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Abstract— Asynchronous control is a critical issue in devel-
oping brain-computer interfaces for real-life applications, where
the machine should be able to detect the occurrence of a mental
command. In this paper we propose a computational approach
for robust asynchronous control using the P300 signal, in a
variant of oddball paradigm. First, we use Gaussian models in
the support vector margin space to describe various types of EEG
signals that are present in an asynchronous P300-based BCI. This
allows us to derive a probability measure of control state given
EEG observations. Second, we devise a recursive algorithm to
detect and locate control states in ongoing EEG. Experimental
results indicate that our system allows information transfer at
approx. 20bit/min at low false alarm rate (1/min).

I. INTRODUCTION

Brain-Computer Interface (BCI) is an emergent multidisci-

plinary technology which allows a brain to control a computer

directly – without relying on normal neuromuscular pathways

[1]. Its most important applications are mainly meant for the

paralyzed people who are suffering from severe neuromuscular

disorders, as BCIs can provide communication, control or

rehabilitation tools for the restoration of lost abilities in

the patients. Among brain signal acuiqistion measures, of

particular interest is the electroencephalogram (EEG) [1], [2],

[3]). Recording electrical brain signals from the scalp, it bears

advantages like non-invasive, technically less demanding, and

widely available at low cost [4], depite downsides like low

signal-to-noise ratio, low spatial resolution.

This paper addresses an important issue of asynchronous

control in EEG-based BCI, which means that the user can

send a command through the interface at any time while

the machine is able to capture the mental command in on-

going brain waves. On the contrary, conventional systems

often assume that the user is always fully engaged in sending

certain pre-defined mental commands. Clearly, the capability

of asynchronous control is crucial for real applications.

Recent years have seen an increasing research interest for

asynchronous control, primarily using motor imagery signals

[5], [6], [7]. However, this paper reports the first attempt to

build asynchronous control using the P300 signal. It is known

that P300-based systems require minimal user training, and

provide mental command classification with high accuracy [8].

The P300 is an evoke related potential (ERP) elicited

in the brain in response to infrequent/oddball auditory, vi-

sual or somatosensory stimuli. Farwell and Donchin [9] first

demonstrated the use of P300 for BCI in a so-called oddball

paradigm. The paradigm can be extended for people with

visual impairments, using auditory or tactile stimuli [10].

A great deal of work followed the oddball paradigm while

seeking to improve the system performance from various

signal processing viewpoints, e.g. [11], [12], [13].

In this paper we propose a computational approach for

robust asynchronous control. First, we address how to compute

the probability of control state for a given segment of EEG

signals. To this end, user-specific Gaussian models using

empirical data are employed, which allow us to describe

various types of EEG signals in the P300-based BCIs. Based

on the statistical models, we derive a probability measure

of control/non-control states given observed EEG signals.

Second, we devise an algorithm to detect and locate control

states in ongoing EEG – not just a given period of EEG. This

is important since it’s unknown to the machine when and how

long the user tries to input a single command through the

interface. In essence, our algorithm consists of recursive steps

enumerating possible time-windows of control at a time, and

determining if a continuous control state occurs throughout

one of the windows.

To evaluate the proposed approach, we conduct experiments

on five human subjects. The experimental results attest to the

efficacy of our approach. For example, on average, a user is

able to input information effectively through our interface at

approx. 20bit/min in control state, while producing only 1 false

alarm per minute in non-control state.

II. PROBLEM DESCRIPTION

A P300-based BCI framework is illustrated in Fig. 1. Unlike

previous systems which intensify individual rows and columns,

it flashes individual buttons successively in a random order.

The timing of intensification is configurable and controlled by

the machine, while the concurrent EEG signals are captured

by an amplifier plus data aquisition device.

When a button flashes, the machine captures the concurrent

readings in EEG. A period (typically 500ms long) of EEG

signals following the stimulus is refered to as an epoch. A

complete cycle in which every button flashes once and only

once is referred to as a round.

We use Ns to denote the number of buttons on the command

display. We use st
i to represent an epoch, associated with

the intensification of the i-th button at the t-th round. Thus

a complete round will consist of Ns epochs: S = {st
i}, where

i = 1, . . . , Ns.
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Fig. 1. System Illustration. This work introduces a special component, called “control signal detection”, for enabling asynchronous control.

Obviously, control state detection in essence requires an

automatical way to infer, from a S or a number of S, if the

user is intended to a particular button. In view of low quality

of single P300 epochs [14], it’s often suggested to make a

detection using a few rounds .

