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Abstract— The motor imagery detection is a very important
problem in the asynchronous control for direct Brain Computer
Interface. To address this issue, this paper proposes a novel
detection method based on subband entropy analysis in a
selected frequency band. The basic idea of this method is
that, in some specific frequency band, the complexity (or
randomness) of brain signal during the stage of concentrating
on the motor imagery is lower than that of free thinking. Once
the optimal frequency band is selected, the subband entropy,
-an indicator of complexity and randomness-, can be used for
detecting the motor imagery. In this work, we develop the
method using only one dipolar EEG channel. Furthermore, we
propose a system calibration method based on an empirical
measurement what we refer as unsupervised discriminative
index (UDI). The proposed calibration method is rapid and able
to avoid a typical problem of asynchronous BCI training that
is the correct labeling of continuous EEG signal. The proposed
method not only improve the accuracy of the detection but free
from parameter tweaking. The experiment conducted on three
different subjects shows advantage of the proposed method
over the conventional framework based on fixed-band filter
and energy feature. A detection accuracy up to 77% at false
positive rate of 2% was obtained without any subject training.

I. INTRODUCTION

Brain-Computer Interface (BCI) [1] is the system which

captures and decodes the brain signal in order to transform

the human intentions directly into actions. This helps the

paralyzed, brain injured, and spinal cord injured patient to

restore their abilities, particularly in communication, wheel-

chair control or rehabilitation. Although many modalities are

possible for BCI, the current research is mainly focused on

the electroencephalogram (EEG) signals. The advantage of

EEG based BCI is very clear: this is non-invasive, technical

less demanding and widely available at relatively low cost.

There are two types of BCI, according to the mode of opera-

tion. The synchronous BCI allows the user only to response

to the external stimuli. In this mode, the processing is fixed

in predefined time windows. Alternatively, the asynchronous

BCI [2], decodes the user’s intentions in continuous time

and without stimuli. This mode is more complex but provide

more natural communication as the user can decide when to

start the system. An asynchronous BCI basically consists of

two steps: the detection of motor imagery occurence [3]; and

the classification of the detected signal into certain classes

sich as left/right hand movement imaginations [1]-[2], [4].

In present time, the Neural Signal Processing group at

Institute for Inforcomm Research, Singapore is working

on two applications of asynchronous BCI: the control of
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functional electrical stimulation (FES) and the rehabilitative

robot aim (RRA), for treatment and rehabilitation of the

motor disable people, respectively. During the context of

projects, we found that that the motor imagery detection

is more important and challenging as the classification was

quite well studied in the literature [4].

Despite the importance of the motor imagery detection,

only few number of studies were noticed in the litera-

ture. The available methods can be separated into two

schemes: the open-classification [5] and the Low Frequency-

Asynchronous Switch Design (LF-ASD)[2]. The first scheme

integrates the motor imagery detection inside the classifica-

tion by thresholding the classification scores. The LF-ASD

scheme detects the motor imagery prior to the classification

and this is done by comparing the normalised energy in a

specific frequency band. Although, the methods are evaluated

in different ways, it seems that the LF-ASD scheme could

achieve, in some cases, relatively higher accuracy. One

possible reason could be that the former scheme uses CSP

feature what is specially designed to discriminate different

motor imageries rather than detect the motor imagery from

the free thinking (taken as ”idle” stage). At the same time,

the feature space for motor imagery has not been well

studied. In the above mentioned LF-ASD, the method detect

high energy in low frequency band, assuming that no any

heightened activtity is occured during the ”idle” stage. This

is questionable due the large variation of EEG signals in this

stage. Another problem is that the prior arts in motor imagery

detection did not address the frequency selection and verious

bands were seen in use [2], and [6].

To address these issues, this paper proposes a novel

setection method based on subband entropy analysis in a
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Fig. 1. The selective subband entropy scheme applied for motor imagery
detection in asynchronous BCI

Proceedings of the 3rd International
IEEE EMBS Conference on Neural Engineering
Kohala Coast, Hawaii, USA, May 2-5, 2007

FrD3.11

1-4244-0792-3/07/$20.00©2007 IEEE. 358



Single channel

EEG

Sub-

band

Sub-

band

Sub-

band

…..

Entropy

Entropy

Entropy

Unsupervised.

Discriminative

Index

Unsupervised.

Discriminative

Index

Unsupervised.

Discriminative

Index

Sub-band 

selection,

Filter-bank 

calibration,

and

Threshold 

setting

Filter-

bank

Fig. 2. The processing scheme for system calibration

selective frequency band. The basic principle here is the

fact that, in some specific frequency band, the complexity or

randomness of the brain signal during stage of concentrating

on motor imagery is lower than that of free thinking. Once

the optimal frequency band is selected, the subband entropy,

-an indicator of complexity and randomness- can be used to

differentiate motor imagery againtst the ”idle” stage. Note

that the entropy was successfully applied on EEG signal for

some apllication such as ischemia detection [7].

