
A SELF-TRAINING SEMI-SUPERVISED SUPPORT VECTOR MACHINE ALGORITHM AND
ITS APPLICATIONS IN BRAIN COMPUTER INTERFACE

Yuanqing Li, Huiqi Li, Cuntai Guan and Zhengyang Chin

Institute for Infocomm Research, Singapore 119613

ABSTRACT

In this paper, we analyze the convergence of an iterative self-
training semi-supervised support vector machine (SVM) al-
gorithm, which is designed for classi cation in small training
data case. This algorithm converges fast and has low com-
putational burden. Its effectiveness is also demonstrated by
our data analysis results. Furthermore, we illustrate that this
algorithm can be used to signi cantly reduce training effort
and improve adaptability of a brain computer interface (BCI)
system, a P300-based speller.

Index Terms— Supporter Vector Machine (SVM), semi-
supervised learning, convergence, brain computer interface
(BCI), P300.

1. INTRODUCTION

In real-world application, labeling data for training a clas-
si er is often expensive and time-consuming. When small
amount of labeled data and a large amount of unlabeled data
are available, semi-supervised learning can generally provide
us a classi er with satisfactory performance. Thus semi-supervised
learning has received considerable attention in recent years.
Existing semi-supervised algorithms include expectation max-
imization (EM) algorithm, self-training algorithms, co-training
algorithms [1], transductive support vector machines (TSVMs)
[2], etc. Since the optimization problem of a TSVM is non-
convex and nding its exact solution is NP-hard, several ap-
proximation algorithms have been established [3]-[5]. In sev-
eral studies e.g. [6], multi-view co-training support vector
machine and its variants were presented. To avoid the com-
putational complexity of transductive SVM algorithms, we
resort to a self-training SVM algorithm, which is similar to
the case of the co-training SVM in [6] when only one view
of data is available. The co-training SVM is an incremental
algorithm. However, the self-training SVM in this paper is
iterative, whose convergence will be addressed in this paper.
Our real-world data analysis results will demonstrate the fast
convergence and the effectiveness of this algorithm. Further-
more, we will illustrate its application in a brain computer
interface (BCI) system, a P300-based speller.

Correspondence to: Dr. Yuanqing Li, E-mail: yqli2@i2r.a-star.edu.sg

2. A SELF-TRAINING SEMI-SUPERVISED SVM

In this section, we present an iterative self-training semi-supervised
SVM algorithm, and prove its convergence. A data analysis
example is also presented to demonstrate its validity.

First, a standard SVM classi er for two-class problem can
be de ned as

min
1
2

||w||2 + C
N∑
i=1

ξi, subject to, (1)

yi(wTxi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, · · · , N,
where xi ∈ Rn is a training sample (feature vector), yi ∈
{−1, 1} is the label of xi, i = 1, · · · , N . C > 0 is a regular-
ization constant.

Algorithm 1
Suppose that we have a small training set FI containing

N1 samples {xi, i = 1, · · · , N1} with given labels [y0(1), · · · ,
y0(N1)], and a test setFT containingN2 samples {xN1+i, i =
1, · · · , N2} with their labels unknown.

Step 1 Using FI , we train a SVM, and perform classi-
cation on FT . The parameters of the SVM are denoted as
w(1) ∈ Rn, ξ(1) ∈ RN1 and b(1). The predicted labels are
denoted as [y(1)(1), · · · ,y(1)(N2)];.

Step 2 The kth iteration (k = 2, · · ·) follows Steps 2.1-
2.3.

Step 2.1 De ne a new training set as FN = FI + FT ,
where the labels of FT are predicted in the (k−1)th iteration.

Step 2.2 Using the training set FN , we train a SVM, and
perform classi cation again on FT . The parameters of the
SVM are denoted as w(k) ∈ Rn, ξ(k) ∈ RN1+N2 and b(k).
The predicted labels are denoted as [y(k)(1), · · · , y(k)(N2)].