Let’s now define a user’s states and the epoch types. When

a user is trying to input a command, he or she is in control

state and shall pay consistent attention to a particular button.

Otherwise, the user is in non-control state. In control state,

epochs associated with intensifications of target button are

target epochs, while the other epochs are non-target epochs.

In non-control state all epochs are garbage epochs.

For asynchronous control, we derive our approach in the

following steps: 1) Devise the probability model which de-

scribes the likelihood that a given period of EEG is a control

signal; 2) Devise a method that enumerates all possible time

windows at at time and check if the EEG in a time window

is a control signal.

III. MODELS OF CONTROL/NON-CONTROL SIGNALS

A. Target Signal and Non-target Signal Models

EEG signals often exhibit considerable variations even in

the same type of epochs, which make the direct statistical

modeling of the signals very difficult. Instead, in this work we

resort to a special space created by support vector machines

(SVMs).

SVMs are now a well-known classification method whose

principle is to seek maximal margin between two classes. Here

we use d to denote the distance from a pattern to the optimal

hyperplane.

d = h(x) =
N

∑

i=1

aik(x,xi) + b (1)

by using a kernel function k (here we uses Gaussian) which

corresponds to the inner product in a Reproducing Kernel

Hilbert Space. Here xi is one of the N support vectors.

As suggested in [15], Gaussian functions may provide a

good approximation to SVM scores for signals not present in

the training set.

p(d|Θ) = N (d − µθ, σ
2
1) (2)

p(d|Φ) = N (d − µφ, σ2
2) (3)

p(d|O) = N (d − µo, σ
2
3) (4)

where the parameters can be simply learned from empirical

samples using the MAP method.

B. Probability Models for P (C|S)

Consider multi-round signal as shown in Fig. ??. In control

state, the user will produce a single row of Θ epochs with the

rest being Φ.

Let P (Ξ, Ri) be the probability of control state and the

user being attending to the Ri button. By Bayesian rule, it is

straightforward to have

P (Ξ|D) =

∑Ns

i=1 p(D|Ξ, Ri)P (Ξ, Ri)
∑Ns

j=1 p(D|Ξ, Rj)P (Ξ, Rj) + p(D|Ψ)P (Ψ)
(5)

Assume the signals S
(j)
i are independently generated. It

follows that

p(D|Ξ, Ri) =
∏

j

P (dij |Θ)
∏

k,j,k 6=i

P (dij |Φ) (6)

where dij denotes the SVM score of S
(j)
i in Fig. (??).

p(D|Ψ) =
∏

ij

P (dij |Θ
′) (7)

In real implementations, however, direct calculation of the

above equations would easily result in overflow because of

a number of multiplications of exponentials. To overcome

this problem, we turn to use the following itemxxx for the

probability measure

L = log

[

Ns
∑

i=1

p(D|Ξ, Ri)P (Ξ, Ri)

]

−log(p(D|Ψ)P (Ψ)) (8)
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which, as can be easily seen, is monotorical withxxx the

a posteriori probability Eq. 5. To avoid overflow, the first

logrithm term on the right side is usually calculated by

log

[

Ns
∑

i=1

exp {log(p(D|Ξ, Ri)P (Ξ, Ri)) + M}

]

−log(exp(M))

(9)

where M is usualy taken as the average of

−p(D|Ξ, Ri)P (Ξ, Ri).

IV. CONTROL SIGNAL DETECTION

As stated earlier, the decision making aims to differentiate

between two cases: the user is intentionally using the interface

and being focused on a particular button for n rounds; the

user is in idle state or engaged in other things irrelevant to the

control task.

When doing the decision, two factors must be taken into

consideration. 1. False acceptance rate (FAR). The rate that

non-control signals are classified into Case 1 and associated

with the user’ commands. 2. False rejection rate (FRR). The

rate that true control signals are classified into Case 2 and the

system does not convey the user’s intentions.

Now the asynchronous control procedure can be described

as follows.

1) Initialization. Set minimal length Lm. Clear buffer. Set

round count kr = 0;

2) Receive a new round of ERP epochs. kr = 0.