The processing scheme of asynchronous BCI with selec-

tive subband entropy is illustrated in Fig.1. The dipolar EEG

signal is filtered by a selected filter from a filterbank. The

subband entropy is continuously monitored and compared

to a threshold to make a detection decision. Once the motor

imagery is present, the system will automatically turn on and

the motor classification will follow. In this work, we focus

only in the detection part. The scheme for system calibration

including filter number optimization, subband selection and

threshold setting is illustrated in Fig.2. This is done by using

an empirical measurement called unsupervised dicriminative

index (UDI) what indicates the distance between the low

set of observed entropy to the medium level. The proposed

calibration method is rapid and suitable in the real time

processing where calibration needs to be repeated many

times. Hereafter, we describe the method in more details.

II. SUBBAND ENTROPY

We consider the analysing EEG signal as the potential’s

difference between dipolar electrodes C3 and C4. These

channels are chosen as they are centre of the motor imagery

activity area [3].

x(t) = C3 (t)−C4 (t) (1)

From the practical point of view, the few-channel approach

is more preferable due to the compactness, the mobility and

the low cost what would make the BCI reliable in the real

life application.

A. Filter-bank

In contrast of conventional methods where a fixed-band

filter is used, we adopt a filterbank set, covering all of the

possible frequency range. The optimal subband is selected

from the calibration. The system of Chebysev bandpass filters

with equal frequency band are used. Denoting the system of

N filters by their impulse responses

h (t) = {h1 (t) ,h2 (t) , ...,hN (t)} , (2)

the filtered signal in each subband is a convolution expressed

as follows

yk (t) = x(t)∗ hk (t) . (3)

B. Subband entropy

The key point of this paper is the use of subband entropy,

what is continuously estimated in each subband.

ek (t) = entropy [yk (t)] (4)

Here, the differential entropy of a random variable x is

defined as

H (x) = −

∫

p(x) log p(x)dx. (5)

There may exist a lot discussions on what is truly represented

by entropy but this measurement is well known to be an

indicator of the complexity or randomness of an observation.

In practice, the entropy (5) is estimated from an observation

of random variable X{x1, ,xN}. For the entropy estimation,

we adopt the method based on sample-spacing, which stems

from order statistics [8]. This estimator is adopted because of

its consistency, rapid asymptotic convergence, and simplicity.

Given an observation of X , first these samples are sorted in

increasing order such that X{x ′1 ≤ ,≤ x′T}. The m-spacing

entropy estimator is given by:

H (x) =
1

T − s

T−s

∑
i=1

log
(N + 1)

(

x′i+s − x′i
)

s
. (6)
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Typically, m =
√

(T ). To eliminate the effect of amplifiers,

we normalize the entropy to the standard deviation,

Hnorm (x) = H (x)− log(stdx) . (7)

To continuously monitor the subband entropy, the esti-

mation (4) is carried out in a segment-by-segment manner.

Particularity, 4s-length window and 0.1s-shift were used in

our implementation. Fig.3 shows an example of subband

entropy analysis of dipolar EEG signal (1) with 4-band

filter system, covering the frequency range of 0-50Hz. The

estimations of subband entropy in each band are illustrated in

upper figures and the label is shown in the lowest one. From

the figure it can be seen that the second band is the best

one for detecting the motor imagery action but this band

(12.5Hz-25Hz) is neither exact alpha nor beta bands. This

confirms the consideration of that the optimal frequency band

for should not be fixed in advance.

III. SYSTEM CALIBRATION

In this section we discuss the system calibration including

the subband selection, the number of filter optimization and

the detection threshold setting. We propose an unsupervised

method to calibrate the system. The main reason why we

did not choose a supervised method is difficulty in providing

exact labeling of motor imagery for training. Moreover, in

practice, the systems always need to be re-calibrated many

times and thefefore the rapidcity is an imporatant issue.

A. Unsupervised Dicriminative Index

To qualify the detection capacity in subbands, we pro-

pose an novel empirical measurement called unsupervised

discriminative index (UDI) expressed as follows

UDI (k) = medium [ek]−mean [ek|ek ≤ quantile(ek,q)] ,
(8)

where 0 < q < 1 is a quantile value, ek is the estimated

entropy in the k−subband. The UDI can be understood as

the difference between the medium (or median) level of the

entropy sequence to its lower set, characterizing the period

of motor imagery intention. Therefore, this measurement can

be used to predict the detection capacity of the subband. In

practise, for the calibration, we can ask the subject to think

of motor imagery and then get rest. Since the entropy during

the motor imagery is concentrated in the low set, the average

level of this set is not sensitive if q is set lower than ”true”

value. In this work we set q = 0.1.

B. System calibration

This paragraph describes how the UDI is used to calibrate

the filter system, particularly the subband selection and the

number of filter optimization.

1) Subband selection: Given the number of filters, the

optimal subband is selected as the best UDI-scored

kselect (N) = argmax
k

[UDIk|N] . (9)
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Fig. 4. Example of UDI comparison over several filter-bank configuration

2) Number of filter optimization: In the next step we

optimize the number of filter by comparing its best UDI

score. Since in our system the bandwidth is equal for all the

filters the number of filters will define the filter-bank system

configuration. In the processing, we iteratively increase the

number of filter until the best UDI score (9) stops increasing.