Step 2.3 Calculate the objective function value in (1),

f(w(k), ξ(k)) =
1
2

||w(k)||2 + C
N1+N2∑
i=1

ξ
(k)
i . (2)

Step 3 (Termination step) Given that δ0 is a pre-determined
positive constant, if |f(w(k), ξ(k)) − f(w(k−1), ξ(k−1))| <
δ0, the algorithm stops after the kth iteration, and the pre-
dicted labels [y(k)(1), · · · , y(k)(N2)] of the test set are the
nal classi cation results. Otherwise, perform the k + 1th

iteration.
The following theorem shows the convergence of Alg. 1.

I 3851424407281/07/$20.00 ©2007 IEEE ICASSP 2007

Theorem 1 For f(w(k), ξ(k)) de ned in (2), we have,

f(w(k−1), ξ(k−1)) ≥ f(w(k), ξ(k)). (3)

Proof: According to Step 1 of Alg. 1, (w(1), ξ(1), b(1)) is
the solution of following optimization problem with training
data set FI ,

min
1
2

||w||2 + C
N1∑
i=1

ξi, subject to, (4)

y0(i)(wTxi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, · · · , N1.

Note that the predicted labels [y(1)(1), · · · , y(1)(N2)] are
de ned by the following inequalities,

y(1)(i)((w(1))TxN1+i + b
(1)) ≥ 0, i = 1, · · · , N2. (5)

We now expand the vector ξ(1) ∈ RN1+N2 by de ning

ξ
(1)
N1+i

=
{
0, if y(1)(i)((w(1))TxN1+i + b

(1)) ≥ 1,
1− y(1)(i)((w(1))TxN1+i + b

(1)), otherwise,
(6)

where i = 1, · · · , N2.
De ne a label vector y(1) = [y(1)1 , · · · , y(1)N1+N2

] =[y0(1),
· · · , y0(N1) , y(1)(1), · · · , y(1)(N2)]. For the second itera-
tion of Alg. 1, we can nd that (w(2), ξ(2), b(2)) is the solu-
tion of the following optimization problem with training data
set FI + FT ,

1
2
min ||w||2 + C

N1+N2∑
i=1

ξi, subject to, (7)

y
(1)
i (w

Txi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, · · · , N1 +N2.

From (5) and (6), (w(1), ξ(1), b(1)) is a feasible solution
of (7). Since (w(2), ξ(2), b(2)) is an optimal solution of (7),
thus we have

f(w(1), ξ(1)) ≥ f(w(2), ξ(2)). (8)

Similarly, (w(k−1), ξ(k−1), b(k−1)) (k > 2) is the solu-
tion of following optimization problem, where label vector
y(k−2) = [y0(1), · · · , y0(N1), y(k−2)(1), · · · , y(k−2)(N2)],

min
1
2

||w||2 + C
N1+N2∑
i=1

ξi, subject to, (9)

y
(k−2)
i (wTxi + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, · · · , N1 +N2,

and (w(k), ξ(k), b(k)) is the solution of following optimization
problem,

min
1
2

||w||2 + C
N1+N2∑
i=1

ξi, subject to, (10)

y
(k−1)
i (wTxi + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, · · · , N1 +N2.

Through considering the two cases: i. y(k−2)
i = y

(k−1)
i ,

ii. y(k−2)
i �= y

(k−1)
i , and the de nition of y(k−1)

i , we can
prove that (w(k−1), ξ(k−1), b(k−1)) satis es the constraints
of (10), i.e. it is a feasible solution of (10). Noting that
(w(k), ξ(k), b(k)) is the optimal solution of (10), hence we
have the inequality in (3). The theorem is proven. �

Remark 1: i. Since f(w(k), ξ(k)) ≥ 0, it follows from
Theorem 1 that {f(w(k), ξ(k))} is convergent. Thus Alg. 1 is
convergent. ii. The objective function in (1) can be explained
as a structural risk. According to Theorem 1, the structural
risk decreases as the iterations of Alg. 1. This generally leads
to increased classi cation accuracy.

