
Time-Variant Spatial Filtering for Motor Imagery
Classification

Haihong Zhang, Chuanchu Wang, Cuntai Guan

Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613

Email: {hhzhang, ccwang, ctguan}@i2r.a-star.edu.sg

Abstract— Effective spatial filtering plays a key role in motor
imagery classification. This paper presents a novel approach to
spatial filtering of EEG signal by modelling time-variant spatial
patterns. This is in contrast to conventional Common Spatial
Pattern which assumes static spatial patterns in a motor imagery
trial. We define the model such that it accounts for relatively
higher order dynamics in EEG. Furthermore, we formulate the
training of the model as a dual optimization problem, and we
derive an iterative optimization algorithm using quadratically
constrained quadratic programming. Our experimental results
on healthy subjects indicates that the proposed method is able
to produce higher classification accuracy.

Index Terms— Common Spatial Pattern, Time-Variant Filter-
ing, Motor Imagery, EEG

I. INTRODUCTION

Motor imagery classification provides an important basis
for brain-computer interfaces (BCIs) by directly conveying
people’s imagination of movements to the outside world [1].
It is especially appealing to severely paralyzed patients, since
motor ability is no longer a prerequisite for this communi-
cation. It also offers a promising tool for normal people to
enhance their interaction with computers.

Motor imagery, or imagination of movement, is actually
the mental rehearsal of a motor act without any real motor
output. Evidence from a psychophysiology study with positron
emission tomography (PET) shows that, different from in
real performance, in motor imagery the execution would
be blocked at cortical-spinal level [2]. It can change the
functional connectivity within the cortex and leads to an am-
plitude suppression (event-related desynchronization, or ERD)
or an amplitude enhancement (event-related synchronization,
or ERS) of µ and β rhythms [3]. The ERD and ERS can be
apparent in grand trial averages, but they may not be clearly
present in individual motor imagery trials [4].

In 1997, Pfurtscheller et al. demonstrated the feasibility
of using EEG to differentiate between imagination of right
and left hand movements [5]. Since then, the topic of motor
imagery classification has grown into the focus of EEG-based
BCI research. The importance of the topic is also indicated
in, e.g. the latest BCI Competition III (2005) where 6 out of
8 data sets are motor imagery signals [6].

This paper focuses on the feature extraction for motor im-
agery classification. In this regard, spatial filtering methods are
of particular interest: Combining data from multiple channels
(locations on scalp) is expected to provide a means to focus
on activities with particular spatial distributions. In particular,

the common spatial pattern (CSP) algorithm has become a
popular method for distinguishing motor imagery EEG signals
(e.g. [7], [8]). The algorithm aims to find linear projections
that maximize variance for one class while at the same time
minimizing variance for the other class. Thus, it may bring
out the difference in spatial distributions of EEG between e.g.
left/right hand movement imaginations. Basic CSP deals with
binary classification. To address multi-class classification of
EEG signals, a few possible extensions to CSP were studied in
[9], with the results suggesting the use of a stack of pair-wise
CSP projections. Conventional CSP algorithms process band-
pass filtered EEG signals while the frequency band is fixed.
In [10], Lemm et al. presented an extension to CSP that can
emphasize specific frequency bands, by simply concatenating
input signals and their delayed counterparts. More recently,
they improved the method by integrating an FIR filter into the
CSP framework, and the new algorithm is able to optimize
simultaneously a spatial filter and a spectral filter [11].

However, priori arts explored static spatial patterns only.
In other words, they employ a spatial pattern filter that is
fixed throughout a motor imagery trial. On one hand, this
methodology simplies the filtering problem; On the other
hand, it neglects time-variant spatial information which may be
critical for motor imagery classification. Actually the temporal
structure of spatial pattern can be inconsistent. For example,
ERD and ERS usually occur at different time in a trial.

This paper presents an approach to address the problem by
introducing time-variant spatial filtering. We propose a linear
model to describe time-variant spatial patterns. And we derive
an optimization algorithm for searching for optimal filters,
using quadratically constrained quadratic programming. Our
preliminary experiment indicates that the proposed method is
able to produce higher classification accuracy.

The rest of the paper is organized as follows. Section 2
revisits the conventional CSP method. Section 3 proposes a
new time-variant filtering model. In Section 4 we derive a
mathematical solution to training the model. And Section 5
presents our experimental results and discussions, followed by
conclusion in Section 6.

