited number of lives.

c) A virtual TV remote controller. The buttons on the
controller flashes one by one randomly. User selects a
button by gazing on it for a certain period.

d) Brain control of rehabilitation process. System
highlights the rehabilitation processes one by one; user
actively chooses a rehabilitation process through motor
imagination.

REFERENCES
[1] Gerwin Schalk, Dennis J. McFarland, Thilo Hinterberger, Niels

Birbaumer, Jonathan R.Wolpaw, “BCI2000: A General-Purpose
Brain-Computer Interface (BCI) System,” IEEE Transl. on biomedical
engineering, vol. 51, No. 6, June 2004, pp. 1034-1043.

[2] N. Birbaumer, A. Kübler, N. Ghanayim, T. Hinterberger, J.
Perelmouter, J. Kaiser, I. Iversen, B. Kotchoubey, N. Neumann, H.
Flor, “The Thought Translation Device (TTD) for Completely
Paralyzed Patients”, IEEE Transactions on rehabilitations
engineering, vol. 8, No. 2, June 2000.

[3] C. Wang, C Guan, H. Zhang, “P300 Brain-Computer Interface Design
for Communication and Control Applications,” Proceedings of the
2005 IEEE Engineering in Medicine and Biological Engineering 27th
Annual Conference, Shanghai, China, September 1-4, 2005.

[4] H. Zhang, C. Guan, C Wang, “A statistical model of brain signals with
application to brain-computer interface,” Proceedings of the 2005
IEEE Engineering in Medicine and Biological Engineering 27th
Annual Conference, Shanghai, China, September 1-4, 2005.

[5] X. Zhu, C. Guan, J. Wu, Y. Cheng, and Y. Wang, “Expectation-
Maximization Method for EEG-Based Continuous Cursor
Control,” EURASIP Journal on Applied Signal Processing, Volume
2007, Article ID 49037.

[6] Thulasidas Manoj, C. Guan and J. Wu, “Robust Classification of EEG
Signal for Brain-Computer Interface,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, Vol. 14, No. 1, 2006, pp 24-
29.

[7] Tran Huy Dat, H. Zhang, C. Wang and C. Guan, “Selected Subband
Entropy for Motor Imagery Detection in Asynchronous Brain
Computer Interface,” to be presented on The 3rd International IEEE
EMBS Conference on Neural Engineering, 2-5 May, 2007, Hawaii,
USA.

[8] H. Zhang, C. Guan, Y. Li, “Signal Processing for Brain-computer
Interface: Enhance Feature Extraction and Classification,” IEEE
International Symposium on Circuits and Systems (ISCAS), Kos,
Greece, May 21-24, 2006.

[9] Manoj Thulasidas, Cuntai Guan, “Accurate and Fast-Learning
Classification of P300 Potential for a Real-Time Speller,” 27th
International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBS), Sept 1-4, 2005, Shanghai, China.

Fig. 5. BCI applications in one system. a): Soccer game; b): Maze
game. c): Virtual TV controller. d): Brain control of rehabilitation
process.

a) b)

c) d)

4706