Example 1: In this example, we demonstrate the validity
and convergence of Alg. 1 by real-world data analysis. We
apply Alg. Algorithm 1 to 4 real-world data sets “Diabetes,”
“Wla,” “Cancer” [7]. The number of examples of the four real
data sets are 768, 2000, 2200 and 680 respectively. For each
data set, we perform a 5-fold cross-validation. In each fold,
the data set is divided into three parts, the rst is called the
initial training data set, the second is the test data set which
is used in retraining, the third is an independent test set for
further validation. The sizes of the initial training data sets
for the four real data sets are arbitrarily set to 100, 45, 18 and
100 respectively. For each real data set, the ratio of the sizes
of test data set and the independent test set is 4 : 1.

We apply Alg. 1 to each of the 4 real-world data sets.
We obtain the accuracy rates for each of the 5 folds of the
test set and the independent test set. Thus there are a total
of 10 accuracy rates, which are then averaged. The average
predication accuracy rate for each real-world data set is listed
in the 4th column in Table 1. For the purpose of comparison,

Table 1. Analysis results (accuracy rates %) for three data
sets

Data Dimension EM Alg. 1 P values
Dim 14 67.4 89.3 0.02
Dia 8 69.8 77.8 0.01

Cancer 10 96.7 96.4 0.69
Wla 180 84.9 85.1 0.95)

we use the EM algorithm to replace Alg. 1 and perform a
similar analysis for each of the 4 real-world data sets. 10
accuracy rates are obtained and then averaged. The average
predication accuracy rate is listed in the 3th column in Table
1. Using T-test, we further compare the 10 accuracy rates
obtained by Alg. 1 and the 10 accuracy rates obtained by
EM algorithm. The corresponding P value is listed in the 5th
column.

From statistical tests, the performance of Alg. 1 is sig-
ni cantly better than that of EM algorithm for the rst 2 data
sets. For the last 2 data sets, the is no signi cant difference
between the performance of Alg. 1 and that of EM algorithm.

To demonstrate the convergence of Alg. 1, we show two

I 386

curves of SVM objective function (structural risk) in Fig. 1,
which are obtained in two of the 5-folds cross-validation for
data set ’Dia’. The two curves converge to lower limits. The
decrease of structural risk generally leads to a higher classi -
cation accuracy. This also explains the effectiveness of Alg.
1.

The are two main advantages of Alg. 1: i. As shown
in Fig. 1, this iterative algorithm converges fast (it generally
converges by 10 iterations); (2) Compared to a typical TSVM
algorithm, it is not NP-hard in computational complexity.

1 2 3 4 5 6 7 8
150

200

250

300

Iteration

Ob
jec

tive
 fun

ctio
n

Fig. 1. Decreasing tendency of structural risk.

3. APPLICATION IN A BCI SYSTEM

In this section, we illustrate the application of Alg. 1 in a
P300-based BCI speller.

BCIs provide an alternative communication and control
channel to convey messages and commands from brain to the
external world without using nerves and muscles [8]. Cur-
rently, the electroencephalogram (EEG) is the most prevail-
ing brain signal for non-invasive BCIs. One robust feature
is a positive displacement of EEG amplitude (event related
potential) occurring around 300ms after stimulus. This is
also known as the P300 [10]. P300 is a common feature in
BCIs. Based on P300, a speller was developed in [9]. The
main issue in P300-based BCIs is the robust classify of the
P300 response and the background noise. However, a gen-
erally tedious and time consuming training process is needed
for P300-based BCIs in order to build a reliable classi cation
model for each subject. It is essential to reduce training effort
so that P300-based BCI can be convenient to use.