In this work, we start from 2-filter system.

Nselect = argmax
N

{

argmax
k

[UDIk|N]

}

(10)

Once the number of filters is chosen the selective subband is

given by (9). Fig.4 illustrates an example of filter calibration

based on UDI using the same signal whose entropy is plotted

in Fig.3. The upper part plots the maximum UDI over filter-

bank systems with different number of filters. In this case,

the 4-filter system is supposed to be the best. For this

configuration, the distribution of UDI over subband indexes

is shown in the lower part. The second band is selected

according to its maximum UDI score. This result agrees to

the visual observation illusrated in Fig.3.

3) Threshold setting: Another issue of the system calibra-

tion is the threshold setting for the final detection decision.

The fact that the selective subband entropy during the stage

of motor imagery intention is located in the lowest set in

the graphic makes the calibration feasible. For this task, we

set the threshold as the q-quantile value from the estimated

subband entropy in the selected subband.

threshold = quantile
[

ykselected
(t) ,q

]

(11)

Same as in UDI estimation, we used q = 0.1.

IV. EXPERIMENT

In this section we report a preliminary experiment on

the proposed method. In the data collection, we adopt the

simulated asynchronous BCI framework proposed in [5].

A. Data collection

Three subjects were participated in the data collections.

The 64-channel Neuroscan EEG system was used and the
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Subjsect 1: Detection ROC
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Subject 2: Detection ROC
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Subject 3: Detection ROC

Fig. 5. Detection ROC of proposed method evaluated on 3 subjects

amplified EEG was sampled at 250 Hz. Two channels C3

and C4 were used for the detection. The data collection is

briefly described as follows. A subject seats in a comfortable

chair with arms resting on armrests. A 20-round section

of cue-task-rest was done for each dataset. 2-second visual

cue (arrow sign) indicates the following 3 states that the

subject should perform: (L)- left, (R)-right motor imageries,

and (B) baseline-relax. Next the subject has to perform

the given task for 4 seconds. During the motor imagery,

the subject imagines the respective hand movement. A stop

signal indicates the end of task. Subject takes relaxes for

another 4 seconds before the next arrow. Each session runs

of 40 trials each with randomized cues (20 left and 20 right).

The label is marked as according to the actions resulting in

having cue (C), left (L), right (R) and baseline (B) intervals.

B. Segment-by-segment evaluation

In order to perform the offline evaluation we transform

the continuous EEG data into ”samples” by a segment-by-

segment processing. Each segment is labeled into ”event”

(i.e. the motor imagery ) or ”non-event” (i.e. the rest or

baseline). Since the aim of this study is to detect the motor

imagery rather than classify them, the ”event” subset contains

both left and right motor imagery. Two avoid the uncertain

situation when a segment might contain more than one class

we evaluate the segments fully lying on either event (L/R)

or nonevent (B) intervals. In this work, the segment length

and shift are 4s and 0.1s, respectively.

C. Evaluation results

We first evaluate the Receiver Operating Characteristic

(ROC) of the proposed detector. In this evaluation, the

automatic threshold setting is ignored. Fig.6 illustrates the

ROC curves evaluated from three subjects. We can see

that the middle points of ROCs (i.e. where True Positive

Rate (TPR)= False Positive Rate (FPR)) is less than 10%

for subjects 1-2 and around 17% for subject 3. If set the

false positive below 2% the TPRs are 70%, 77%, and 55%,

respectively. Next we evaluate the method with the automatic

threshold setting. As references, two other methods are also

implemented:

TABLE I

DETECTION PEFORMANCE OVER SUBJECTS (TRUE POSITIVE RATE [%] /

FALSE POSITIVE RATE [%])

Subjects Fixed-band En-
ergy (LF-ASD)

Selected-subband
Energy

Selected-subband
Entropy

Subject 1 69% / 9% 70% / 8% 75% / 3%

Subject 2 68% / 8% 75% / 7% 80% / 5%

Subject 3 55% / 11% 60% / 10% 60% / 3%

1) fixed alpha-band filter (8− 13Hz) with energy feature

(original LF-ASD);

2) selected subband with energy feature (we refer this as

Selected-band Energy).

Table 1 summarises the peformances in terms of TPR/FPR

over subjects. Although the results are not as good as we

expected, the selected subband framework overcome the

fixed-band method (LF-ASD) and the entropy feature is

shown to be much better than energy, particularly in the

reduction of False Positive rates. In present time, the method

is under way to test in online experiment and to improve by

optimizing the shape of filter-bank system.

V. CONCLUSIONS

We propose a novel motor imagery detection in asynchro-

nous BCI applications based on subband entropy analysis

in a selected frequency band. Furthermore, we develop a

rapid and robust unsupervised method to calibrate the system

without any training. A preliminary experiment on three

subjects show a significant improvement on the detection

performances compared to the conventional framework based

on fixed-band filter and energy feature.
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