3) Proceed if kr >= Lm;otherwise go back to Step 2;

4) Enumerate all possible signal segments {S} ending at

the last epoch, with length greater than or equal to Lm:

5) Calculate the a posterior probability P (C|S) for each

{S}, and pick up the signal segment Sopt with maximal

probability measure Popt;
6) If Popt > η where η is a preset value, proceed; otherwise

go back to Step 2;

7) Carry out classification on Sopt (e.g. with the method

in [13]), output the results;

8) Go to Step 1;

V. EXPERIMENTS

We used a NuAmps device from Neurosoft, Inc. to capture

scalp EEG signals. The signals were sampled at 250Hz on 15

selected electrode sites around the central, namely, ’F3’, ’Fz’,

’F4’, ’FC3’, ’FCz’, ’FC4’, ’C3’, ’Cz’, ’C4’, ’CP3’, ’CPz’,

’CP4’, ’P3’, ’Pz’, ’P4’.

Five healthy subjects participated in the P300 study using

the nine-button user-interface as shown in Figure x. In partic-

ular, each subject went through three sessions as below

• Session 1 consists of 2 sets of 8 rounds of running when

the subject was in control state. And the data was used

to train target/non-target ERP classifiers (SVMs).

• Session 2 consists of 1 set of 50 rounds of running when

the subject was in control state. The data was used to

evaluate the false rejection rate (FRR).

• Session 3 consists of 3 sets of 50 rounds of running

when the subject was in non-control state. The data was
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Fig. 2. True acceptance rate versus false acceptance rate

used to evaluate the false alarm (false acceptance) rate

(FAR). In the three sets, the subject was doing three tasks

respectively, namely, singing, resting with eye closed, and

calculating.

Please see [16] for the button-intensification timing.

VI. DATA ANALYSIS

A. Pre-processing

In the pre-processing procedure, we used temporal filtering

to remove high frequency noises and very slow wave. Thus,

a 5th-order digital Butterworth filter with passband [0.5Hz

15Hz] was applied to the continuous EEG data.

Subsequently, the filter EEG signals were downsampled by

a factor of 4 in order to reduce the sample number (thus

reducing computational complexity in folowing steps). The

downsampled signals were then segmented from 100ms to

500ms after the start of the button intensification in each

epoch, and the results were concatenated to form a single

vector that represents the epoch.

For the SVM, we used the popular LibSVM toolbox pro-

vided by [17] and chose the default setting with Gaussian

kernel. At the input of the SVMs, all the vectors were

normalized according to the empirical limits learned from the

training set.

B. Performance: true acceptance rate and false acceptance

rate

We only detected signal length no shorter than 3 rounds,

as too few rounds often yield unsatisfactory results. Since we

use a threshold in the detection of Control State, the TAR (on

control signals) and the (FAR) (on non-control signals) of the

system are monotonical functions on the threshold. Thus, we

use the popular ROC to measure the performance of detection.

Figure 2 plots the TAR vs FAR curves for the subjects.

The vertical axis on the right side plots the response time

corresponding to the true acceptance rate. The response time
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Fig. 3. Information transfer rate

is how long it is expected for a subject to be concentrated on

a single choise until the control effort is accepted. On average,

for example, the system is able to accept around 8 inputs

(among 9 possible buttons), or one needs to be concentrated

for 7.5 seconds until an control action is accepted, within one

minute at the risk of accepting 1 false signal during the 1

minute’s non-control state time.

C. Performance: Information Transfer Rate

The final goal of the ERP-based BCI system is to determine

when and which button (command) the subject tries to press

(input). The asynchronous control machanism above only

addresses the first issue, i.e. the detection of control signals.

To complete the system, one needs to plug in a classifier in

order to classify the detected signals.

We adopted a simple yet proven method for the classifica-

tion [13] which picks up the maximal averaged SVM scores

among the buttons.

To evalutate the detection plus classification system, we

employed a widely-used measure, named information transfer

rate which indicates how many bits of information one is able

to communicate effectively through the interface.

B = nr {log2Ns + P log2P + (1 − P )log2[(1 − P )/(Ns − 1)]}
(10)

where nr is the number of rounds per minute, and P is

the probability that the target is hit. It can be seen that P
is determined by true acceptance rate Rta and recognition

accuracy Rr: P = Rta ∗ Rr.

The following figure shows the results on each subject.

On average, one is able to communicate 20 bits/min at

FAR=1/min, or 30 bits/min at FAR=4/min.

VII. CONCLUSIONS

In this paper we proposed a computational approach for

asynchronous control using the P300 signal. First, we used

Gaussian models in the support vector margin space to

describe various types of EEG signals. And we derived a

probability measure of control state given EEG observations.

Furthermore, we devised a recursive algorithm to detect and

locate control states in ongoing EEG. Experimental results in-

dicate that our system allows satisfactory information transfer

at low false alarm rate.
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