In the following data analysis, we will show that Alg. 1
can be used to reduce training effort in a P300-based speller.
The dataset employed in this example was collected by a P300-
based speller paradigm described in [10]. During the exper-
iment, a 6-by-6 matrix that includes characters and numbers
is presented to the user on a computer screen (Fig. 2). Each
row or column of the matrix is intensi ed successively in a
random order. Each intensi cation lasts for 100 ms followed
by a 75 ms break. The user focuses on his desired character or
number. Each run consists of 12 intensi cations which covers
all the rows and columns of the matrix. Two of these twelve
consecutive intensi cations in each run contain the desired
symbol, where P300 potential is generated. For each symbol,

10 runs of twelve intensi cations are carried out. The dataset
contains training data and testing data collected from 10 sub-
jects. The phrase with 41 characters “THE QUICK BROWN
FOX JUMPS OVER LAZY DOG 246138 579” is used for
data collection. The same phrase is also used to testing data
collection with random word order. In our data analysis, the

Fig. 2. The stimulus matrix shown on a computer monitor to
the user. One row or one column of the matrix is intensi ed.

original test data is used as an independent test set, which is
not used for retraining in Alg. 1. Algorithm 1. The data cor-
responding to the rst three characters original training data
set is used for the initial training data set. The other 38 char-
acters are used for retraining and testing testing for Algorithm
1. Lowpass ltering is rst performed on the EEG data. Next,
the data segment from 24 EEG channels, between 150 ms to
500 ms from the start of each intensi cation, is selected for
constructing the feature. The accuracy rates averaged over 10
subjects obtained by Algorithm 1 are given in row 2 of Table
2. The accuracy rates in row 3 are given for a standard SVM,
which also uses the rst three characters for training and the
characters are used for testing only. The accuracy rate in row
4 is given for a standard SVM, which uses all the 41 char-
acters for training. Since none of these characters are used
for test, no accuracy rate is given for the test dataset in row
4. It can be It can be seen from Table 2 that: Alg. 1 can ob-
tain a comparable accuracy rate (98.8%) as the standard SVM
(99.0%), however the the initial training set (3 characters) of
Alg. 1 is much smaller than that of the standard SVM (41
characters). Thus the training data collection time (training
time) of the BCI speller can be reduced much while the accu-
racy is not affected

Table 2. Accuracy rates (%) for a data set from a P300-based
BCI speller

Alg. 1
(3 training symbols)

95.8 98.8

Test dataset Ind. test dataset
Standard SVM

(3 training symbols)
80.8 83.9

Standard SVM
(41 training symbols)

no accuracy 99.0

In the above of ine analysis, we use the data of 38 char-
acters (without true labels) for retraining in Alg. 1. The left
subplot of Fig. 3 shows the curves of average accuracy rates,

I 387

for the test data set and the independent test data set, obtained
after each after each iteration of Algorithm 1.

We also simulate online data analysis. We use an incre-
mental version of Alg. 1. First, we use the data of the rst
3 characters to train a SVM. The data of the subsequent 10
characters (4th to 13th characters) are then classi ed. Using
the initial training data set and the data of these 10 charac-
ters with predicted labels, we retrain a new SVM using Alg.
Algorithm 1 and classify the next 10 characters (14th to char-
acters) and so on. We stop retraining the SVM model after all
the 38 characters are used. The independent test set are then
classi ed by the nalized SVM model. The curve of aver-
age accuracy for the simulated online case is depicted by the
solid line with “*” in the right subplot of Fig. 3. The dashed
line with “o” is the average accuracy curve for the standard
SVM, which uses all the rst 41 characters for training as
in our original experiment. Note that these 41 characters are
not classi ed in the simulated online case, i.e. 0 accuracy
rate. The prediction accuracy rates of the last 41 characters
obtained by Alg. 1 and the standard SVM are almost equal
in the simulated online case. Using an incremental version
of Alg. 1, we can start classi cation for incoming data much
earlier than the standard SVM while keeping a satisfactory
accuracy.