II. CSP REVISITED

The CSP method explores topographic patterns of brain
rhythm modulations. For example in the case of discimination
between left hand and right hand motor imagery, CSP tries to
maximize variance for the class of right hand and at the same
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time minimizing variance for left hand trials. Let the brain
signal be x. The CSP aims to search for an optimal projection
vector w by

argmax
w

E[(wT
xi − E[wT

x])2|x ∈ O1] s.t.

E[(wT
xi − E[wT

x])2] = 1 (1)

This can be reformulated as

argmax
w

w
T ΣO1

w s.t. w
T (ΣO1

+ ΣO2
)w = 1 (2)

where ΣOi
denotes the covariance matrix for class Oi. This

optimization problem can be solved using joint diagonaliza-
tion, which consists of calculating a matrix W and a diagonal
matrix D:

WΣ(1)WT = D, WΣ(2)WT = I − D (3)

The matrices W and D can be obtained using the following
procedure.

1) Calculate the matrix P which whitens the matrix ΣO1
+

ΣO2
: P (ΣO1

+ ΣO2
)PT = I; this is can carried out

using SVD and normalization;
2) Calculated the whitened matrix Σ′

O1
= PΣO1

PT ;
3) Calculated the eigen vector matrix Q for Σ′

O1
: Σ′

O1
=

QDQT ;
4) Calculate the projection matrix W : W = PT Q

It can be seen that the W satisfies Eq. 3. The columns of
W are the optimal CSP projection vectors. Typically one uses
only the vectors with the highest eigenvalues for the positive
class (i.e. O1) and those with the lowest eigenvalues for the
negative class (i.e. O2).

In the CSP method, EEG samples are treated irrespective
of their time. Thus, it does not account for inconsistent spatial
patterns in an instance (also referred to a trial) of motor
imagery EEG. In view of this issue, we propose a time-variant
Spatial Filtering in the following section.

III. TIME-VARIANT SPATIAL FILTERING

Let the multi-channel signal from a bandpass filter be x(t)
where t denotes the time. The idea of time-variant spatial
filtering is to find a dynamic spatial filter w(t) which enhances
the variance of one class while suppressing the variance of the
other class. And we define the integrated variance measure as
follows.

y(w) =
1

L

∫

E[w(t)T
x(t) − E[w(t)T

x(t)]]2dt (4)

where L is the length of a motor imagery trial.
Let’s say that an optimal w(t) functional should maximize

the variance for class 1 whereas the variance for both class
together should remain constant. Hence, finding the optimal
functional w(t) for class O1 against class O2 can be expressed
as a constraint optimization problem:

max
w

y{O1}(w) s.t. y{O1}(w) + y{O2}(w) = 1 (5)

Though numerous forms of functional w(t) are possible,
in this work we consider a linear function because of its
simplicity.

w(t) = w0 + t · w1 (6)

The EEG signal is given as a sequence of discrete-time
samples: xt. And the variance measure can be reformulated
as

y(w) =
1

L

∑

t

E[(w0 + t · w1)
T
x(t) − E[·]]2

=
1

L

∑

t

(w0 + t · w1)
T Σt(w0 + t · w1)

=
1

L

[

w
T
0

∑

t

Σtw0 + 2wT
0

∑

t

tΣtw1+

w1

∑

t

t2Σtw1

]

(7)

where Σt is the covariance of xt at time t.
To maximize the objective function Eq. 5 with the variance

measure expressed in Eq. 7, we derive an iterative optimization
algorithm in below.

IV. OPTIMIZATION ALGORITHM

The optimization task is to search for optimal w0 and w1

that satisfy the Eq. 5. To this end, we first rewrite the variance
function Eq. 7 in two forms: the function of w0 and the
function of w1.

y(w0) = w
T
0 A0w0 + b

T
0 w0 + c0 (8)

where

A0 =
1

L

∑

t

Σt

b0 = 2
∑

t

tΣtw1 (9)

c0 = w
T
1

∑

t

t2Σtw1

And

y(w1) = w
T
1 A1w1 + b

T
1 w1 + c1 (10)

where

A1 =
1

L

∑

t

t2Σt

b1 = 2
∑

t

tΣtw0 (11)

c1 = w
T
0

∑

t

Σtw0

For a given w1(or w0), y(w0)(or y(w0)) is a quadratic
function of w0(or w1). From Eq. 5, searching for the op-
timal spatial filter becomes a dual quadratically constrained
quadratic programming (QCQP) problem. For example, if we
want to look for optimal filter for class O1, there are two
objectives with respect to w0 and w1 respectively.

max
w0

{

w
T
0 (A{O1}

0 )T
w0 + (b{O1}

0 )T
w0 + c

{O1}
0

}

subject to

w
T
0 (A{O}

0 )T
w0 + (b{O}

0 )T
w0 + c

{O}
0 = 1 (12)

where A
{O}
0 = A

{O1}
0 + A

{O2}
0 , b

{O}
0 = b

{O1}
0 + b

{O2}
0 , and

c
{O}
0 = c

{O1}
0 + c

{O2}
0 .
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The other objective for w1 takes similar form and is omitted
here to save space.