Furthermore, retraining of the SVM can be restarted using
the incoming data when the performance of the system is not
satisfactory. Therefore, we can also use Alg. 1 to improve the
adaptability of the BCI system.

1 2 3 4 5
0.75

0.8

0.85

0.9

0.95

1

Iteration k

Ave
rage

 acc
urac

y

0 20 40 60 80
0.05

0

0.2

0.4

0.6

0.8

1

Number of characters

Ave
rage

 acc
urac

y

Fig. 3. Left: Accuracy curves obtained after each iteration
of Alg. 1 (the curve with ‘o’ is for the test data set, while
the curve with ‘*’ for the independent test set. Right: Solid
line with ’*’ is the accuracy curve obtained by an incremental
version of Alg. 1 which can be used in online cases. Dashed
line with ’o’ is the accuracy curve obtained by the standard
SVM which uses all the rst 41 characters for training as in
our original experiment.

Remark 2: We also use EM algorithm to replace Alg. 1
in the above of ine data analysis and nd that EM algorithm
does not work here. The reasons are: i. The dimension of fea-
ture vectors is large (408) and the training data set samples are
very few; ii. The score outputs (posterior probabilities) from
EM algorithm are not so reliable as the scores from SVM.
These scores are used to determine the output (character) of
the system.

4. CONCLUSION

In this paper, we present a self-training semi-supervised SVM
algorithm and prove its convergence. By comparing with EM
algorithm in several real-world datasets, the effectiveness and
fast convergence of this algorithm are demonstrated. Finally,
an application of the algorithm in a P300-based BCI speller
is illustrated. This algorithm can be used to reduce training
effort and improve adaptability of the P300-based BCI speller.

5. REFERENCES

[1] K. Nigam, and R. Ghani, “Analyzing the effectiveness
and applicability of co-training,” Proceedings of 9th In-
ternational Conference on Information and Knowledge
Management, pp. 86-93, 2000.

[2] V. Vapnik, Statistical Learning Theory, Springer, 1998.

[3] T. Joachims, “Transductive Inference for Text Classi ca-
tion using Support Vector Machines,” Proceedings of the
International Conference on Machine Learning, 1999.

[4] K. P. Bennett, A. Demiriz, “Semi-supervised sup-
port vector machines,” Advances in Neural Information
Processing Systems, 12, MIT Press, Cambridge, MA, pp
368-374, 1998.

[5] O. Chapelle, A. Zien, “Semi-supervised classi cation by
low density separation,” Proceedings of the Tenth Inter-
national Workshop on Arti cial Intelligence and Statis-
tics, pp. 57-64, Barbados, 2005.

[6] S. Park, B. Zhang, “Co-trained support vector machines
for large scale unstructured document classi cation us-
ing unlabeled data and syntactic information,” Informa-
tion Processing and Management, Vol. 40(3), pp. 421-
439, 2004.

[7] D. J. Newman, S. Hettich, C. L. Blake, C.
J. Merz, “UCI Repository of machine learning
databases,” University of California, Irvine, CA,
http://www.ics.uci.edu/ mlearn/MLRepository.html.

[8] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G.
Pfurtscheller and T. M. Vaughan, “Brain-computer in-
terfaces for communication and control,” Clinical Neu-
rophysiology, 113, pp. 767-791, 2002.

[9] N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen,
B. Kotchoubey, A. kubler, J. Perelmouter, E. Taub, H.
Flor, “A spelling device for the paralysed,” Nature, vol.
398, pp. 297-298, 1999.

[10] E. Donchin, K. M. Spencer, and R. Wijesinghe, ”The
mental prosthesis: Assessing the speed of a P300-based
brain-computer interface”, IEEE Transactions on Reha-
bilitation Engineering, Vol. 8(1), pp. 174-179, 2000.

I 388