Because the 2nd-order coefficient matrices here are all
positive definite, the problem is convex and can be readily
solved using semidefinite programming (see Section IV.B).

To obtain both optimal w0 and w1, we devise the following
iterative algorithm.

1) Initilize w0. This can be done using the same dual di-
agonalization method used in conventional CSP, except
the coefficient matrix is slightly different.

2) Calculate the quadratic coefficients in Eq 12
3) Calculate w1 using QCQP.
4) Compute the change δ of the variance function Eq. 7. If

δ < ζ where ζ is a preset small value, stop.
5) Calculate the quadratic coefficients in Eq 10.
6) Calculate w0 using QCQP.
7) Compute the change δ of the variance function Eq. 7. If

δ < ζ stop.
8) Go to step 2.

V. PERLIMINARY EXPERIMENT AND RESULTS

Three healthy subjects participated in our preliminary ex-
periments. The subjects were seated in a comfortable armchair,
and during the course of the data collection sessions, remained
still – without large body movements. We employed a 40-
channel EEG amplifier (termed Neuroscan-40) from Com-
pumedics. The sampling rate was 250Hz.

In each session, the subjects were asked to do 20 groups of
left hand presses and 20 groups of right hand presses. In each
group the subjects were intructed to press 3 times a computer
keyboard.

Totally 15 electrodes channels around sensorimotor areas
were selected for data analysis, including ’F3’, ’Fz’, ’F4’,
’FC3’, ’FCz’, ’FC4’, ’C3’, ’Cz’, ’C4’, ’CP3’, ’CPz’, ’CP4’,
’P3’, ’Pz’, ’P4’. The 4-second data corresponding to left/right
hand press were segmented after the filtering process men-
tioned above.

We compared the conventional CSP and the proposed time-
variant spatial filtering using 10 fold cross validation. We
employed the SeDuMi toolbox (developed by MacMaster Uni-
versity,Canada. http://sedumi.mcmaster.ca/) to perform QCQP.
As the features from CSP or our spatial filtering are sensitive
to filter bands, we just tested the mu (8-12Hz), low-beta (12-
15Hz), middle beta (15–18Hz), and the full frequence range
(i.e. without band pass filtering). And we picked up the best
band which gave rise to the highest classification accuracy, for
each subject and each method respectively.

The energy values of EEG after filtering were calculated
and served as the inputs to a classifier. In this study we used
a naive Bayesian parzen window method for the classification
between left and right hand press.

The final results in terms of statistics of classification error
are given in Table I.

A. Discussions

The preliminary results suggest that the proposed method
can produce more effective spatial filtering, where it yielded

CSP Our Method
mean std mean std

Subject 1 18.5 7.7 17.6 6.6
Subject 2 21.7 7.7 19.55 7.3
Subject 3 24.6 7.3 22.9 8.7

TABLE I

COMPARATIVE CLASSIFICATION ERROR RATE (%).

up to approximately 10% relative reduction in classification
error rate. In this study we did not explicitly optimize the
frequency band selection for individual subjects is crucial
for highly accurate motor imagery classification, though it’s
widely accepted that the system performance is sensitive to
the filter band. It’s interesting to note that a novel method
was presented in[11] which automatically and simultaneously
optimized a CSP and a spatial filter. Currently we are studying
on how to effectively optimize our time-variant spatial filtering
and spatial filters simultaneously.

VI. CONCLUSION

In this paper we proposed a novel approach to spatial
filtering for motor imagery classification. By allowing time-
variant spatial filters, the approach accounts for relatively
higher order temporal dynamics in EEG. Furthermore, we
derived an optimization algorithm for searching for optimal
1st order time-variant spatial filters using quadratically con-
strained quadratic programming. Our preliminary experiment
indicates that, compared with conventional CSP, the proposed
method is able to produce higher classification accuracy.
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